Search results for: polyesters, coatings, chemical structure
-
Towards sugar-derived polyamides as environmentally friendly materials
PublicationAs part of our ongoing study investigating isohexide-based polyamides, we have synthesized isosorbide(bis(propan-1-amine)) (DAPIS) and studied its reactivity in the polymerization towards fully biobased polyamides. Polycondensation of nylon salts with various contributions of DAPIS afforded a family of homo- and copolyamides, which were characterized using complementary spectroscopic techniques. The chemical structure of the materials...
-
Finite-element analysis of a base-isolated multi-storey steel building under seismic motions
PublicationNumerical simulation of the seismic behaviour of a multi-storey steel building, both fixed-base and base-isolated, under the 1940 El Centro earthquake was performed in this paper. The analyzed 4-storey building was decoupled from the shaking ground with the Polymeric Bearings, which can be considered a proposal of a new seismic isolation system. It consists of rectangular-shaped blocks made of a specially prepared flexible polymeric...
-
Occurrence of Surface Active Agents in the Environment
PublicationDue to the specific structure of surfactants molecules they are applied in different areas of human activity (industry, household). After using and discharging from wastewater treatment plants as effluent stream, surface active agents (SAAs) are emitted to various elements of the environment (atmosphere, waters, and solid phases), where they can undergo numerous physic-chemical processes (e.g., sorption, degradation) and freely...
-
A mathematical model of rheological behavior of novel bio-based isocyanate-terminated polyurethane prepolymers
PublicationIn this paper, the results of rheological study on isocyanate-terminated polyurethane prepolymers, containing modified soybean oil residues incorporated into the chemical structure are described. Isocyanate-terminated prepolymers were synthesized from 4,4′-diphenylmethane diisocyanate and the mixture of hydroxylated soybean oil and commercial polyether. The measurements were performed by using rotary rheometer R/S-CPS+ (Brookfield,...
-
FTIR spectroscopic and thermogravimetric characterization of ground tyre rubber devulcanized by microwave treatment
PublicationIn this work, the phenomena involved in the microwave devulcanization of ground tyre rubber (GTR) were investigated. Three types of GTR with different content of organic compounds (elastomers, plasticizers, etc.), carbon black and ash have been studied. The chemical structure of GTR before and after a microwave devulcanization process was analyzed by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)...
-
Feasibility Study on the Potential Using of Ferrocement for Constructing Floats
PublicationIn recent years, there has been a significant increase in interest in ferrocement as a material for various engineering constructions. Due to its ease of shaping complex forms, it has been used previously, for example, in constructing ship hulls or tank walls. Apart from the advantages associated with the ability to shape thin elements, improved mechanical properties compared to concrete, and resistance to chemical actions, ferrocement...
-
Biocompatibility and potential functionality of lanthanum-substituted cobalt ferrite spinels
PublicationBulk and nanostructurized lanthanum-cobalt spinels have attracted a lot of interest from researchers, due to their unique physical and chemical properties as well as functionalities, which are interesting for biomedical and electronic industries. In this manuscript we show that introducing small lanthanum (La3+) content can tune magnetic, electronic and cytotoxic properties of the CoFe2− xLaxO4 system (x ≤ 0.1). The mechanisms...
-
Sustainable Strategy for Algae Biomass Waste Management via Development of Novel Bio-Based Thermoplastic Polyurethane Elastomers Composites
PublicationThis work concerns the waste management method of algae biomass wastes (ABW). For this purpose, we prepared bio-based thermoplastic polyurethane elastomer (bio-TPU) composites. Algae biomass wastes are derived from algal oil extraction of Chlorella vulgaris and from biomass of Enteromorpha and Zostera marina. ABWs were used in the bio-TPUs composites as a filler in the quantity of 1, 5, 10, and 15 wt.%. The bio-based composites...
