Filters
total: 2935
-
Catalog
- Publications 2411 available results
- Journals 87 available results
- Conferences 86 available results
- Publishing Houses 1 available results
- People 114 available results
- Projects 11 available results
- e-Learning Courses 43 available results
- Events 3 available results
- Open Research Data 179 available results
displaying 1000 best results Help
Search results for: dh network
-
Inter-governmental Collaborative Networks for Digital Government Innovation Transfer -Structure, Membership, Operation
PublicationDigital government refers to the transformation of government organizations and their relationships with citizens, business and each other through digital technology. It entails digital innovation in processes, services, organizations, policies, etc. which are increasingly developed and tested in one country and transferred, after adaptation, to other countries. The process of innovation transfer and the underlying information...
-
Highlights from RNDM 2018 – 10th Anniversary Workshop on Resilient Networks Design and Modeling
PublicationArtykuł prezentujący relację z workshopu RNDM 2018
-
Numerical Analysis of Steady Gradually Varied Flow in Open Channel Networks with Hydraulic Structures
PublicationIn this paper, a method for numerical analysis of steady gradually varied fl ow in channel networks with hydraulic structures is considered. For this purpose, a boundary problem for the system of ordinary differential equations consisting of energy equation and mass conservation equations is formulated. The boundary problem is solved using fi nite difference technique which leads to the system of non-linear algebraic equations....
-
Efficiency of service recovery in scale-free optical networks under multiple node failures
PublicationIn this paper we examine the properties of scale-free networks in case of simultaneous failures of two networknodes. Survivability assumptions are as follows: end-to-end path protection with two node-disjoint backup pathsfor each working path. We investigate three models of scale-free networks generation: IG, PFP and BA.Simulations were to measure the lengths of active and backup paths and the values of service recovery time.We...
-
Hybrid of Neural Networks and Hidden Markov Models as a modern approach to speech recognition systems
PublicationThe aim of this paper is to present a hybrid algorithm that combines the advantages ofartificial neural networks and hidden Markov models in speech recognition for control purpos-es. The scope of the paper includes review of currently used solutions, description and analysis of implementation of selected artificial neural network (NN) structures and hidden Markov mod-els (HMM). The main part of the paper consists of a description...
-
Robust Parameter Estimation and Output Prediction for Reactive Carrier-Load Nonlinear Dynamic Networks
PublicationIn this paper an extension of on-line model simplification technique for a class of networked systems, namely reactive carrier-load nonlinear dynamic networked system (RCLNDNS), kept within point-parametric model (PPM) framework is addressed. The PPM is utilised to acquire a piece wise constant time-varying parameter linear structure for the RCLNDNS suitable for the on-line one step ahead prediction that may be applied to monitoring...
-
Evolving gene regulatory networks controlling foraging strategies of prey and predators in an artificial ecosystem
PublicationCo-evolution of predators and prey is an example of an evolutionary arms race, leading in nature to selective pressures in positive feedback. We introduce here an artificial life ecosystem in which such positive feedback can emerge. This ecosystem consists of a 2-dimensional liquid environment and animats controlled by evolving artificial gene regulatory networks encoded in linear genomes. The genes in the genome encode chemical...
-
Gas Detection Using Resistive Gas Sensors And Radial Basis Function Neural Networks
PublicationWe present a use of Radial Basis Function (RBF) neural networks and Fluctuation Enhanced Sensing (FES) method in gas detection system utilizing a prototype resistive WO3 gas sensing layer with gold nanoparticles. We investigated accuracy of gas detection for three different preprocessing methods: no preprocessing, Principal Component Analysis (PCA) and wavelet transformation. Low frequency noise voltage observed in resistive gas...
-
INFLUENCE OF A VERTEX REMOVING ON THE CONNECTED DOMINATION NUMBER – APPLICATION TO AD-HOC WIRELESS NETWORKS
PublicationA minimum connected dominating set (MCDS) can be used as virtual backbone in ad-hoc wireless networks for efficient routing and broadcasting tasks. To find the MCDS is an NP- complete problem even in unit disk graphs. Many suboptimal algorithms are reported in the literature to find the MCDS using local information instead to use global network knowledge, achieving an important reduction in complexity. Since a wireless network...
-
Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support
PublicationIn this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...
-
Approximation of Fractional Order Dynamic Systems Using Elman, GRU and LSTM Neural Networks
PublicationIn the paper, authors explore the possibility of using the recurrent neural networks (RNN) - Elman, GRU and LSTM - for an approximation of the solution of the fractional-orders differential equations. The RNN network parameters are estimated via optimisation with the second order L-BFGS algorithm. It is done based on data from four systems: simple first and second fractional order LTI systems, a system of fractional-order point...
-
On the Usefulness of the Generalised Additive Model for Mean Path Loss Estimation in Body Area Networks
PublicationIn this article, the usefulness of the Generalised Additive Model for mean path loss estimation in Body Area Networks is investigated. The research concerns a narrow-band indoor off-body network operating at 2.45 GHz, being based on measurements performed with four different users. The mean path loss is modelled as a sum of four components that depend on path length, antenna orientation angle, absolute difference between transmitting...
