Search results for: chemical physics
-
E-experiments in physics. Proper business process management, collaborative development process and project management guidance – remedy for avoiding the main IT project’s failure
PublicationOnly a few of learning aids and simulations of physical phenomena allow for building interactive experiments; experiments similar to those that should be conducted in physics laboratories at schools. Group of staff from Gdansk University of Technology decided to fill this market niche by designing and constructing a set of virtual experiments – so called e-experiments. To avoid common problems that a lot of IT products brought...
-
Numerical modeling of exciton impact in two crystalographic phases of the organo-lead halide perovskite (CH3NH3PbI3) solar cell
PublicationTo improve the power conversion efficiency of solar cells based on organo–lead halide perovskites, a detailed understanding of the device physics is fundamental. Here, a computational analysis of excitons impact is reported for these types of photocell. Numerical calculations based on the model, which take into account electronic charge carriers (electrons and holes), excitons and ions, have been carried out. The role of excitons...
-
Relativity of arithmetic as a fundamental symmetry of physics
PublicationArithmetic operations can be defined in various ways, even if one assumes commutativity and associativity of addition and multiplication, and distributivity of multiplication with respect to addition. In consequence, whenever one encounters ‘plus’ or ‘times’ one has certain freedom of interpreting this operation. This leads to some freedom in definitions of derivatives, integrals and, thus, practically all equations occurring in...
-
Recent total cross section measurements in electron scattering from molecules
PublicationThe grand-total cross sections (TCSs) for electron scattering from a range of molecules, measured over the period 2009-2019 in various laboratories, with the use of different electron transmission systems, are reviewed. Where necessary, the presented TCS data are also compared to earlier results. Collection of investigated molecular targets (biomolecules, biofuels, molecules of technological application,hydrocarbons) reflects their...
-
Modeling the Structure, Dynamics, and Transformations of Proteins with the UNRES Force Field
PublicationThe physics-based united-residue (UNRES) model of proteins ( www.unres.pl ) has been designed to carry out large-scale simulations of protein folding. The force field has been derived and parameterized based on the principles of statistical-mechanics, which makes it independent of structural databases and applicable to treat nonstandard situations such as, proteins that contain D-amino-acid residues. Powered by Langevin dynamics...
-
What is in a name: Defining “high entropy” oxides
PublicationABSTRACT High entropy oxides are emerging as an exciting new avenue to design highly tailored functional behaviors that have no traditional counterparts. Study and application of these materials are bringing together scientists and engineers from physics, chemistry, and materials science. The diversity of each of these disciplines comes with perspectives and jargon that may be confusing to those outside of the individual fields,...
-
Quantum Coherence as a Resource
PublicationThe coherent superposition of states, in combination with the quantization of observables, represents one of the most fundamental features that mark the departure of quantum mechanics from the classical realm. Quantum coherence in many-body systems embodies the essence of entanglement and is an essential ingredient for a plethora of physical phenomena in quantum optics, quantum information, solid state physics, and nanoscale thermodynamics....
-
Acoustic field and the entropy mode induced by it in a waveguide filled with some non-equilibrium gases
PublicationThe non-linear propagation of an acoustic beam in a rectangular waveguide is considered. The medium of sound propagation, is a gas where thermodynamically non-equilibrium processes take place: such as exothermic chemical reactions or excitation of vibrational degrees of a molecule’s freedom. The incident and reflected compounds of the acoustic field do not interact in the leading order in the case of periodic weakly nonlinear sound...
-
A new approach to β-decays studies impacting nuclear physics and astrophysics: The PANDORA setup
PublicationTheory predicts that lifetimes of β-radionuclides can change dramatically as a function of their ionization state. Experiments performed in Storage Rings on highly ionized atom have proven nuclei can change their beta decay lifetime up to several orders of magnitude. The PANDORA (Plasmas for Astrophysics, Nuclear Decay Observation and Radiation for Archaeometry) experiment is now conceived to measure, for the first time, nuclear...
-
Electrical properties of organic and perovskite systems used in solar cells
PublicationNowadays, a great progress in the areas of molecular and hybrid photovoltaics is observed. The devices based on organic and perovskite materials are getting attention mostly due to their low cost production process. However, their efficiency and stability are still lower than for inorganic materials which make them less popular. Therefore, a detailed understanding of the device physics is fundamental for organic and perovskite...