-
Self-standing Nanoarchitectures
PublicationDespite there are structures invisible for the human eye, they mastered the world of advanced electronic devices, sensors, novel cosmetics or drugs. When the dimensions of the materials go down to the nanometres scale, their properties change dramatically comparing to the observable objects. Because of their tiny size, they gained the name of nanomaterials but simultaneously their importance has significantly grown up. Nanomaterials...
-
Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with l-ascorbic acid, as materials for soft tissue regeneration
PublicationIn this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik...
-
Analysis of catalitic reactors usefulness to reduce pollution generated by piston combustion engines with regard to ship main engines
PublicationThe article presents results which indicate that the use of catalytic reactors to reduce emissions of harmful compunds contained in the exhaust gas is important in the operation of vehicle motors operation. Efforts of the shipbuilding industry to reduce the toxicity of exhaust gas emitted by the main engines have been indicated and pointed to the desirability of the use of these catalysts in maritime transport. It has been pointed...
-
Selection of effective cocrystals former for dissolution rate improvement of active pharmaceutical ingredients based on lipoaffinity index
PublicationNew theoretical screening procedure was proposed for appropriate selection of potential cocrystal formers possessing the ability of enhancing dissolution rates of drugs. The procedure relies on the training set comprising 102 positive and 17 negative cases of cocrystals found in the literature. Despite the fact that the only available data were of qualitative character, performed statistical analysis using binary classification...
-
Experimental and predicted physicochemical properties of monopropanolamine-based deep eutectic solvents
PublicationIn this work, the novel deep eutectic solvents (DESs) based on 3-amino-1-propanol (AP) as hydrogen bond donor (HBD) and tetrabutylammonium bromide (TBAB) or tetrabutylammonium chloride (TBAC) or tetraethylammonium chloride (TEAC) as hydrogen bond acceptors (HBAs) were synthesized with different molar ratios of 1: 4, 1: 6 and 1: 8 salt to AP. Fourier Transform Infrared Spectroscopy measurements were performed to provide an evidence...
-
In-tube extraction for the determination of the main volatile compounds in Physalis peruviana L
PublicationAn analytical procedure based on in-tube extraction followed by gas chromatography with mass spectrometry has been developed for the analysis of 24 main volatile components in cape gooseberry (Physalis peruviana L.) samples. According to their chemical structure, the compounds were organized into different groups: one hydrocarbon, one aldehyde, four alcohols, four esters, and 14 monoterpenes. By single-factor experiments, incubation...
-
Experimental and predicted physicochemical properties of monopropanolamine-based deep eutectic solvents
PublicationIn this work, the novel deep eutectic solvents (DESs) based on 3-amino-1-propanol (AP) as hydrogen bond donor (HBD) and tetrabutylammonium bromide (TBAB) or tetrabutylammonium chloride (TBAC) or tetraethylammonium chloride (TEAC) as hydrogen bond acceptors (HBAs) were synthesized with different molar ratios of 1:4, 1:6 and 1:8 salt to AP. Fourier Transform Infrared Spectroscopy measurements were performed to provide an evidence...
-
Adsorption onto zeolites: molecular perspective
Publication2D minerals are among key elements of advanced systems, but the need for understanding their interactions/reactions with materials and systems in which they are involved necessitates tracking their molecular and atomic monitoring. Zeolitic structures are microporous materials formed in the nature through volcanic activities or synthesis. Because of their outstanding physicochemical properties like cation exchange capacity and excellent...
-
Low-strain sensor based on the flexible boron-doped diamond-polymer structures
PublicationA free-standing high boron-doped diamond nanosheet (BDDNS) has been fabricated for the development of a flexible BDDNS strain senor. High boron-doped diamond was initially grown on a tantalum substrate in a microwave plasma-assisted chemical vapor deposition method, and was then transferred to a Kapton polymer substrate to fabricate the flexible BDDNS/Kapton device. Before performing the transfer process, the thin BDDNS’s morphology...
