Search results for: FRACTIONAL ORDER CIRCUITS MAXWELL’S EQUATIONS RIEMANN-LIOUVILLE DERIVATIVE
-
Imaging of ferroelectric properties of sinter by means of Piezoresponse Force Microscopy
Open Research DataFerroelectricity is a property of certain materials [1], characterized by a spontaneous electrical polarization that can be reversed by applying an external electric field. Ferroelectric properties can be used to make capacitors with adjustable capacity. The permeability of ferroelectrics is not only regulated, but usually also very high, especially...
-
Inline Microstrip Bandpass Filter With Two Transmission Zeros and Increased Order Using Spurious Resonance of Frequency-Dependent Inverter
PublicationA design method for a class of fourth-order inline microstrip bandpass filter with two transmission zeros and 20% fractional bandwidth is presented. The filter consists of two quarter-wavelength transmission-line resonators coupled by a frequency-dependent inverter. The inverter is composed of two open-ended stubs that are connected by an interdigital capacitor and introduces two poles and two transmission zeros in the filter response....
-
Current divider-based nanosecond high current pulse measuring systems
PublicationThis paper presents the analysis of the new approach to the measurement methodology of significant values (in order of hundreds of kA) and huge steepness (in order of MA/μs) current pulses based on current dividers along with a comparison of the various types transducers suitability in measuring systems with such extreme parameters. Such dividers are used to extend the measurement ranges of current transducers with limited current...
-
Magnetoacoustic heating in a quasi-isentropic magnetic gas
PublicationThe nonlinear heating of a plasma which associates with the transfer of energy of magnetoacoustic waves into that of the entropy mode, is analytically studied. A plasma is uniform and motionless at equilibrium. Perturbations in a plasma are described by a system of ideal magnetohydrodynamic equations. The equilibrium straight magnetic strength and the wave vector form a constant angle which varies from 0 to π/2. There exist four...
-
Low-Cost Method for Internal Surface Roughness Reduction of Additively Manufactured All-Metal Waveguide Components
PublicationIn this study, a novel low-cost polishing method for internal surface roughness reduction of additively manufactured components, developed for waveguide (WG) circuits operating in the millimeter frequency range is proposed. WG components fabricated using powder bed fusion (PBF) generally feature roughness of ten to fifty microns, which influences the increase of roughness-related conductor power losses having a major effect on...
-
Non-linear static stability of bi-layer carbon nanosheets resting on an elastic matrix under various types of in-plane shearing loads in thermo-elasticity using nonlocal continuum
PublicationIn this research, the shear and thermal buckling of bi-layer rectangular orthotropic carbon nanosheets embedded on an elastic matrix using the nonlocal elasticity theory and non-linear strains of Von-Karman was studied. The bi-layer carbon sheets were modeled as a double-layered plate, and van der Waals forces between layers were considered. The governing equations and boundary conditions were obtained using the first order shear...
-
Ultrashort Opposite Directed Pulses Dynamics with Kerr Effect and Polarization Account
PublicationWe present the application of projection operator methods to solving the problem of the propagation and interaction of short optical pulses of different polarizations and directions in a nonlinear dispersive medium. We restrict ourselves by the caseof one-dimensional theory, taking into account material dispersion and Kerr nonlinearity. The construction of operators is delivered in two variants: for the Cauchy problem and for the...
-
Balance errors generated by numerical diffusion in the solution of non-linear open channel flow equations
PublicationThe paper concerns the untypical aspect of application of the dissipative numerical methods to solve nonlinear hyperbolic partial differential equations used in open channel hydraulics. It is shown that in some cases the numerical diffusion generated by the applied method of solution produces not only inaccurate solution but as well as a balance error. This error may occur even for an equation written in the conservative form not...
-
An algorithm for enhancing macromodeling in finite element analysis of waveguide components
PublicationAn algorithm for enhancing the finite element method with local model order reduction is presented. The proposed technique can be used in fast frequency domain simulation of waveguide components and resonators. The local reduction process applied to cylindrical subregions is preceded by compression of the number of variables on its boundary. As a result,the finite element large system is converted into a very compact set of linear...
-
Wykorzystanie algorytmów ewolucyjnych do doboru wzmocnień rozszerzonego obserwatora prędkości maszyny indukcyjnej
PublicationW pracy opisano sposób doboru wzmocnień rozszerzonego obserwatora prędkości maszyny indukcyjnej przy wykorzystaniu algorytmów ewolucyjnych. Zaproponowano funkcję celu opartą na rozkładzie biegunów obserwatora. Ze względu na wpływ prędkości maszyny na dynamikę obserwatora zaproponowano dobór wzmocnień obserwatora dla różnych przedziałów prędkości. Dla poszczególnych przedziałów zaprezentowano wyniki doboru wzmocnień w postaci tabel...