-
Elimination and migration of hydrogen in the vacuum-ultraviolet photodissociation of pyridine molecules
PublicationElimination of the excited hydrogen atoms H(n), n = 4–7, and hydrogen migration in formation of the excited NH(A 3Π) free radicals in the photodissociation of pyridine, C5H5N, molecules have been studied over the 17.5–70 eV photon energy range. In the measurements the photon-induced fluorescence spectroscopy technique has been applied. Both fragments are produced through excitation of pyridine molecules into higher-lying superexcited...
-
Optical and structural properties of polycrystalline CVD diamond films grown on fused silica optical fibres pre-treated by high-power sonication seeding
PublicationIn this paper, the growth of polycrystalline chemical vapour deposition (CVD) diamond thin films on fused silica optical fibres has been investigated. The research results show that the effective substrate seeding process can lower defect nucleation, and it simultaneously increases surface encapsulation. However, the growth process on glass requires high seeding density. The effects of suspension type and ultrasonic power were...
-
Effect of nitrogen doping on TiOxNy thin film formation at reactive high-power pulsed magnetron sputtering
PublicationThe paper is focused on a study of formation of TiOxNy thin films prepared by pulsed magnetron sputtering of metallic Ti target. Oxygen and nitrogen were delivered into the discharge in the form of reactive gases O2 and N2. The films were deposited by high-power impulse magnetron sputtering working with discharge repetition frequency f = 250 Hz at low (p = 0.75 Pa) and high (p = 10 Pa) pressure. The substrates were on floating...
-
Measurement report: Spatial variations in ionic chemistry and water-stable isotopes in the snowpack on glaciers across Svalbard during the 2015–2016 snow accumulation season
PublicationThe Svalbard archipelago, located at the Arctic sea-ice edge between 74 and 81∘ N, is ∼60 % covered by glaciers. The region experiences rapid variations in atmospheric flow during the snow season (from late September to May) and can be affected by air advected from both lower and higher latitudes, which likely impact the chemical composition of snowfall. While long-term changes in Svalbard snow chemistry have been documented in...
-
FURTHER REMARKS ON THE SURFACE VIS IMPRESSA CAUSED BY A FLUID-SOLID CONTACT
PublicationIt is well-known that, nano-mechanics should take into account not only physical phenomena occuring within the bulk but, first of all, the physical phenomena appropriate for a surface of two materials contact. The huge volume density of internal surfaces as well countours lines located within the nanomaterial results in our interest in, apart from classical form of mass, momentum and entropy transport, those modes of transportation...
-
Surrogate Modeling and Optimization Using Shape-Preserving Response Prediction: A Review
PublicationComputer simulation models are ubiquitous in modern engineering design. In many cases, they are the only way to evaluate a given design with sufficient fidelity. Unfortunately, an added computa-tional expense is associated with higher fidelity models. Moreover, the systems being considered are often highly nonlinear and may feature a large number of designable parameters. Therefore, it may be impractical to solve the design problem...
-
Local hidden–variable models for entangled quantum states
PublicationWhile entanglement and violation of Bell inequalities were initially thought to be equivalent quantum phenomena, we now have different examples of entangled states whose correlations can be described by local hidden-variable models and, therefore, do not violate any of the Bell inequalities. We provide an up-to-date overview of the existing literature regarding local hidden-variable models for entangled quantum states, in both...
-
Rapid Multi-band Patch Antenna Yield Estimation Using Polynomial Chaos-Kriging
PublicationYield estimation of antenna systems is important to check their robustness with respect to the uncertain sources. Since the Monte Carlo sampling-based real physics simulation model evaluations are computationally intensive, this work proposes the polynomial chaos-Kriging (PC-Kriging) metamodeling technique for fast yield estimation. PC-Kriging integrates the polynomial chaos expansion (PCE) as the trend function of Kriging metamodel...
-
Fractional Spectral and Fractional Finite Element Methods: A Comprehensive Review and Future Prospects
PublicationIn this article, we will discuss the applications of the Spectral element method (SEM) and Finite element Method (FEM) for fractional calculusThe so-called fractional Spectral element method (f-SEM) and fractional Finite element method (f-FEM) are crucial in various branches of science and play a significant role. In this review, we discuss the advantages and adaptability of FEM and SEM, which provide the simulations of fractional...
-
TIME- AND FREQUENCY-DOMAIN QUASI-2D SMALL-SIGNAL MOSFET MODELS
PublicationA novel approach to small-signal MOSFET modeling is presented in this book. As a result, time- and frequency-domain physics-based quasi-2D NQS four-terminal small-signal MOSFET models are proposed. The time-domain model provides the background to a novel DIBL-included quasi‑2D NQS four-terminal frequency-domain small-signal MOSFET model. Parameters and electrical quantities of the frequency-domain model are described by explicit...