-
Reliability model of the crankshaft-piston assembly
PublicationThe laws that govern the durability of crankshaft-piston assembly friction nodes can be proved or at least derived or justified in an intuitive way. Operation of all the friction nodes is disturbed by external factors occurring with randomly changing intensity and also appearing at random. As the crankshaft-piston assembly friction nodes have a series structure and effects of those disturbances accumulate, their fitness for use...
-
Optimization of boron-doping process of titania nanotubes via electrochemical method toward enhanced photoactivity
PublicationIn this work, we were focused on the development of the electrochemical approach resulting in a stable boron doping of titania nanotubes. The doping procedure concerns anodic polarization of as-anodized titania in a H3BO3 solution acting as n boron precursor. The series of attempts were taken in order to elaborate the most beneficial doping conditions. The parameters of electrochemical doping allowing to obtain boron-doped titania...
-
Tuning of the Electrochemical Properties of Transparent Fluorine-doped Tin Oxide Electrodes by Microwave Pulsed-plasma Polymerized Allylamine
PublicationWe report here the dry, one-step, and low-temperature modification of FTO surfaces using pulsed plasma polymerization of allylamine (PPAAm). PPAAm/FTO surfaces were characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and contact angles to understand the morphological, structural, and optical properties. FTO were coated with a very thin layer of adherent cross-linked, pinhole-, and additive-free allylamine...
-
Ordered TiO2 nanotubes with improved photoactivity through self-organizing anodization with the addition of an ionic liquid: effects of the preparation conditions
PublicationModifying the geometric and surface parameters of oriented TiO2 nanotubes (NTs) is beneficial to the utilization of solar energy for chemical reactions, and this performance may be further improved. Thus, the effects of adding an ionic liquid (IL), 1-butylpiridinium chloride [BPy][Cl], and the effects of the water content and preparation conditions on the surface morphological, physicochemical, photocatalytic and photoelectrochemical...
-
Thermoplastic polyurethanes with glycolysate intermediates from polyurethane waste recycling
PublicationThe polyol is a major component in polyurethane formulations and therefore introducing to the formulation recycled polyol (obtained during decomposition process) allows decreasing the usage of pure petrochemical components. In this work, thermoplastic polyurethanes were prepared using various mixtures of a petrochemical macrodiol poly(ethylene-butylene adipate)diol (PEBA) and a recycled glycolysate intermediate, called glycolysate...
-
Corrosion process monitoring by AFM higher harmonic imaging
PublicationThe atomic force microscope (AFM) was invented in 1986 as an alternative to the scanning tunnelling microscope, which cannot be used in studies of non-conductive materials. Today the AFM is a powerful, versatile and fundamental tool for visualizing and studying the morphology of material surfaces. Moreover, additional information for some materials can be recovered by analysing the AFM's higher cantilever modes when the cantilever...
-
The influence of bio-based monomers on the structure and thermal properties of polyurethanes
PublicationMost polyurethanes (PU) are currently produced through the polyaddition reaction of polyisocyanates with polyols and chain extenders, using components of petrochemical origin. From an environmental and geopolitical point of view, and with regard to the problems of oil supply and processing, the replacement of petrochemical PU raw materials with renewable resources is highly desirable. It is also one of the principles of sustainable...
-
Tailor-Made Polysaccharides for Biomedical Applications
PublicationPolysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as...
-
The importance of anchoring ligands of binuclear sensitizers on electron transfer processes and photovoltaic action in dye-sensitized solar cells
PublicationThe relatively low photon-to-current conversion efficiency of dye-sensitized solar cells is their major drawback limiting widespread application. Light harvesting, followed by a series of electron transfer processes, is the critical step in photocurrent generation. An in-depth understanding and fine optimization of those processes are crucial to enhance cell performance. In this work, we synthesize two new bi-ruthenium sensitizers...