-
Extending the Frequency Limit of Microstrip-Coupled CSRR Using Asymmetry
PublicationAbstract— This article explains the frequency limitation in designing microstrip circuits based on a complementary split-ring resonator (CSRR) and reports a novel technique for increasing its operating frequency, which makes the CSRR suitable for high-frequency applications. This study helps in synthesizing the dimensions of symmetric CSRR (SCSRR) and asymmetric CSRR (ACSRR) circuits, which shows the applicability of the proposed...
-
Multi-objective optimization of microwave couplers using corrected domain patching
PublicationPractical design of microwave components and circuits is a compromise between various, often conflicting objectives. In case of compact structures, the trade-offs are typically concerned with the circuit size and its electrical performance. Comprehensive information about the best possible trade-offs can be obtained by means of multi-objective optimization. In this paper, we propose a computationally efficient technique for identifying...
-
Hidden Tensor Structures
PublicationAny single system whose space of states is given by a separable Hilbert space is automatically equipped with infinitely many hidden tensor-like structures. This includes all quantum mechanical systems as well as classical field theories and classical signal analysis. Accordingly, systems as simple as a single one-dimensional harmonic oscillator, an infinite potential well, or a classical finite-amplitude signal of finite duration...
-
Assessment of the devulcanization process of EPDM waste from roofing systems by combined thermomechanical/microwave procedures
PublicationEthylene-propylene-diene rubber (EPDM) is a elastomer widely used in common industrial applications. EPDM can be shaped into sheets and employed as isolating material for roofing systems. In this study, scraps of EPDM from commercial, industrial and residential roofing systems were treated by combined thermo-mechanical and microwave devulcanization processes including peroxide of benzoyl (BPO). The devulcanized EPDM (Dev-EPDM)...
-
Modal modification of structural damping applied to increase the stability and convergence of numerical integration
PublicationThe presented paper refers to numerical tests done on systems fused of multibody and finite-element parts. The appearance of its multibody part gives rise to significant nonlinear components, i.e., second-order nonlinear differential equations express the dynamics. We usually solve these equations by “step-by-step” integration methods. When using the currently available integration algorithms, we approximate these initial systems...
-
Detection of inter-turn faults in transformer winding using the capacitor discharge method
PublicationThe paper presents results of an analysis of inter-turn fault effects on the voltage and current waveforms of a capacitor discharge through transformer windings. The research was conducted in the frame of the Facility of Antiproton and Ion Research project which goal is to build a new international accelerator facility that utilizes superconducting magnets. For the sake of electrical quality assurance of the superconducting magnet...
-
Zero-pole approach to computer aided design of in-line siw filters with transmission zeros
PublicationThis paper presents a design of a new type of in-line pseudo-elliptic filters implemented in substrate integrated waveguide(SIW) technology. To realize transmission zeros in in-line topology,frequency-dependent couplings were used. Such dispersive couplingswere implemented as shorted stubs. The design process startswith the generation of a suitable starting point. To this end, anapproximation of SIW as a rectangular waveguide is...
-
Thermal Buckling Analysis of Circular Bilayer Graphene sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics
PublicationIn this article, the thermal buckling behavior of orthotropic circular bilayer graphene sheets embedded in the Winkler–Pasternak elastic medium is scrutinized. Using the nonlocal elasticity theory, the bilayer graphene sheets are modeled as a nonlocal double–layered plate that contains small scale effects and van der Waals (vdW) interaction forces. The vdW interaction forces between the layers are simulated as a set of linear springs...
-
An interval estimator for chlorine monitoring in drinking water distribution systems under uncertain system dynamics, inputs and chlorine concentration measurement errors
PublicationThe design of an interval observer for estimation of unmeasured state variables with application to drinking water distribution systems is described. In particular, the design process of such an observer is considered for estimation of the water quality described by the concentration of free chlorine. The interval observer is derived to produce the robust interval bounds on the estimated water quality state variables. The stability...
-
Numeryczna analiza hydrauliki toru kajakarstwa górskiego w Drzewicy
PublicationW artykule zaproponowano wykorzystanie do analizy hydrodynamiki toru kajakarstwa górskiego symulacji numerycznej, wykorzystującej dwuwymiarowe równania ruchu wody w warunkach przepływu szybkozmiennego. Rozwiązanie równań hydrodynamiki wykonano samodzielnie z zastosowaniem metody objętości skończonych. Jako przykład zastosowania zaproponowanej metody przedstawiono analizę przepływu wzdłuż istniejącego, poddanego modernizacji toru...