-
Experimental economics in business education: Using simple games to achieve multifaceted effects
PublicationEconomics differs from other sciences not only because of its normative part, but also because of very limited use of experiments. In this way, economics is often perceived as being methodologically more similar to astronomy or meteorology rather than physics or chemistry. Over last decades, however, experimental economics has been significantly developed. This chapter presents some of the possibilities for academic teachers to...
-
A Model of Thermal Energy Storage According to the Convention of Bond Graphs (BG) and State Equations (SE)
PublicationThe main advantage of the use of the Bond Graphs method and State Equations for modeling energy systems with a complex structure (marine power plants, hybrid vehicles, etc.) is the ability to model the system components of different physical nature using identical theoretical basis. The paper presents a method of modeling thermal energy storage, which is in line with basic BG theory. Critical comments have been put forward concerning...
-
Beyond the helium buffer: 12C−2 rotational cooling in cold traps with H2 as a partner gas: interaction forces and quantum dynamics
Publicationabstract = { The scattering cross-sections and corresponding rate coefficients for rotationally inelastic collisions of $^{12}$C$_2$^-$ ($^2 \Sigma_g^+$) with H$_2$ ($^1 \Sigma_g^+$) are presented over a broad range of cold-trap temperatures. They have been calculated using quantum scattering theory that employs a new ab initio potential energy surface. The rate coefficients for the inelastic processes in the anionic partner are...
-
Sequence-dependent structural properties of B-DNA: what have we learned in 40 years?
PublicationThe structure of B-DNA, the physiological form of the DNA molecule, has been a central topic in biology, chemistry and physics. Far from uniform and rigid, the double helix was revealed as a flexible and structurally polymorphic molecule. Conformational changes that lead to local and global changes in the helix geometry are mediated by a complex choreography of base and backbone rearrangements affecting the ability of the B-DNA...
-
A Wideband Channel Model for Body Area Networks in Circular Metallic Indoor Environments
PublicationIn this paper, the wideband characterization of the propagation channel in circular metallic indoor environments is addressed, regarding Body Area Networks and 5G small cells, an analytical model for the dependence of the mean delay and the average delay spread on the circle radius, the working frequency and the distance between the transmitter and the receiver being proposed. The derivation of the model is initially done analytically,...
-
Effect of Different Bromine Sources on the Dual Cation Mixed Halide Perovskite Solar Cells
PublicationRecent research has shown that perovskite solar cells with a mixed dual A-cation have much better structural stability without loss of efficiency than single cation devices. Mixed cation perovskites create a lot of questions about the salts being used for the formation of the best-quality layer. Here, we have investigated three sources of bromide in the perovskite absorption layer, using lead bromide (PbBr2), formamidinium bromide...
-
Topological extraordinary optical transmission
PublicationΤhe incumbent technology for bringing light to the nanoscale, the near-field scanning optical microscope, has notoriously small throughput efficiencies of the order of 10^4-10^5 or less. We report on a broadband, topological, unidirectionally guiding structure, not requiring adiabatic tapering and, in principle, enabling near-perfect (∼100%) optical transmission through an unstructured single arbitrarily subdiffraction slit at...
-
Potential energy curves, transition and permanent dipole moments of KRb
PublicationWe present extensive calculations of 48 adiabatic potential energy curves of the KRb molecule. Efforts have been focused on preparing the appropriate basis sets. Compared to previous approaches, the set of new potential energy curves is extended to higher excitations, including the single-excited K(4s2S)+Rb(5d2D) and double-excited K(4p2P)+Rb(5p2P) atomic limits. Larger distances between nuclei are also taken into account. New...
-
Global Complex Roots and Poles Finding Algorithm in C × R Domain
PublicationAn algorithm to find the roots and poles of a complex function depending on two arguments (one complex and one real) is proposed. Such problems are common in many fields of science for instance in electromagnetism, acoustics, stability analyses, spectroscopy, optics, and elementary particle physics. The proposed technique belongs to the class of global algorithms, gives a full picture of solutions in a fixed region ⊂ C × R and...
-
Photovoltaic effect in the single-junction DBP/PTCBI organic system under low intensity of monochromatic light
PublicationPhotoelectric properties of the planar ITO/MoO3/DBP/PTCBI/BCP/Ag system were characterized on the basis of short-circuit current, open-circuit voltage and absorption spectra, and current-voltage measurements in the dark and under monochromatic illumination of low intensity. Photovoltaic performance of the system was compared with the performance of ideal semiconductor and excitonic cells of chosen bandgaps. Such analysis shows,...
