Search results for: metal-oxide
-
How Do Ionic Liquids Affect the Surface Structure of Titania Photocatalyst? An Electron-Trap Distribution-Analysis Study
PublicationTitanium(IV) oxide, titania, photocatalyst particles were prepared from titanium alkoxide in the presence of several kinds of ionic liquids, and it was clarified that a group of samples exhibited photocatalytic activity for phenol degradation under the irradiation of light of wavelength >400 nm higher than those of the other group of samples. Although the conventional structural analytical results could not be related to the activity,...
-
Improved performance of LaNi0.6Fe0.4O3 solid oxide fuel cell cathode by application of a thin interface cathode functional layer
PublicationIn this work, novel functional layers were prepared by a low temperature spray pyrolysis method on the oxygen side of the solid oxide cells. Thin layers of Ce0.8Gd0.2O2 and LaNi0.6Fe0.4O3 are prepared between the electrolyte and the porous oxygen electrode. Additionally the influence of the sprayed ceria barrier layer on the zirconia based electrolyte with the new layers is evaluated. Impedance spectroscopy results show improvement...
-
Enthalpies of formation of rare earth niobates, RE3NbO7
PublicationHigh-temperature oxide melt solution calorimetry was used to investigate energetics of a series of rare earth niobates RE3NbO7. All of investigated compounds were found to be stable in enthalpy in respect to their oxides. The enthalpy of formation from oxides becomes more exothermic as the size of the RE cation increases, a trend seen previously in other RE compounds including pyrochlores, perovskites, and phosphates. For smaller...
-
Fiber optic microsphere with a ZnO thin film for potential application in a refractive index sensor – theoretical study
PublicationOptical fiber sensors of refractive index play an important role in analysis of biological and chemical samples. This work presents a theoretical investigation of spectral response of a fiber optic microsphere with a zinc oxide (ZnO) thin film deposited on the surface and evaluates the prospect of using such a structure for refractive index sensing. A microsphere is fabricated by an optical fiber tapering method on the base of...
-
Photocatalytic activity of zinc oxide nanorods incorporated graphitic carbon nitride catalyst
PublicationBackground Photocatalysts are user-friendly and serve as compatible materials for degrading industrial dye pollutants. This study utilizes zinc oxide/graphitic carbon nitride (ZnO/g-C3N4) nanocomposites against degrading methylene blue (MB). Methods The hydrothermal method assisted sonication technique was used to fabricate the ZnO/g-C3N4 composite with varying ratios of ZnO/g-C3N4 (1:0.25, 1:0.50, 1:1). The synthesized materials...
-
Quality assessments of electrochromic devices: the possibleuse of 1/f current noise
PublicationElementy wykorzystujące zjawisko elektrochromizmu, potrafiące zmieniać przezroczystość za pomocą ładowania/rozładowania ładunkiem elektrycznym, wykonano na bazie laminatów pokrytych porowatą strukturą tlenków Ni oraz tlenków Wi-V. Oba laminaty, na które naniesiono przewodzącą warstwę In2O3, przedzielono warstwą elektrolitu. Obserwowano szumy typu 1/f w prądzie I płynącym w trakcie rozładowywania urządzenia. Gęstość widmowa mocy...
-
Experimental study and numerical simulation on porosity dependent direct reducibility of high-grade iron oxide pellets in hydrogen
PublicationThe transition to more environmentally friendly steel production methods has intensified research into hydrogen-based direct reduction (HyDR) of iron oxide pellets. The aim of this study is to systematically investigate the kinetics of the reduction process, the evolution of porosity and the resulting microstructural changes on the reduction behavior of high-quality pellets during HyDR of iron ore at different temperatures. A modified...
-
Application of wet powder spraying for anode supported solid oxide fuel cell with a perowskite SrTi0.98Nb0.02O3-d anode
PublicationAnode-supported solid oxide fuel cell with SrTi0.98Nb0.02O3–d anode, yttria-stabilized zirconia electrolyte and La(Ni0.6Fe0.4) O3d cathode has been successfully fabricated and evaluated. Process of anode support fabrication has been presented. Wet powder spraying and high temperature sintering method have been studied and applied to deposit the thin electrolyte layer.In order to improve catalytic properties of the anode, it has...