-
A high-accuracy method of computation of x-ray waves propagation through an optical system consisting of many lenses
PublicationThe propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. Two differential equations are contemplated for solving the problem for electromagnetic wave propagation: first – an equation for the electric field, second – an equation derived for a complex phase of an electric field. Both equations are solved by the use of a finite-difference method. The simulation error is estimated...
-
Higher harmonics of the intensity modulated Photocurrent/Photovoltage spectroscopy response - a tool for studying photoelectrochemical nonlinearities
PublicationIn this work, a higher harmonic analysis (HHA) of the intensity modulated photocurrent/photovoltage (IMPS/IMVS) spectroscopy data is proposed as a potent tool for studying nonlinear phenomena in photoelectrochemical and photovoltaic systems. Analytical solutions of kinetic equations were constructed for cases of single and double resonance accounting for various sources of higher harmonics. These sources correspond to the physical...
-
Geometry Parametric Model Order Reduction with Randomly Generated Projection Bases
PublicationIn this work, a reduced-order model for geometry parameters and fast frequency sweep is proposed. The Finite Element Method is used to solve time-harmonic Maxwell’s equations. Taking into account the electromagnetic field does not arbitrarily vary as a function of frequency and geometry parameters, a low dimension system manifold is identified. Thus, the original Finite Element problem can be approximated by a model of reduced...
-
Nonlinear planar modeling of massive taut strings travelled by a force-driven point-mass
PublicationThe planar response of horizontal massive taut strings, travelled by a heavy point-mass, either driven by an assigned force, or moving with an assigned law, is studied. A kinematically exact model is derived for the free boundary problem via a variational approach, accounting for the singularity in the slope of the deflected string. Reactive forces exchanged between the point-mass and the string are taken into account via Lagrange...
-
Hybrid, Approximate Models of Distributed-Parameter Systems
PublicationThe paper introduces the method of distributed-parameter systems modelling. It enables to obtain low order modal model of the system that experiences Coriolis acceleration component and gyroscopic effect. In such cases, corresponding system equations are non-self-adjoined. To solve this problem modal reduced model is built up for the system without Coriolis acceleration or gyroscopic effect terms. These phenomena are next included...
-
Wideband Model Order Reduction for Macromodels in Finite Element Method
PublicationAbstract: This paper presents a novel algorithm for accelerating 3D Finite Element Method simulations by introducing macromodels created in local model order reduction in the selected subdomains of the computational domain. It generates the projection basis for a compact system of equations associated with a separate subdomain. Due to non-linear frequency dependency in the Right Hand Side (RHS), the standard reduction methods do...
-
Evaluation of the impact of geometry and plastic deformation on the stray magnetic field around the bone shaped sample
PublicationInfluence of two factors: the variable cross-section and the localized plastic deformation, which affect the stray magnetic field profile of a ferromagnetic sample have been studied. Evaluation of an effect size is based on the analysis of the stray magnetic field component which is tangential to the longest dimension of a sample. However, in order to describe the nature of the stray magnetic field, the normal component (perpendicular...
-
Optimization of Graphene Oxide Synthesis and Its Reduction
PublicationIn this article, we present the review of the chemical methods of synthesis of graphene oxide and its reduction in order to obtain the so-called reduced graphene oxide (rGO) whose properties are similar to those of pure graphene. We also present our experiments and the results in this field and the comparison of the efficiency of different methods of synthesis as well as the reduction of graphene oxide. To characterize the obtained...
-
Quadrotor Flight Controller Design Using Classical Tools
PublicationA principal aspect of quadrocopter in-flight operation is to maintain the required attitude of the craft’s frame, which is done either automatically in the so-called supervised flight mode or manually during man-operated flight mode. This paper deals with the problem of flight controller (logical) structure and algorithm design dedicated for the man-operated flight mode. The role of the controller is to stabilise the rotational...
-
Improved finite element method for flow, heat and solute transport of Prandtl liquid via heated plate
PublicationIn the current study, a vertical, 3D-heated plate is used to replicate the generation of heat energy and concentration into Prandtl liquid. We discuss how Dufour and Soret theories relate to the equations for concentration and energy. In order to see how efectively particles, interact with heat and a solvent, hybrid nanoparticles are used. It does away with the phenomena of viscous dissipation and changing magnetic felds. The motivation...