-
Non-Newtonian Mathematics Instead of Non-Newtonian Physics: Dark Matter and Dark Energy from a Mismatch of Arithmetics
PublicationNewtonian physics is based on Newtonian calculus applied to Newtonian dynamics. New paradigms such as ‘modified Newtonian dynamics’ (MOND) change the dynamics, but do not alter the calculus. However, calculus is dependent on arithmetic, that is the ways we add and multiply numbers. For example, in special relativity we add and subtract velocities by means of addition β1⊕β2=tanh(tanh−1(β1)+tanh−1(β2)), although multiplication β1⊙β2=tanh(tanh−1(β1)⋅tanh−1(β2)),...
-
Day-ahead Solar Power Forecasting Using LightGBM and Self-Attention Based Encoder-Decoder Networks
PublicationThe burgeoning trend of integrating renewable energy harvesters into the grid introduces critical issues for its reliability and stability. These issues arise from the stochastic and intermittent nature of renewable energy sources. Data-driven forecasting tools are indispensable in mitigating these challenges with their rugged performance. However, tools relying solely on data-driven methods often underperform when an adequate...
-
Optimization of parallel implementation of UNRES package for coarse‐grained simulations to treat large proteins
PublicationWe report major algorithmic improvements of the UNRES package for physics-based coarse-grained simulations of proteins. These include (i) introduction of interaction lists to optimize computations, (ii) transforming the inertia matrix to a pentadiagonal form to reduce computing and memory requirements, (iii) removing explicit angles and dihedral angles from energy expressions and recoding the most time-consuming energy/force terms...
-
Rengel Cane Sia Doctoral Candidate
PeopleI'm Rengel, born and raised in the Philippines. As an undergraduate I did kinetic modeling on Copper-catalyzed atom transfer radical addition (ATRA). Then I was inspired to do both theoretical and experimental studies, which led me to propose my master's thesis on Synthesis, Computational, Electrochemical, and Photoconductivity Studies on Naphthalene and its derivatives. This led to a master's degree in Chemistry in the Mindanao...
-
Electron-impact dissociation of molecular hydrogen: benchmark cross sections
PublicationWe present a joint experimental and theoretical investigation of a fundamental process in atomic and molecular physics: electron impact excitation of molecular hydrogen’s (H2) most dominant transition (X1Σg+ → b3Σu+). Excitation of this state is by far the main channel that causes the dissociation of H2 into H + H atoms at low energies. The Convergent Close-Coupling (CCC) calculations predicted significant, more than factor of...
-
If Gravity is Geometry, is Dark Energy just Arithmetic?
PublicationArithmetic operations (addition, subtraction, multiplication, division), as well as the calculus they imply, are non-unique. The examples of four-dimensional spaces, R^4 and (−L/2,L/2)^4, are considered where different types of arithmetic and calculus coexist simultaneously. In all the examples there exists a non-Diophantine arithmetic that makes the space globally Minkowskian, and thus the laws of physics are formulated in terms...
-
Non-destructive Testing of Wooden Elements
PublicationExamining the condition of wooden elements is crucial from the perspective of proper structure performance. If the deterioration in the internal wood condition, which displays no symptoms visible from the outside, is detected, the further spread of the deterioration can be prevented. Test results often point to the necessity of conducting repairs and, renovations, replacing the structure of wooden beams, or even substituting a...
-
Physics augmented classification of fNIRS signals
PublicationBackground. Predictive classification favours performance over semantics. In traditional predictive classification pipelines, feature engineering is often oblivious to the underlying phenomena. Hypothesis. In applied domains such as functional Near Infrared Spectroscopy (fNIRS), the exploitation of physical knowledge may improve the discriminative quality of our observation set. Aims. Give exemplary evidence that intervening the...
-
Application of BDD thin film electrode for electrochemical decomposition of heterogeneous aromatic compounds
PublicationThe aim of the presented study is to investigate the applicability of electrochemical oxidation of aromatic compounds containing heteroatoms, e.g. waste from production of pesticides or pharmaceutics, at a borondoped diamond (BDD) electrode. The BDD electrodes were synthesized by microwave plasma enhanced chemical vapour deposition (MW PE CVD). Investigation of the electrode surface by optical microscopy and scanning electron microscopy...
-
Anisotropic magnetism of polymorphic ErAl3
PublicationErAl3 can form in either a trigonal () or cubic () polymorph and this paper investigates the physical properties of these polymorphs through characterizations of single crystals grown in an aluminum flux. We demonstrate that polymorph selection can be achieved based on the nominal composition of the crystal growth. Magnetic measurements confirm that both −ErAl3 and −ErAl3 order antiferromagnetically at low temperatures. −ErAl3...