-
NANOCRYSTALLINE CATHODES FOR SOLID OXIDE FUEL CELLS MADE OF NOBLE METALS
PublicationCathodes for solid oxide fuel cells prepared by the infiltration method at 600 °C are presented. The infiltration method allows to produce stable, nanostructured electrodes. Cathodes were prepared using gold, platinum, La2NiO4+δ (L2N) and La0.6Sr0.4Co0.2Fe0.8O3 δ (LSCF). Symmetrical cathode/electrolyte/cathode samples were prepared and examined with SEM microscopy and electrochemical impedance spectroscopy. Despite successful deposition...
-
Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application
PublicationUtilizing the electrical properties of polymer nanocomposites is an important strategy to develop high performance solvent sensors. Here we report the synergistic effect of multi walled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) in regulating the sensitivity of the naturally occurring elastomer, natural rubber (NR). Composites were fabricated by dispersing CNTs alone and together with exfoliated RGO sheets (thermally...
-
Electrophoretic co-deposition of Fe2O3 and Mn1,5Co1,5O4: Processing and oxidation performance of Fe-doped Mn-Co coatings for solid oxide cell interconnects
PublicationThe “in-situ” Fe-doping of the manganese cobalt spinel was achieved by electrophoretic co-deposition of Mn1,5Co1,5O4 and Fe2O3 powders followed by a two-step reactive sintering treatment. The effects on the coating properties of two different Fe-doping levels (5 and 10 wt.% respectively) and two different temperatures of the reducing treatment (900 and 1000 °C) are discussed. Samples with Fe-doped coatings demonstrated a lower...
-
Annealing of indium tin oxide (ITO) coated optical fibers for optical and electrochemical sensing purposes
PublicationGlass and fiber structures with Indium Tin Oxide (ITO) coating were subjected to annealing in order to identify impact of the thermal treatment on their optical and electrochemical properties. It is shown that the annealing process significantly modifies optical properties and thickness of the films, which are crucial for performance of optical fiber sensors. Moreover, it visibly improves electrochemical activity of ITO on glass...
-
Facilitated water transport in composite reduced graphene oxide pervaporation membranes for ethanol upgrading
PublicationHigh purity ethanol is one of the most sought-after renewable energy sources. However, standard production methods yield ethanol of insufficient quality. Membrane processes such as pervaporation are recognized as a viable method for upgrading ethanol. Their performance and selectivity depend solely on membrane employed. Hydrophilic polyvinyl alcohol (PVA) membranes are used industrially for this purpose, but there is a trade-off...
-
Functional fluorine-doped tin oxide coating for opto-electrochemical label-free biosensors
PublicationSensors operating in multiple domains, such as optical and electrochemical, offer properties making biosensing more effective than those working in a single domain. To combine such domains in one sensing device, materials offering a certain set of properties are required. Fluorine-doped tin oxide (FTO) thin film is discussed in this work as functional optically for guiding lossy modes and simultaneously electrochemically, i.e....
-
An Aqueous Exfoliation of WO3 as a Route for Counterions Fabrication—Improved Photocatalytic and Capacitive Properties of Polyaniline/WO3Composite
PublicationIn this paper, we demonstrate a novel, electrochemical route of polyaniline/tungsten oxide (PANI)/WO3) film preparation. Polyaniline composite film was electrodeposited on the FTO (fluorine-doped tin oxide) substrate from the aqueous electrolyte that contained aniline (monomer) and exfoliated WO3 as a source of counter ions. The chemical nature of WO3 incorporated in the polyaniline matrix was investigated using X-ray photoelectron...
-
Enhanced Visible Light Active WO3 Thin Films Toward Air Purification: Effect of the Synthesis Conditions
PublicationTaking into consideration, our current environmental situation in the world people should face with growing problem of air and water pollution. Heterogeneous photocatalysis is highly promising tool to improve both, air and water quality through decomposition/mineralization of contaminations directly into harmless CO2 and H2O under ambient conditions. In this contribution we focused on the synthesis of self-assembly WO3 thin films...
-
Mechanical and radiation shielding properties of concrete reinforced with boron--basalt fibers using Digital Image Correlation and X--ray micro--computed tomography
PublicationThe paper presents experimental investigations of the radiation shielding, mechanical and fracture properties of concrete reinforced with 5 kg/m3 of novel basalt fibers infused with boron oxide (BBF). However, further studies concerning other dosages i.e. 1 kg/m3, 10 kg/m3, 15 kg/m3 and 20 kg/m3 are currently carried out. Experiments with neutron source revealed that addition of BBF as a dispersed concrete reinforcement could improve...