-
Consequences of New Approach of Chemical Stability Tests of Active Pharmaceutical Ingredients (APIs)
PublicationThere is a great need of broaden look on stability tests of active pharmaceuticalingredients (APIs) in comparison with current requirements contained in pharmacopeia.By usage of many modern analytical methods the conception of monitoring the changesof APIs during initial stage of their exposure to harmful factors has been developed. Newknowledge must be acquired in terms of identification of each degradation...
-
Toward Polyethylene–Polyester Block and Graft Copolymers with Tunable Polarity
PublicationThe synthesis and characterization of polyethylene–polyester block and graft copolymers and their potential as compatibilizers in polyethylene-based polymer blends are being described. The various routes to functionalized polyethylenes and the corresponding block/graft copolymers have been compared and evaluated for their scalability to industrial scale production. Hydroxyl chain-end and randomly OH-functionalized HDPE as well...
-
Interrelationship between total volatile organic compounds emissions, structure and properties of natural rubber/polycaprolactone bio-blends cross-linked with peroxides
PublicationNatural rubber/polycaprolactone (NR/PCL) bio-based blends with different organic peroxides were prepared using an internal batch mixer and subsequently cross-linked at 170°C. Two types of commonly used organic peroxides, dicumyl peroxide and di(tert-butylperoxyisopropyl)benzene peroxide, were applied as free-radical initiator. Cross-linking efficiency of NR/PCL blends were investigated using oscillating disc rheometer measurements,...
-
The role of hydrogen bonding on tuning hard-soft segments in bio-based thermoplastic poly(ether-urethane)s
PublicationThis work describes the preparation of bio-based thermoplastic poly(ether-urethane)s (TPU) via a prepolymer method and investigates the effect of varying the interphase hydrogen-bonding (H-bonding) on physicochemical, thermal and mechanical properties. This was achieved by varying the glycol type and molar ratio of [NCO]/[OH] groups used during the prepolymer chain extending step. The TPUs’ chemical structure was analyzed by Fourier...
-
ACTIVATED BIOCHAR AS AN ADSORBENT OF ORGANIC POLLUTANTS FOR WATER AND WASTEWATER TREATMENT
PublicationThe use of biomass, especially waste biomass, as an alternative energy source is a very important issue today. Pyrolysis is a process of thermal degradation of raw material and one of its products is biochar. This product is mainly distinguished by its high carbon content, and by improving its quality through activation, it can be more widely used. Activated biocarbon has a strongly developed surface and porous structure, and as...
-
Shape memory thin films of Polyurethane: Does graphene content affect the recovery behavior of Polyurethane nanocomposites?
PublicationThin nanocomposite films of polyurethane have received remarkable attention due to their shape memory properties. As most of the reports focus on the beneficial aspects of the presence of nanofillers such as graphene nanoplatelets (GNPs) introduced into shape memory polymers, some research results reveal the opposite trend. The polyether/polyester-based polyurethane was synthesized through a condensation polymerization and the...
-
Molecularly imprinted polymers applied in capillary electrochromatography and electrophoresis techniques
PublicationMolecularly imprinted polymers (MIPs) are synthetic materials with predetermined selectivity for a particular analyte or group of structure-linked chemicals which make them an ideal separation component. The process of developing and applying new types of MIPs in the field of environmental analytical chemistry has been broadly discussedi n many scientific studies in recent years. The use of new types of MIP sorbents as unique sorption...
-
Structure and performance properties of environmentally-friendly biocomposites based on poly(ɛ-caprolactone) modified with copper slag and shale drill cuttings wastes
PublicationThe potential application of two types of industrial wastes, drill cuttings (DC) and copper slag (CS), as silica-rich modifiers of poly(ɛ-caprolactone) (PCL) was investigated. Chemical structure and physical properties of DC and CS fillers were characterized using X-ray diffractometer, X-ray fluorescence spectroscopy, particle size and density measurements. PCL/DC and PCL/CS composites with a variable content of filler (5 to 50...
