displaying 1000 best results Help
Search results for: magnesium oxide board
-
Fabrication of anti-corrosion nitrogen doped graphene oxide coatings by electrophoretic deposition
PublicationThis work assesses anti-corrosion properties of graphene and N-doped graphene coatings deposited on copper by an electrophoretic method. Graphene oxide (GO) precursor was synthesized by an improved Hummers' method, whereas N-doping was performed hydrothermally in the presence of ammonia. After nitrogenation, doped graphene oxide samples (NGO) contained a reduced amount of oxygen and about 9% w/w nitrogen as pyridinic, pyrrole,...
-
Using differential pressure sensor to measure nitrous oxide level in a tank
PublicationA method for measuring the level of liquid nitrous oxide oxidizer in a hybrid rocket motor oxidizer tank is proposed. Presented approach is more accurate than the most commonly used method of this measurement, which employs weighting of the whole sounding rocket or an oxidizer tank. In our solution we use a differential pressure sensor to measure the change of pressure at the bottom of an oxidizer tank in comparison to the pressure...
-
Nanotubular Oxide Layer Formed on Helix Surfaces of Dental Screw Implants
PublicationSurface modification is used to extend the life of implants. To increase the corrosion resistance and improve the biocompatibility of metal implant materials, oxidation of the Ti-13Nb- 13Zr titanium alloy was used. The samples used for the research had the shape of a helix with a metric thread, with their geometry imitating a dental implant. The oxide layer was produced by a standard electrochemical method in an environment of...
-
Novel method for metal-oxide glass composite fabrication for use in thermoelectric devices
PublicationA novel method for thermoelectric materials fabrication using a reduction of oxide precursors in hydrogen was reported. On the example of Bi-Sb, Bi-Sb-Te and Te-Ag-Ge-Sb compounds it was shown that this simple and easy method is suitable for fabrication of two-, three- and even multicomponent thermoelectric materials. It allows controlling a composition, microstructure and even type a of electrical charge carriers. As a result...
-
Reduced graphene oxide–bismuth oxide composite as electrode material for supercapacitors
Publication -
Study of the effect of thermally reduced graphene oxide on the physical and mechanical properties of flexible polyurethane foams
PublicationFlexible polyurethane foams were obtained from a two-component system via the one-step method. The foams were modified with thermally reduced graphene oxide added in the amount equal to 0.25, 0.5 and 0.75 wt%. The morphology, static and dynamic properties, and thermal stability of modified foams were determined. The application of carbon filler resulted in the visible increase in the cell size, apparent density and rigidity of...
-
Separation of C6 hydrocarbons on sodium dithionite reduced graphene oxide aerogels
PublicationThe ability of reduced graphene oxide aerogels (rGOAs) for challenging gas-phase separation was investigated with hexane isomers and benzene (C6 hydrocarbons) using inverse gas chromatography (IGC). For the first, rGOAs were synthesized with sodium dithionite (DTN) as a reductant. Experiments revealed that the most optimal DTN to graphene oxide mass ratio was 2:1, resulting in the highest specific surface area of 432.3 m2 g−1 and...
-
Linear and nonlinear impedance in iron oxide glasses containing alkaline ions and alkali free
PublicationThe linear and nonlinear impedance spectra of oxide glasses were measured in the frequency range of 1 mHz to 1 MHz and in the temperature range of 153K to 483K. Two groups of iron oxide glass samples were prepared, the first one containing alkaline ions and the second one without alkali. In the first group, compositions of glasses were as follows: (in %mol) 50% SiO2 , 25% PbO, 15% Fe2O3 and 15% one of alkaline oxides: Na2O, K2O,...
-
Capacitance Enhancement by Incorporation of Functionalised Carbon Nanotubes into Poly(3,4-Ethylenedioxythiophene)/Graphene Oxide Composites
PublicationThis paper reports on the role of oxidised carbon nanotubes (oxMWCNTs) present in poly-3,4-ethylenedioxytiophene (PEDOT)/graphene oxide (GOx) composite. The final ternary composites (pEDOT/GOx/oxMWCNTs) are synthesised by an electrodeposition process from the suspension-containing monomer, oxidised carbon nanotubes and graphene oxide. Dissociated functional groups on the surface of graphene oxide play a role of counter-ions for the...
-
Synthesis and modification of reduced graphene oxide aerogels for biofuel cell applications
PublicationWe have carried out the preparation of reduced graphene oxide aerogels using eco-friendly method that is based on the Hummers method of graphite oxidation without the use of NaNO3 that produces toxic gases. To obtain a porous 3D structure of reduced graphene oxide, we performed the hydrothermal reduction at elevated temperature. We also prepared the rGO aerogel/CNT composite using multiwalled carbon nanotubes as linkers. The rGO...