-
Are stabilizing osmolytes preferentially excluded from the protein surface? FTIR and MD studies
PublicationInteractions between osmolytes and hen egg white lysozyme in aqueous solutions were studied by means of FTIR spectroscopy and molecular dynamics. A combination of difference spectra method and chemometric analysis of spectroscopic data was used to determine the number of osmolyte molecules interacting with the protein, and the preferential interaction coefficient in presented systems. Both osmolytes – L-proline and trimethylamine-N-oxide...
-
CeCu2O4 as a functional layer on solid oxide fuel cells for synthetic biogas reforming
PublicationSolid Oxide Fuel Cells (SOFC) are one of the most promising electrochemical devices, which can convert chemical energy to the electrical energy these days. Their ability to work with different kind of fuel makes them noteworthy. SOFC can work with biogas. The problem arises when solid carbon starts to be deposited in anode. That leads to degradation of fuel cell. Simple solution is to apply catalytic functional layer, which is...
-
Ceria Based Protective Coatings for Steel Interconnects Prepared by Spray Pyrolysis
PublicationStainless steels can be used in solid oxide fuel/electrolysis stacks as interconnects. For successful long term operation they require protective coatings, that lower the corrosion rate and block chemical reactions between the interconnect and adjacent layers of the oxygen or the hydrogen electrode. One of the promising coating materials for the hydrogen side is ceria. Using standard sintering techniques, ceria sinters at around...
-
Influence of Phase Composition on Dielectric Properties of Bismuth-Based Ceramics with Scheelite-Type Structure
PublicationGoal of the present research was to study dielectric properties of BiNbO4 ceramics fabricated by solid state reaction route followed with pressureless sintering. The samples were fabricated from the mixture of oxides, viz. Nb2O5 and Bi2O3. Apart from stoichiometric amount an excess of 3%, 5% and 10% by mole of Bi2O3 was used. It was found that an excess amount of Bi2O3 oxide caused formation of Bi5Nb3O15 minor phase in amount of...
-
The Influence of Iron Doping on Performance of SrTi1-XFexO3-δ Perovskite Oxygen Electrode for SOFC
PublicationSolid Oxide Fuel Cells (SOFC) are based on electrolytes and mixed ionic and electronic conductivity (MIEC) materials. The need to reduce costs causes an increase in interest of new compounds suitable for operating temperatures between 600 °C and 800 °C. The SrTi1-xFexO3 (STF) perovskite material is a perspective material that could be used for the oxygen electrodes. In this work STF materials with different content of iron (x =...
-
Electron attachment to hexafluoropropylene oxide (HFPO)
PublicationWe probe the electron attachment in hexafluoropropylene oxide (HFPO), C3F6O, a gas widely used in plasma technologies. We determine the absolute electron attachment cross section using two completely different experimental approaches: (i) a crossed-beam experiment at single collision conditions (local pressures of 5 × 10−4 mbar) and (ii) a pulsed Townsend experiment at pressures of 20–100 mbar. In the latter method, the cross sections...
-
Polaron hopping conduction in manganese borosilicate glass
PublicationA study on a novel material - manganese borosilicate glass without alkali metals, was reported. It was found that the obtained samples containing high amount of manganese oxide (60MnO–xSiO2–(40 − x)B2O3, x = 5, 10, 15, 20 and 30 mol%) were amorphous and homogeneous. XPS measurements showed that most of manganese ions are at oxidation level of Mn2 + ions and the mean oxidation level slightly moves toward higher value, with increasing...
-
Forming Ni-Fe and Co-Fe Bimetallic Structures on SrTiO3-Based SOFC Anode Candidates
PublicationThe aim of this work was to verify the possibility of forming Ni-Fe and Co-Fe alloys via topotactic ion exchange exsolution in Fe-infiltrated (La,Sr,Ce)0.9(Ni,Ti)O3-δ or (La,Sr,Ce)0.9(Co,Ti)O3-δ ceramics. For this purpose, samples were synthesized using the Pechini method and then infiltrated with an iron nitrate solution. The reduction process in dry H2 forced the topotactic ion exchange exsolution, leading to the formation of...