-
Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis
PublicationPre-treatment is a significant step in the production of second-generation biofuels from waste lignocellulosic materials. Obtaining biofuels as a result of fermentation processes requires appropriate pre-treatment conditions ensuring the highest possible degree of saccharification of the feed material. An influence of the following process parameters were investigated for alkaline pre-treatment of Salix viminalis L.: catalyst concentration...
-
Analysis of the impact of wastewater discharge on recipients: synergistic approach
PublicationThe dissertation presents the analysis of chemical and microbial composition of wastewater and examines the impact of wastewater discharge on the environment. Various case studies were analysed: from small settlements in a pristine European Arctic, to large municipal wastewater treatment plants in areas subjected to greater anthropogenic pressure. In order to comprehensively analyse the impact of wastewater discharge on the receiving...
-
Performance tuning of chitosan-based membranes by protonated 2-Pyrrolidone-5-carboxylic acid-sulfolane DES for effective water/ethanol separation by pervaporation
PublicationToday, the applicability of deep eutectic solvents (DES) in various fields, including membrane science and technology, is extensively investigated. In pioneering works, we have implemented different DES as a component of chitosan (CS)-based flat membranes for pervaporation (PV) separation. Herein, we present a new protonated (by sulphuric acid) 2-Pyrrolidone-5-carboxylic acid: sulfolane DES, as a green additive for its chemical...
-
Fermentative Conversion of Two-Step Pre-Treated Lignocellulosic Biomass to Hydrogen
PublicationFermentative hydrogen production via dark fermentation with the application of lignocellulosic biomass requires a multistep pre-treatment procedure, due to the complexed structure of the raw material. Hence, the comparison of the hydrogen productivity potential of different lignocellulosic materials (LCMs) in relation to the lignocellulosic biomass composition is often considered as an interesting field of research. In this study,...
-
Physicochemical Properties and Application of Silica-Doped Biochar Composites as Efficient Sorbents of Copper from Tap Water
PublicationThis article concerns research on new sorption materials based on silica-doped activated carbon. A two-stage synthesis involved pyrolysis of plant material impregnated in a water glass solution , followed by hydrothermal activation of the pyrolysate in KOH solution. The resulting composite can be used as a sorbent in drinking water filters. The proposed method of synthesis enables the design of materials with a surface area...
-
Influence of LCVD technologicalparameters on propertiesof polyazomethine thin films
PublicationPurpose: The aim of this paper is to show influence of technological parameters (temperature and gas streamintensity) of low-temperature chemical vapour deposition (LCVD) on optical properties and morphology ofpolyazomethine thin films.Design/methodology/approach: Thin layers of poly (1,4-phenylene-methylenenitrilo-1,4-phenylenenitrilo-methylene) (PPI) were prepared by low temperature LCVD method with use of argon as a transport...
-
Low-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors
PublicationFiber-optic Fabry-Pérot interferometers (FPI) can be applied as optical sensors, and excellent measurement sensitivity can be obtained by fine-tuning the interferometer design. In this work, we evaluate the ability of selected dielectric thin films to optimize the reflectivity of the Fabry-Pérot cavity. The spectral reflectance and transmittance of dielectric films made of titanium dioxide (TiO2) and aluminum oxide (Al2O3) with...
-
Sustainable upcycling of brewers’ spent grain by thermo-mechanical treatment in twin-screw extruder
PublicationThermo-mechanical treatment of brewers’ spent grain (a by-product of beer manufacturing) was successfully performed via the extrusion process. The impact of temperature (from 30 to 180 °C), throughput (from 1 to 5 kg/h) and screw speed (from 75 to 375 rpm) on particle size, color, chemical structure, antioxidant activity and thermal stability of resulting material, as well as correlations between particular properties, were investigated....