-
A study of a reduction of a micro- and nanometric bismuth oxide in hydrogen atmosphere
PublicationA reduction of bismuth oxide in hydrogen atmosphere was investigated. The reaction was performed with a material in various structural forms: powder: with micrometric grains, powder with nanometric grains and powder pressed into pellets. The process was performed in both isothermal and non-isothermal conditions. An activation energy of the reaction calculated with Friedman method was found to be about 85 kJ/mol for the reduction...
-
Fabrication, Microstructure and High Temperature Corrosion Resistance of Porous Alloys for Solid Oxide Fuel Cells
PublicationPorous alloys find use in modern Solid Oxide Fuel Cells as the supporting structures. As they are exposed to high temperatures (> 500°C) an oxide scale forms on their surface due to high temperature corrosion phenomena. Since the ratio between the surface area and volume is much higher than for planar samples, formation of the oxide can lead to a breakaway oxidation after relatively short times. Therefore corrosion properties of...
-
Structure and thermoelectric properties of Cs-Bi-Te alloys fabricated by different routes of reduction of oxide reagents
PublicationCesium-bismuth-telluride polycrystalline materials were fabricated using a cost-effective method based on a reduction of oxide reagents, leading to a production of a material with good thermoelectric properties. Several samples with various initial stoichiometry were prepared by melting of oxide powders at 1050 °C, quenching, milling to powders and then reducing in pure hydrogen at 400 °C. Another concept was to obtain the CsBi4Te6...
-
Magnesium(ii) 1-(1-adamantylsulfanyl)phthalocyanine – synthesis, photochemical and electrochemical properties
Publication -
Bromo(dithiobenzoato-k2S,S')tris(tetrahydrofuran-kO)magnesium(II): a redetermination
PublicationZwiązek [MgBr(C6H5CS2)(C4H8O)3]zawiera ligand ditiobenzoesowy. Dzięki pomiarom rentgenograficznym w niskiej temperaturze została określona struktura tego związku. Kompleks posiada zniekształconą geometrię oktaedryczną.
-
Electroactive polymer/graphene oxide nanostructured composites; evidence for direct chemical interactions between PEDOT and GOx
PublicationThis work concerns electrochemical synthesis of nanocomposites consisting of conducting polymer and reduced graphene oxide (rGOx) as electrode materials for supercapacitors. The electrosynthesis was performed in an aqueous solution of the 3,4-ethylenedioxytiophene (EDOT) monomer and graphene oxide (GOx) without supporting electrolyte. The amount of GOx was optimized to obtain the best electrochemical performance of the nanocomposite...
-
Fe-modified Mn2CuO4 spinel oxides: coatings based on abundant elements for solid oxide cell interconnects
PublicationThe current state of the art steel interconnect coating materials are based on critical raw material - Co-oxide spinels. Replacing Co-oxide spinels with alternative, abundant materials can reduce the dependence on the critical raw materials. Cobalt-free coatings with the general formula Mn2-xCuFexO4, where x = 0, 0.1, 0.3, were electrophoretically deposited on a ferritic stainless-steel support and evaluated. Prior to deposition,...
-
CuMn1.7Fe0.3O4 – RE2O3 (RE=Y, Gd) bilayers as protective interconnect coatings for Solid Oxide Cells
PublicationEfficient replacement of materials based on critical elements such as cobalt is one of the greatest challenges facing the field of solid oxide cells. New generation materials, free of cobalt show potential to replace conventional materials. However, these materials are characterized by poor ability to block chromium diffusion. This article described the study of CuMn1.7Fe0.3O4 (CMFO) spinel combined with single metal oxide (Y2O3...
-
Influence of synthesis conditions on zinc oxide nanorode layer morphology
PublicationIn recent years one dimensional (1D) nanostructures (nanotubes, nanowires, nanoribbons and nanorods) have been widely studied. Among studied nano-materials, the greatest interest can be seen for zinc oxide (ZnO). However, there is still a need for simple, inexpensive and reproducible fabrication method. In the literature different fabrication methods can be found, most of them requires expensive equipment and involve complex...