-
An Efficient PEEC-Based Method for Full-Wave Analysis of Microstrip Structures
PublicationThis article introduces an efficient method for the equivalent circuit characterization and full-wave analysis of microstrip structures, leveraging the full-wave partial element equivalent circuit (PEEC). In particular, the multilayered Green's function is evaluated using the discrete complex-image method (DCIM) and employed to establish the mixed potential integral equations. The proposed strategy considers time delays for the...
-
The finite difference methods of computation of X-rays propagation through a system of many lenses
PublicationThe propagation of X-ray waves through an optical system consisting of many beryllium X-ray refrac- tive lenses is considered. In order to calculate the propagation of electromagnetic in the optical sys- tem, two differential equations are considered. First equation for an electric field of a monochromatic wave and the second equation derived for complex phase of the same electric The propagation of X-ray waves through an optical system...
-
Highly linear CMOS triode transconductor for VHF applications
PublicationA high-speed, fully balanced complementary-symmetry metal-oxide-semiconductor (CMOS) triode transconductor is presented. The proposed approach exploits a pseudo-differential-pair triode configuration with a simple adaptive circuit stabilising the drain-to-source voltages of metal-oxide-semiconductor (MOS) transistors. Since no additional active circuits (apart from the resistors made of the cut-off MOS devices) and no feedback...
-
Spinon excitations in the quasi-one-dimensional S=12 chain compound Cs4CuSb2Cl12
PublicationThe spin−1/2 Heisenberg antiferromagnetic chain is ideal for realizing one of the simplest gapless quantum spin liquids (QSLs), supporting a many-body ground state whose elementary excitations are fractional fermionic excitations called spinons. Here we report the discovery of such a one-dimensional (1D) QSL in Cs4CuSb2Cl12. Compared to previously reported S=1/2 1D chains, this material possesses a wider temperature range over...
-
Comparative field test for measurement of PM10 dust in atmospheric air using gravimetric (reference) method and b-absorption method (Eberline FH 62-1)
PublicationThe paper presents the results of a field test carried out in Gdansk region between 01-01-2010 and 31-12-2010 in order to demonstrate equivalence of the Eberline FH 62-1 sampler to the reference gravimetric method of suspended PM10 dust measurement. The differences in PM10 dust concentration provided by both methods have been discussed for different seasons of the year. A method of estimation of the correction factors/correction...
-
Experimental Investigations of Forced Convection of Nanofluids in Smooth, Horizontal, Round Tubes: A Review
PublicationA comprehensive review of published works dealing with experimental studies of forced convection heat transfer of nanofluids is presented. The survey is limited to straight, smooth, and round tubes. Moreover, only mono nanofluids exhibiting Newtonian behaviour are considered. Works on experimental research of forced convection in tubes are presented in a chronological order in the first part of the article. In this part, attention...
-
On the generalized model of shell structures with functional cross-sections
PublicationIn the present study, a single general formulation has been presented for the analysis of various shell-shaped structures. The proposed model is comprehensive and a variety of theories can be used based on it. The cross-section of the shell structure can be arbitrarily analyzed with the presented equations. In other words, various types of shell structures, including cylindrical, conical, spherical, elliptical, hyperbolic, parabolic,...
-
Drilling couples and refined constitutive equations in the resultant geometrically non-linear theory of elastic shells
PublicationIt is well known that distribution of displacements through the shell thickness is non-linear, in general. We introduce a modified polar decomposition of shell deformation gradient and a vector of deviation from the linear displacement distribution. When strains are assumed to be small, this allows one to propose an explicit definition of the drilling couples which is proportional to tangential components of the deviation vector....
-
Finite element matrix generation on a GPU
PublicationThis paper presents an efficient technique for fast generation of sparse systems of linear equations arising in computational electromagnetics in a finite element method using higher order elements. The proposed approach employs a graphics processing unit (GPU) for both numerical integration and matrix assembly. The performance results obtained on a test platform consisting of a Fermi GPU (1x Tesla C2075) and a CPU (2x twelve-core...
-
NUMERYCZNE MODELOWANIE HYDRODYNAMIKI JAKO NARZĘDZIE WSPOMAGANIA PROJEKTOWANIA REKREACYJNYCH I SPORTOWYCH OBIEKTÓW WODNYCH
PublicationW artykule opisano zastosowanie obliczeń numerycznych w procesie projektowania, analizy działania oraz oceny bezpieczeństwa użytkowania wodnych obiektów rekreacyjnych i sportowych. Użytkownicy aquaparków, sportowcy, a szczególnie kibice, oczekują wyjątkowych doznań na obiektach wodnych z jednoczesną gwarancją bezpieczeństwa. Na te kwestie duży wpływ ma hydrodynamika przepływu. Aby właściwie dobrać parametry geometryczne i hydrauliczne...