-
The possibility of use by-products for synthesis of emulsifiers
PublicationIn the last years the interest in use of materials originated from natural sources, e.g. vegetables to produce attractive products still grows. According to that, also the synthesis of these products should be adequate to the green chemistry requirements. The typical example observed in recent years focuses on utlization of bioglycerol - the by - product of global biodiesel manufacturing. The still growing production of biodiesel...
-
Culturable bacteria community development in postglacial soils of Ecology Glacier, King George Island, Antarctica
PublicationGlacier forelands are excellent sites in which to study microbial succession because conditions change rapidly in the emerging soil. Development of the bacterial community was studied along two transects on lateral moraines of Ecology Glacier, King George Island, by culture-dependent and culture-independent approaches (denaturating gradient gel electrophoresis). Environmental conditions such as cryoturbation and soil composition...
-
Formation of Highly Conductive Boron-Doped Diamond on TiO2 Nanotubes Composite for Supercapacitor or Energy Storage Devices
PublicationIn the present paper, we report the phenomena of the formation of the novel composite nanostructures based on TiO2 nanotubes (NTs) over-grown by thin boron-doped diamond (BDD) film produced in Microwave Plasma Enhanced Chemical Vapor Deposition (PE MWCVD). The TiO2 nanotube array overgrown by boron-doped diamond immersed in 0.1 M NaNO3 can deliver high specific capacitance of 7.46 mF cm−2. The composite electrodes were characterized...
-
Silicon oxycarbide ceramics as anodes for lithium ion batteries: influence of carbon content on lithium storage capacity
PublicationWe report here on the synthesis and characterization of silicon oxycarbide (SiOC) in view of its application as a potential anode material for Li-ion batteries. SiOC ceramics are obtained by pyrolysis of various polysiloxanes synthesized by sol–gel methods. The polysiloxanes contain different organic groups attached to silicon, which influence the chemical composition and the microstructure of the final ceramic product. The structure...
-
Low-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors
PublicationFiber-optic Fabry-Pérot interferometers (FPI) can be applied as optical sensors, and excellent measurement sensitivity can be obtained by fine-tuning the interferometer design. In this work, we evaluate the ability of selected dielectric thin films to optimize the reflectivity of the Fabry-Pérot cavity. The spectral reflectance and transmittance of dielectric films made of titanium dioxide (TiO2) and aluminum oxide (Al2O3) with...
-
Chemical-Assisted Mechanical Lapping of Thin Boron-Doped Diamond Films: A Fast Route Toward High Electrochemical Performance for Sensing Devices
PublicationThere is an urgent need for an effective and economically viable increase in electrochemical performance of boron-doped diamond (BDD) electrodes that are used in sensing and electrocatalytic applications. Specifically, one must take into consideration the electrode heterogeneity due to nonhomogenous boron-dopant distribution and the removal of sp2 carbon impurities saturating the electrode, without interference in material integrity....
-
Graphitic carbon nitride nanosheets decorated with HAp@Bi2S3 core–shell nanorods: Dual S-scheme 1D/2D heterojunction for environmental and hydrogen production solutions
PublicationBy combining different semiconductors, scientists have developed innovative materials capable of converting solar energy into useful forms of energy or driving chemical reactions that clean up pollutants. These materials offer a promising path to combat global environmental and energy challenges. In this study, HAp@Bi2S3 core–shell structures were synthesized using a facile microemulsion technique, and then loaded onto graphitic...
-
Highly Occupied Surface States at Deuterium-Grown Boron-Doped Diamond Interfaces for Efficient Photoelectrochemistry
PublicationPolycrystalline boron-doped diamond is a promising material for high-power aqueous electrochemical applications in bioanalytics, catalysis, and energy storage. The chemical vapor deposition (CVD) process of diamond forma-tion and doping is totally diversified by using high kinetic energies of deu-terium substituting habitually applied hydrogen. The high concentration of deuterium in plasma induces atomic arrangements and steric...