-
NANOCRYSTALLINE CATHODES FOR SOLID OXIDE FUEL CELLS MADE OF NOBLE METALS
PublicationCathodes for solid oxide fuel cells prepared by the infiltration method at 600 °C are presented. The infiltration method allows to produce stable, nanostructured electrodes. Cathodes were prepared using gold, platinum, La2NiO4+δ (L2N) and La0.6Sr0.4Co0.2Fe0.8O3 δ (LSCF). Symmetrical cathode/electrolyte/cathode samples were prepared and examined with SEM microscopy and electrochemical impedance spectroscopy. Despite successful deposition...
-
Hydrogen Embrittlement and Oxide Layer E ect in the Cathodically Charged Zircaloy-2
PublicationThe present paper is aimed at determining the less investigated effects of hydrogen uptake on the microstructure and the mechanical behavior of the oxidized Zircaloy-2 alloy. The specimens were oxidized and charged with hydrogen. The different oxidation temperatures and cathodic current densities were applied. The scanning electron microscopy, X-ray electron diffraction spectroscopy, hydrogen absorption assessment, tensile, and...
-
Morphology and the physical and thermal properties of thermoplastic polyurethane reinforced with thermally reduced graphene oxide
PublicationIn this study, thermally reduced graphene oxide (TRG)-containing polyurethane nanocomposites were obtained by the extrusion method. The content of TRG incorporated into polyurethane elastomer systems equaled 0.5, 1.0, 2.0 and 3.0 wt%. The morphology, static and dynamic mechanical properties, and thermal stability of the modified materials were investigated. The application of TRG resulted in a visible increase in material stiffness...
-
Tailoring properties of reduced graphene oxide by oxygen plasma treatment
PublicationWe report an easily controllable, eco-friendly method for tailoring the properties of reduced graphene oxide (rGO) by means of oxygen plasma. The effect of oxygen plasma treatment time (1, 5 and 10 minutes) on the surface properties of rGO was evaluated. Physicochemical characterization using microscopic, spectroscopic and thermal techniques was performed. The results revealed that different oxygen-containing groups (e.g. carboxyl,...
-
Influence of Two-Stage Anodization on Properties of the Oxide Coatings on the Ti–13Nb–13Zr Alloy
PublicationThe increasing demand for titanium and its alloys used for implants results in need of such innovative surface treatment that may jointly increase corrosion resistance and biocompatibility, and demonstrate antibacterial protection at no cytotoxicity. The purpose of this research was to characterize the effect of two-stage anodization, performed for 30 min in phosphoric acid, at the presence of hydrofluoric acid in the second stage....
-
TiO2 and Reducing Gas: Intricate Relationships to Direct Reduction of Iron Oxide Pellets
PublicationIn response to the imperative for sustainable iron production with reduced CO2 emissions, this study delves into the intricate role of TiO2 in the direct reduction of iron oxide pellets. The TiO2-dependent reducibility of iron oxide pellets utilizing H2 and CO gas across varied temperatures and gas compositions is thoroughly investigated. Our findings unveil the nuanced nature of the TiO2 effect, underscored by its concentration-dependent...
-
Thermal and Mechanical Properties of Microporous Polyurethanes Modified with Reduced Graphene Oxide
PublicationMicroporous polyurethanes (MPU) were modified by adding 0.25%–1.25 wt% of reduced graphene oxide (RGO). The materials were prepared without solvent via in situ polymerization. From a technological point of view, it is very important to obtain functional materials by using reacting compounds only. The thermal characteristics of obtained MPU were investigated using TGA, DSC, and DMA techniques. In comparison to nonmodified microporous...
-
A study of the kinetics of bismuth telluride synthesis by an oxide reduction method
PublicationThe kinetics of a reduction of bismuth and tellurium oxides in a hydrogen atmosphere, leading to the formation of thermoelectric bismuth telluride is investigated. The evaluation of the reaction kinetics was based on a thermogravimetric analysis performed in non-isothermal conditions. A non-parametric analysis method and the Friedman method were used for the evaluation of the data. Additionally, for a better understanding of the...
-
Spray pyrolysis of doped-ceria barrier layers for solid oxide fuel cells
PublicationGadolinium doped ceria (Ce0.8Gd0.2O2 − x-CGO) layer fabricated by spray pyrolysis is investigated as the diffusion barrier for solid oxide fuel cell. It is deposited between the La0.6Sr0.4FeO3 − δ cathode and the yttria stabilized zirconia electrolyte to mitigate harmful interdiffusion of elements. The parameters of the fabrication process are linked to the measured area specific resistances of the symmetrical cells and the efficiency...