-
Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory
PublicationIn this paper, the damped forced vibration of single-walled carbon nanotubes (SWCNTs) is analyzed using a new shear deformation beam theory. The SWCNTs are modeled as a flexible beam on the viscoelastic foundation embedded in the thermal environment and subjected to a transverse dynamic load. The equilibrium equations are formulated by the new shear deformation beam theory which is accompanied with higher-order nonlocal strain...
-
Application of electrochemical impedance spectroscopy to monitoring discharging process of nickel/metal hydride battery.
PublicationThis paper presents the possibility of applying impedance analysis to cell diagnostics. In order to obtain characteristic curves of both electrodes of a NiMH battery simultaneously, a reference electrode was added into the circuit. The authors analysed the cell under three cases, i.e. when its properties are determined only by the state of the positive electrode, only by the state of the negative electrode, or when both electrodes...
-
Electroelastic biaxial compression of nanoplates considering piezoelectric effects
PublicationIn the present theoretical work, it is assumed that a piezoelectric nanoplate is connected to the voltage meter which voltages have resulted from deformation of the plate due to in-plane compressive forces whether they are critical buckling loads or arbitrary forces. In order to derive governing equations, a simplified four-variable shear deformation plate theory has been employed using Hamilton’s principle and Von-Kármán...
-
Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory
PublicationThis paper studies the electro-mechanical shear buckling analysis of piezoelectric nanoplate using modified couple stress theory with various boundary conditions.In order to be taken electric effects into account, an external electric voltage is applied on the piezoelectric nanoplate. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using...
-
Mechanical analysis of eccentric defected bilayer graphene sheets considering the van der Waals force
PublicationIn this article, we have tried to simulate nonlinear bending analysis of a double-layered graphene sheet which contains a geometrical imperfection based on an eccentric hole. The first-order shear deformation theory is considered to obtain the governing equations. Also, the nonlinear von Kármán strain field has been assumed in order to obtain large deformations. Whereas the double-layered graphene sheet has been considered, the...
-
Approximate models and parameter analysis of the flow process in transmission pipelines
Publicationthe paper deals with the problem of early leak detection in transmission pipelines. First we present the derivation of state-space equations of the flow process in the pipelines. This description is then aggregated in order to obtain a principal model. Next, the problem of process model parameterization is addressed, taking into account the maximization of a model stability margin. The location of the maximum is determined using...
-
Energy conversion in systems-contained laser irradiated metallic nanoparticles - comparison of results from analytical solutions and numerical methods
PublicationThis work introduces the theoretical method of metallic nanoparticles’ (NPs’) heat and mass transfer where the particles are coated on a surface (base), together with considering the case wherein nanoparticles move freely in a pipe. In order to simulate the heat transfer, energy and radiative transfer equations are adjusted to the considered issue. NPs’ properties are determined following the nanofluidic theories, whereas absorption...
-
Kinetics of nitrogen removal processes in constructed wetlands
PublicationThe aim of this paper is to present a state-of-the-art review of the kinetics of nitrogen removal in constructed wetlands. Biological processes of nitrogen removal from wastewater can be described using equations and kinetic models. Hence, these kinetic models which have been developed and evaluated allow for predicting the removal of nitrogen in treatment wetlands. One of the most important, first order removal model, which is...
-
Comparable analysis of PID controller settings in order to ensure reliable operation of active foil bearings
PublicationIn comparison to the traditional solutions, active bearings offer great operating flexibility, ensure better operating conditions over a wider range of rotational speeds and are safe to use. In order to ensure optimum bearing performance a bearing control system is used that adapts different geometries during device operation. The selection of optimal controller parameters requires the use of modern optimization methods that make...
-
Fe3–xInSnxO6 (x = 0, 0.25, or 0.5): A Family of Corundum Derivatives with Sn-Induced Polarization and Above Room Temperature Antiferromagnetic Ordering
PublicationThree new double corundum derivative compounds, Fe3−xInSnxO6 (x = 0. 0.25, or 0.5), were synthesized at high pressure and temperature (6 GPa and 1400− 1450 °C). All of the compounds order antiferromagnetically well above room temperature (TN = 608, 532, and 432 K for x = 0, 0.25, and 0.5, respectively). The x = 0 phase crystallizes as centrosymmetric R3̅c, but the inclusion of closed-shell d10 Sn4+ induces x = 0.25 and 0.5 to crystallize...