-
Properties of Nasicon-based CO2 sensor with Bi8Nb2O17 reference electrode
PublicationGas sensors are useful for the carbon dioxide concentration monitoring in many applications. The major challenge is to develop a potentiometric sensor working without the necessity of a reference gas and without a need of the reference electrode encapsulation. Important issue is a selection of reference electrode material, which should provide stable reference potential. For example as reference electrode material in sensor based...
-
Morphology and properties of nanotubular oxide layer on the Ti13Zr13Nb alloy
PublicationThe Ti13Zr13Nb alloy in solid and porous form was oxidised. The constant voltage 20 V, oxidation time 0.5 and 1 h, and 1 M H3PO4 (orthophosphoric acid) with addition of HF (hydrofluoric acid) as a test solution were applied. SEM (Scanning Electron Microscope) examinations of surface, EDS (Energy Dispersive X-ray Spectroscopy) chemical analysis, nanohardness and nano-scratch tests, and corrosion potentiokinetic tests at various...
-
Relationship between heart rate variability, blood pressure and arterial wall properties during air and oxygen breathing in healthy subjects
PublicationPrevious studies reported that normobaric hyperoxia influences heart rate, arterial pressure, cardiac output and systemic vascular resistance, but the mechanisms underlying these changes are still not fully understood. Several factors are considered including degeneration of endothelium-derived nitric oxide by reactive oxygen species, the impact of oxygen-free radicals on tissues and alterations of autonomic nervous system function....
-
The hydration of the protein stabilizing agents: trimethylamine-N-oxide, glycine and its N-methylderivatives - the volumetric and compressibility studies
PublicationThe densities at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K and sound velocities at T = 298.15 K have been measured for aqueous solutions of trimethylamine-N-oxide, glycine, N-methylglycine (sarcosine), N,N-dimethylglycine, N,N,N-trimethylglycine (betaine). From these data the apparent molar volumes, VΦ, the apparent molar isentropic compressions, KS,Φ, and the solvation numbers of solutes have been determined. The concentration...
-
Experimental and numerical evaluation of mechanical behaviour of composite structural insulated wall panels under edgewise compression
PublicationA composite structural insulated sandwich panel (CSIP) is a quite novel approach to the idea of sandwich structures. A series of natural-scale experimental test is required each time a change in panel’s geometry is planned and a reliable computational tool is required to precede actual laboratory testing with virtual simulations. An attempt of creating such a tool has been made with use of a commercial FEM code ABAQUS, in order...
-
New plasmonic platform for enhanced luminescence of Valrubicin
PublicationLuminescence enhanced by new structure of plasmonic platform with aluminum oxide (Al2O3) buffer layer deposited on gold nanostructures is investigated. Regularly distributed gold nanostructures of average dimension of 50 nm formed the active part of plasmonic platforms. They were manufactured on Corning 1737 glass substrate by melting of gold thin film. The nanostructures were coated by dielectric Al2O3 thin film with thickness...
-
Effect of Variation of Hard Segment Content and Graphene-Based Nanofiller Concentration on Morphological, Thermal, and Mechanical Properties of Polyurethane Nanocomposites
PublicationThis study describes the development of a new class of high-performance polyurethane elastomer nanocomposites containing reduced graphene oxide (RGO) or graphene nanoplatelets (GNP). Two types of polyurethane elastomers with different contents of hard segments (HS) were used as a polymer matrix. The developed nanocomposites were characterized by thermal analysis (DSC, TG), dynamic mechanical testing (DMA), hardness testing, mechanical...
-
Performance of a single layer fuel cell based on a mixed proton-electron conducting composite
PublicationMany of the challenges in solid oxide fuel cell technology stem from chemical and mechanical incompatibilities between the anode, cathode and electrolyte materials. Numerous attempts have been made to identify compatible materials. Here, these challenges are circumvented by the introduction of a working single layer fuel cell, fabricated from a composite of proton conducting BaCe0.6Zr0.2Y0.2O3-δ and a mixture of semiconducting...
-
Peroxymonosulfate-assisted photocatalytic degradation of artificial sweeteners in water
PublicationIn the present study, peroxymonosulfate (PMS) activation was proposed for efficient photocatalytic degradation of aspartame, acesulfame, saccharin, and cyclamate - artificial sweeteners frequently present in wastewaters and surface waters worldwide. The TiO2 nanosheets with exposed {0 0 1} facets were synthesised using the fluorine-free lyophilisation technique as a green concept for the synthesis and used for the photodegradation...