-
The Effect of Titanium Oxyfluoride Morphology on Photocatalytic Activity of Fluorine-Doped Titanium(IV) Oxide
PublicationTitanium oxyfluoride (TiOF2) is a metastable product that can be obtained in a fluorine-rich environment. This material can also be a valuable precursor in the synthesis of titanium(IV) oxide (TiO2). However, the effect of TiOF2 morphology on the physicochemical properties of TiO2 has not been studied so far. In this work, single-phase TiOF2 was prepared by a solvothermal method. The as-synthesized samples exhibited a variety of...
-
Synthesis of reduced graphene oxide nanosheets using nanofibers from methane and biogas thermal decomposition with various catalysts
PublicationReduced graphene oxide and graphene oxide (rGO, GO) were synthesised from carbon nanofibers, which were formed in catalytic thermal decomposition of methane (CDM) and biogas with different catalysts used in the process. The aim of the work was valorization of CDM carbon nanofiber products. The samples were characterized using Raman spectra, a scanning electron microscope and a transmission electron microscope. As a result, we observe...
-
Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis
Publication -
Magnesium(II) porphyrazine with peripherally overloaded pyrrolyl substituents – Synthesis, optical and electrochemical characterization
Publication -
Magnesium porphyrazine with peripheral methyl (3,5-dibromophenylmethyl)amino groups – synthesis and optical properties
Publication -
Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications
PublicationThe zirconium alloys used in nuclear industry include mainly ZreSn and ZreNb alloys ofdifferent chemical composition, microstructure and susceptibility to both hydrogendegradation and oxidation. The hypothetic nuclear accidents can create a real danger tothe Zr alloys and stability of parts made of these alloys, and especially such as loss ofcoolant accident (LOCA) and reactivity initiated accidents (RIA). The hydrogen degradationcan...
-
Photocatalytic activity of zinc oxide nanorods incorporated graphitic carbon nitride catalyst
PublicationBackground Photocatalysts are user-friendly and serve as compatible materials for degrading industrial dye pollutants. This study utilizes zinc oxide/graphitic carbon nitride (ZnO/g-C3N4) nanocomposites against degrading methylene blue (MB). Methods The hydrothermal method assisted sonication technique was used to fabricate the ZnO/g-C3N4 composite with varying ratios of ZnO/g-C3N4 (1:0.25, 1:0.50, 1:1). The synthesized materials...
-
Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology
PublicationThis study aims at investigating the dynamic mechanical, dielectric and rheological properties of reinforced polyurethane (PU) nanocomposites containing hydrophilic graphene oxide (GO) and/or hydrophobic modified graphene oxide (mGO) sheets. The organic modification of GO was performed with 4,4′-methylenebis (phenyl isocyanate) (MDI) and the samples were prepared by solvent mixing. We found that addition of mGO provides a more...
-
Mobility measurements in oxide semiconductors
PublicationPraca zawiera wyniki badań właściwości elektrycznych, optycznych i strukturalnych cienkich warstw ito i sno2. badania wykazały, że cienkie warstwy tlenków metali wykazują rezystywność charakterystyczną dla półprzewodników. poziom transmisji światła w zakresie widzialnym pozwala zaliczyć badane warstwy do materiałów przezroczystych. badane cienkie warstwy wykonano metodą rozpylania magnetronowego.
-
Ultrafast high-temperature sintering (UHS) of cerium oxide-based compound
PublicationUltrafast high-temperature sintering (UHS) is an innovative sintering technique that can densify ceramics in a few seconds, dramatically reducing the carbon footprint and firing costs. In this work, the feasibility of applying UHS in Gd-doped ceria (GDC) and GDC-Er-stabilized bismuth oxide (ESB) composite powders was investigated. At high UHS currents (22-24 A), a fully dense GDC sample with a large grain size was obtained. Nonetheless,...
-
CeCu2O4 as a functional layer on solid oxide fuel cells for synthetic biogas reforming
PublicationSolid Oxide Fuel Cells (SOFC) are one of the most promising electrochemical devices, which can convert chemical energy to the electrical energy these days. Their ability to work with different kind of fuel makes them noteworthy. SOFC can work with biogas. The problem arises when solid carbon starts to be deposited in anode. That leads to degradation of fuel cell. Simple solution is to apply catalytic functional layer, which is...
-
Eco-Friendly Electromagnetic Interference Shielding Materials from Flexible Reduced Graphene Oxide Filled Polycaprolactone/Polyaniline Nanocomposites
PublicationHybrid nanocomposites have the unique ability of enhancing material properties due to the existing synergistic effect of the fillers. In this study, the authors report such an eco-friendly hybrid nanocomposite comprising of polyaniline and reduced graphene oxide in polycaprolactone. The conducting polyaniline improved the processability of polycaprolactone, and the final composites were prepared by incorporating graphene oxide...