-
Student Perspectives on the 2017 ESA Concurrent Engineering Challenge
PublicationIn September 2017, the first ESA Academy’s Concurrent Engineering Challenge (CEC) was held, giving 88 Master’s and PhD-level students from twelve ESA Member and Associate States a powerful platform to experience system engineering in an intense, fast paced, and real-world environment. Within four days, teams of physics and engineering students in Concurrent Design Facilities (CDF) located in Politecnico di Torino, Universidad Polit´ecnica...
-
Heat exchange enhancement of jet impingement cooling with the novel humped-cone heat sink
PublicationJet impingement cooling technology is applicable to control temperature of devices, where very high heat flux is generated within a small area. This paper is about the improvement of the jet impingement cooling efficiency by the heat sink geometry modification. Two reference cases were sourced from the literature – flat heat sink and modified one with cone in the jet stagnation region. Such a change improves cooling capability...
-
Analysis of GNSS, Hydroacoustic and Optoelectronic Data Integration Methods Used in Hydrography
PublicationThe integration of geospatial data in hydrography, performed using different measurement systems, involves combining several study results to provide a comprehensive analysis. Each of the hydroacoustic and optoelectronic systems is characterised by a different spatial reference system and the method for technical implementation of the measurement. Therefore, the integration of hydrographic data requires that problems in selected...
-
Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation
PublicationThis book discusses response feature technology and its applications to modeling, optimization, and computer-aided design of high-frequency structures including antenna and microwave components. By exploring the specific structure of the system outputs, feature-based approaches facilitate simulation-driven design procedures, both in terms of improving their computational efficiency and reliability. These benefits are associated...
-
The influence of chitosan's molecular weight, concentration, and dissolution method on the properties of electrophoretically deposited coatings on the Ti13Nb13Zr alloy surface
PublicationIn this study, the effects of molecular weight (high, medium, and low), concentration (0.1 and 0.5 %) and dissolution method (in a rarely used hydroxyacetic acid and utilizing a novel CO2 saturation) of chitosan on the microstructure, chemical composition, wettability, surface roughness, adhesion, corrosion resistance and antibacterial activity of chitosan coatings electrophoretically deposited (10 V, 1 min) on β titanium alloy...
-
Automatic Cleaning of Time Series Data in Rural Internet of Things Ecosystems That Use Nomadic Gateways
PublicationA serious limitation to the deployment of IoT solutions in rural areas may be the lack of available telecommunications infrastructure enabling the continuous collection of measurement data. A nomadic computing system, using a UAV carrying an on-board gateway, can handle this; it leads, however, to a number of technical challenges. One is the intermittent collection of data from ground sensors governed by weather conditions for...
-
Multi-GPU UNRES for scalable coarse-grained simulations of very large protein systems
PublicationGraphical Processor Units (GPUs) are nowadays widely used in all-atom molecular simulations because of the advantage of efficient partitioning of atom pairs between the kernels to compute the contributions to energy and forces, thus enabling the treatment of very large systems. Extension of time- and size-scale of computations is also sought through the development of coarse-grained (CG) models, in which atoms are merged into extended...
-
Structural and Transportation Properties of Strontium Titanate Composites with Ion Conductive Oxides
PublicationThis paper has been written based on the author’s doctoral dissertation “Structural and transportation properties of strontium and titanate composites with ion conductive oxides”, prepared under the supervision of Prof. Dr. Hab. Eng. Bogusław Kusz at the Department of Solid State Physics of Gdańsk University of Technology. It reports the idea of the thesis and conclusions from the study. Niobium doped strontium titanate (Sr(Ti,Nb)O3)...
-
Efficient knowledge-based optimization of expensive computational models using adaptive response correction
PublicationComputer simulation has become an indispensable tool in engineering design as they allow an accurate evaluation of the system performance. This is critical in order to carry out the design process in a reliable manner without costly prototyping and physical measurements. However, high-fidelity computer simulations are computationally expensive. This turns to be a fundamental bottleneck when it comes to design automation using numerical...
-
Fast Multi-Objective Aerodynamic Optimization Using Sequential Domain Patching and Multifidelity Models
PublicationExploration of design tradeoffs for aerodynamic surfaces requires solving of multi-objective optimization (MOO) problems. The major bottleneck here is the time-consuming evaluations of the computational fluid dynamics (CFD) model used to capture the nonlinear physics involved in designing aerodynamic surfaces. This, in conjunction with a large number of simulations necessary to yield a set of designs representing the best possible...