-
Synthesis, single crystal growth and properties of Sr5Pb3ZnO12
PublicationAbstract The novel Sr5Pb3ZnO12 oxide was synthesized by the solid-state reaction method. The crystal structure was studied by means of the powder x-ray diffraction Rietveld method and was found to be similar to 3 other previously known Sr5Pb3MO12 compounds (M = Co, Ni, Cu). Crystals of several hundred microns in size of the new phase were grown in molten sodium chloride and imaged using confocal optical and scanning electron microscopy....
-
LaNi1-xCoxO3-δ(x=0.4 to 0.7) cathodes for solid oxide fuel cells by infiltration
PublicationPerformance of LaNi 1-x Co x O 3−δ (LNC) (x=0.4 to 0.7) as a cathode in solid oxide fuel cell (SOFC) is evaluated. Symmetrical cathode/electrolyte/cathode cells for electrochemical testing are prepared by infiltration of yttria stabilized zirconia (YSZ) backbone with LNC solutions. It is showed that the cathode infiltrated with LaNi 0.5 Co 0.5 O 3−δ (LNC155) has the lowest polarization resistance and activation energy, 197 mΩ cm...
-
Low temperature processed MnCo2O4 and MnCo1.8Fe0.2O4 as effective protective coatings for solid oxide fuel cell interconnects at 750 °C
PublicationIn this study two materials, MnCo2O4 and MnCo1.8Fe0.2O4 are studied as potential protective coatings for Solid Oxide Fuel Cell interconnects working at 750 °C. First powder fabrication by a modified Pechini method is described followed by a description of the coating procedure. The protective action of the coating applied on Crofer 22 APU is evaluated by following the area specific resistance (ASR) of the scale/coating for 5500...
-
Protein thermal stabilization in aqueous solutions of osmolytes
PublicationProteins’ thermal stabilization is a significant problem in various biomedical, biotechnological, and technological applications. We investigated thermal stability of hen egg white lysozyme in aqueous solutions of the following stabilizing osmolytes: Glycine (GLY), N-methylglycine (NMG), N,N-dimethylglycine (DMG), N,N,N-trimethylglycine (TMG), and trimethyl-N-oxide (TMAO). Results of CD-UV spectroscopic investigation were compared...
-
Interaction of SrTi0.65Fe0.35O3-δ with LaNi0.6Fe0.4O3-δ, La0.6Sr0.4Co0.2Fe0.8O3-δ and Ce0.8Gd0.2O2-δ
PublicationIron doped strontium titanates SrTi1-xFexO3-δ are perovskites of versatile properties. They can be used in solid oxide fuel cells or high temperature oxygen sensors. Their reactivity with electrolyte materials, cathode buffer layer materials, other cathode materials or current collector layers has not been fully tested. In this study we use X-ray diffraction to check SrTi0.65Fe0.35O3-δ compatibility with Ce0.8Gd0.2O2-δ (used as...
-
Formation enthalpies of LaLn׳O3 (Ln׳=Ho, Er, Tm and Yb) interlanthanide perovskites
PublicationHigh-temperature oxide melt solution calorimetry using 3Na2O·MoO3 at 802 °C was performed for interlanthanide perovskites LaLn׳O3 (Ln׳=Ho, Er, Tm and Yb) and lanthanide oxides (La2O3, Ho2O3, Er2O3, Tm2O3 and Yb2O3). The enthalpies of formation of these interlanthanide perovskites from binary lanthanide oxides at room temperature (25 °C) were determined to be −8.3±3.4 kJ/mol for LaHoO3, −9.9±3.0 kJ/mol for LaErO3, −10.8±2.7 kJ/mol...
-
Spectral reflectance modeling of ZnO layers made with Atomic Layer Deposition for application in optical fiber Fabry-Perot interferometric sensors
PublicationSuitability of zinc oxide (ZnO) layers grown using Atomic Layer Deposition for operation in optical-fiber extrinsic Fabry-Perot sensors is investigated using a numerical model. Reflectance spectra obtained using the developed model indicate that the application of these layers in optical-fiber extrinsic Fabry-Perot sensors is difficult as it may require a source whose spectrum width is about 300 nm. A series of ZnO layers grown...