-
Graphene oxide aerogels for adsorptive separation of aromatic hydrocarbons and cycloalkanes
PublicationEfficient separation of benzene and cyclohexane has critical importance for production of commodity chemicals, and is one of the most challenging separations in the industry. Physisorption by recyclable, porous solids has a significant potential in substituting energy-intensive azeotropic or extractive distillation methods. Reduced graphene oxide aerogels (rGOAs) are emerging materials holding great promise for connecting unique...
-
Degradation mechanisms and protective coatings for ferritic stainless-steel interconnects of solid oxide fuel cells: A review
PublicationFerritic stainless steels (FSSs) are promising interconnect materials for solid oxide fuel cells (SOFCs). However, FSSs undergo fast thermal-oxidation during SOFC operation, generating poorly-conductive oxide scales and volatile chromium-oxides detrimental to cathodes. Developing protective coatings is crucial for inhibiting degradation of FSS-interconnects. This article starts with a brief discussion of the oxidation behavior...
-
Surface engineering of graphene oxide membranes for selective separation of perfluorooctanoic acids
PublicationPerfluoroalkyl compounds (PFCs) are environmental toxicants and their widespread detection and accumulation in the environment can be detrimental to the ecosystem. In this study, surface charge of GO membranes was engineered to enhance selectivity of graphene oxide (GO) membranes and for the removal of perfluorooctanoic acid (PFOA ∼400 Da) in real concentration ranges in wastewater streams. The structure and physicochemical properties...
-
Recent Advances in Graphene Oxide-Based Membranes for Heavy Metal Ions Separation
PublicationGraphene oxide (GO)-based membranes have been widely investigated for separation of dyes, salt ions, heavy metal ions, and biomolecules due to their high mechanical strength, single-layered structure, large surface area, and high affinity. However, due to irregular pore structure, nanochannels, interlayer distance, easy functionalization, swelling effect, and chemical stability under aqueous environment limited their separation...
-
Thermoelectric properties of bismuth-antimony-telluride alloys obtained by reduction of oxide reagents
PublicationThe BieSbeTe alloys with different Bi/Sb/Te ratio were fabricated by an innovative method. For that purpose the oxide reagents were melted at high temperature, then quenched to form pellets, milled to a powder and finally reduced in hydrogen at various temperatures. Complex structures consisting of connected thin layers forming a continuous path between nano- and micrometer size grains have been obtained. The electrical conductivity,...
-
Enhanced visible light-activated gas sensing properties of nanoporous copper oxide thin films
PublicationMetal oxide gas sensors are popular chemoresistive sensors. They are used for numerous tasks, including environmental and safety monitoring. Some gas-sensing materials exhibit photo-induced properties that can be utilized for enhanced gas detection by modifying the sensor selectivity and sensitivity when illuminated by light. Here, we present the gas sensing characteristics of highly nanoporous Cu2O thin films towards both electrophilic...
-
On the Possibility of Improving the Oxidation Resistance of High-Chromium Ferritic Stainless Steel Using Reactive Element Oxide Nanoparticles
PublicationHigh-chromium ferritic steels are current the only viable candidates for cheap interconnect materials for application in high-temperature solid oxide fuel and electrolyzer cells (HT-SOFCs/SOECs). The durability and operating characteristics of interconnects manufactured using these materials may be improved significantly by applying a protective-conducting MoCo2O4 coating and depositing an intermediate layer consisting of nanoparticles...
-
In Vitro Biological Characterization of Silver-Doped Anodic Oxide Coating on Titanium
PublicationDespite the high biocompatibility and clinical effectiveness of Ti-based implants, surface functionalization (with complex osteointegrative/antibacterial strategies) is still required. To enhance the dental implant surface and to provide additional osteoinductive and antibacterial properties, plasma electrolytic oxidation of a pure Ti was performed using a nitrilotriacetic acid (NTA)-based Ag nanoparticles (AgNP)-loaded calcium–phosphate...
-
Effect of interconnect coating procedure on solid oxide fuel cell performance
PublicationChromium (Cr) species vaporizing from chromia-forming alloy interconnects is known as a source of degradation in solid oxide fuel cell (SOFC) stacks called “cathode poisoning”. (Mn,Co)3O4 spinel coatings offer good protection against Cr evaporation during operation. In this study, Crofer 22 APU steel interconnects were electrophoretically deposited in different mediums to obtain high packing of green coating layer. The optimized...
-
Sebastian Molin dr hab. inż.
People