-
ZnO ALD-Coated Microsphere-Based Sensors for Temperature Measurements
PublicationIn this paper, the application of a microsphere-based fiber-optic sensor with a 200 nm zinc oxide (ZnO) coating, deposited by the Atomic Layer Deposition (ALD) method, for temperature measurements between 100 and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor head in real-time, which allows for higher accuracy during...
-
Microsphere structure application for supercapacitor in situ temperature monitoring
PublicationConstant, real-time temperature monitoring of the supercapacitors for efficient energy usage is in high demand and seems to be crucial for further development of those elements. A fiber-optic sensor can be an effective optoelectronic device dedicated for in-situ temperature monitoring of supercapacitors. In this work, the application of the fiber-optic microstrucutre with thin zinc oxide (ZnO) coating fabricated in the atomic layer...
-
A study of a reduction of a micro- and nanometric bismuth oxide in hydrogen atmosphere
PublicationA reduction of bismuth oxide in hydrogen atmosphere was investigated. The reaction was performed with a material in various structural forms: powder: with micrometric grains, powder with nanometric grains and powder pressed into pellets. The process was performed in both isothermal and non-isothermal conditions. An activation energy of the reaction calculated with Friedman method was found to be about 85 kJ/mol for the reduction...
-
Thermoelectric properties of bismuth-antimony-telluride alloys obtained by reduction of oxide reagents
PublicationThe BieSbeTe alloys with different Bi/Sb/Te ratio were fabricated by an innovative method. For that purpose the oxide reagents were melted at high temperature, then quenched to form pellets, milled to a powder and finally reduced in hydrogen at various temperatures. Complex structures consisting of connected thin layers forming a continuous path between nano- and micrometer size grains have been obtained. The electrical conductivity,...
-
OPTIMALIZATION OF SORBENT FEEDING IN THE DRY METHOD OF FLUE GAS DESULFURIZATION
PublicationThe swiftly developing sea transport contributes to a considerable increase of fuel usage in the international shipping, which results in the escalation of toxic compounds emitted into the atmosphere. It is followed by the constantly heightened requirements limiting those emissions. In the case of sulfur oxide emission, inside of SECA (Sulfur Emission Control Area), the maximum content of sulfur in the shipping fuels used on the...
-
Evaluation of adhesive forces and the specific surface energy of zirconia stabilized by yttria with alumina additions ceramic by AFM method
PublicationThe adhesive forces and the specific surface energy of ceramic material surfaces are very important for further tribological and biomedical applications of ceramics. Partially stabilized zirconia (zirconium oxide) is popular for manufacturing various medical products. ZrO2 stabilized by Y2O3 with additions of 5 wt% alumina was produced by slip casting method with a subsequent sintering. Structure and chemical composition of ceramic...
-
The influence of synthesis method on the microstructure and catalytic performance of Y 0.07 Sr 0.93 Ti 0.8 Fe 0.2 O 3-δ in synthetic biogas operated solid oxide fuel cells
PublicationThe Y0.07Sr0.93Ti0.8Fe0.2O3-δ (YSTF) material was fabricated using three different synthesis methods: modified polymer precursor method (MPP), Pechini method and a solid state reaction method. It was applied as an anode catalytic material for biogas reforming in solid oxide fuel cells. Clear differences in the microstructure of fabricated catalytic layers were found, mainly with respect to a grain size and distribution of grains....
-
Thermal and Mechanical Properties of Microporous Polyurethanes Modified with Reduced Graphene Oxide
PublicationMicroporous polyurethanes (MPU) were modified by adding 0.25%–1.25 wt% of reduced graphene oxide (RGO). The materials were prepared without solvent via in situ polymerization. From a technological point of view, it is very important to obtain functional materials by using reacting compounds only. The thermal characteristics of obtained MPU were investigated using TGA, DSC, and DMA techniques. In comparison to nonmodified microporous...
-
Plasmon-enhanced photoluminescence from TiO2 and TeO2 thin films doped by Eu3+ for optoelectronic applications
PublicationIn this work we study the luminescence properties of europium-doped titanium dioxide and tellurium oxide thin films enhanced by gold plasmonic nanostructures. We propose a new type of plasmon structure with an ultrathin dielectric film between plasmonic platform and luminescent material. Plasmonic platforms were manufactured through thermal annealing of the gold thin film. Thermal dewetting of gold film results in spherical gold...