-
Development of cooperation in localized cooperation networks: A comparative study of cluster organizations and technology parks
PublicationThe main aim of the paper is to analyze the level of development of cooperative relationships in localized cooperation networks – among enterprises associated in cluster organizations and park tenants. The author reports the findings from the quantitative study carried out in the selected cluster organizations and technology parks functioning in Poland. The basic method of data collection was a survey questionnaire. The research...
-
High-Power Jamming Attack Mitigation Techniques in Spectrally-Spatially Flexible Optical Networks
PublicationThis work presents efficient connection provisioning techniques mitigating high-power jamming attacks in spectrally-spatially flexible optical networks (SS-FONs) utilizing multicore fibers. High-power jamming attacks are modeled based on their impact on the lightpaths’ quality of transmission (QoT) through inter-core crosstalk. Based on a desired threshold on a lightpath’s QoT, the modulation format used, the length of the path,...
-
Effects of UV light irradiation on fluctuation enhanced gas sensing by carbon nanotube networks
PublicationThe exceptionally large active surface-to-volume ratio of carbon nanotubes makes it an appealing candidate for gas sensing applications. Here, we studied the DC and low-frequency noise characteristics of a randomly oriented network of carbon nanotubes under NO2 gas atmosphere at two different wavelengths of the UV light-emitting diodes. The UV irradiation allowed to sense lower concentrations of NO2 (at least 1 ppm) compared to...
-
Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks
PublicationThe importance of surrogate modeling techniques has been gradually increasing in the design of antenna structures over the recent years. Perhaps the most important reason is a high cost of full-wave electromagnetic (EM) analysis of antenna systems. Although imperative in ensuring evaluation reliability, it entails considerable computational expenses. These are especially pronounced when carrying out EM-driven design tasks such...
-
Using Convolutional Neural Networks for Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening
PublicationFamilial hypercholesterolemia (FH) is a highly undiagnosed disease. Among FH patients, the onset of premature coronary artery disease is 13 times higher than in the general population. Early diagnosis and treatment is essential to prevent cardiovascular diseases and their complications, and to prolong life. One of the clinical criteria of FH is the occurrence of a corneal arcus (CA) among patients, especially those under 45 years...
-
Performance Evaluation of GAM in Off-Body Path Loss Modelling for Body Area Networks
PublicationThis paper addresses the performance evaluation of an off-body path loss model, based on measurements at 2.45 GHz, which has been developed with the use of the Generalised Additive Model, allowing to model a non-linear dependence on different predictor variables. The model formulates path loss as a function of distance, antennas’ heights, antenna orientation angle and polarisation, results showing that performance is very sensitive...
-
Optimizing FSO networks resilient to adverse weather conditions by means of enhanced uncertainty sets
PublicationThis work deals with dimensioning of wireless mesh networks (WMN) composed of FSO (free space optics) links. Although FSO links realize broadband transmission at low cost, their drawback is sensitivity to adverse weather conditions causing transmission degradation on multiple links. Hence, designing such FSO networks requires an optimization model to find the cheapest configuration of link capacities that will be able to carry...
-
Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition
PublicationPredictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural...
-
A Reputation Scheme to Discourage Selfish QoS Manipulation in Two-Hop Wireless Relay Networks
PublicationIn wireless networks, stations can improve their received quality of service (QoS) by handling packets of source flows with higher priority. Additionally, in cooperative relay networks, the relays can handle transit flows with lower priority. We use game theory to model a two-hop relay network where each of the two involved stations can commit such selfish QoS manipulation. We design and evaluate a reputation-based incentive scheme...
-
Comparison of 3D Point Cloud Completion Networks for High Altitude Lidar Scans of Buildings
PublicationHigh altitude lidar scans allow for rapid acquisition of big spatial data representing entire city blocks. Unfortunately, the raw point clouds acquired by this method are largely incomplete due to object occlusions and restrictions in scanning angles and sensor resolution, which can negatively affect the obtained results. In recent years, many new solutions for 3D point cloud completion have been created and tested on various objects;...
-
A Selection of Starting Points for Iterative Position Estimation Algorithms Using Feedforward Neural Networks
PublicationThis article proposes the use of a feedforward neural network (FNN) to select the starting point for the first iteration in well-known iterative location estimation algorithms, with the research objective of finding the minimum size of a neural network that allows iterative position estimation algorithms to converge in an example positioning network. The selected algorithms for iterative position estimation, the structure of the...
-
Dynamically positioned ship steering making use of backstepping method and artificial neural networks
PublicationThe article discusses the issue of designing a dynamic ship positioning system making use of the adaptive vectorial backstepping method and RBF type arti cial neural networks. In the article, the backstepping controller is used to determine control laws and neural network weight adaptation laws. e arti cial neural network is applied at each time instant to approximate nonlinear functions containing parametric uncertainties....
-
New Alternative Passive Networks to Improve the Range Output Voltage Regulation of the PWM Inverters
PublicationThis paper presents different topologies of buck-boost converters with passive input networks that have alternative topologies; this is known in the literature as a Z-source inverter. Alternative passive networks were named by the authors as T-inverters; these improve output voltage regulation of the PWM inverters. T-inverter has fewer reactive components in comparison to conventional Z-source inverter. The most significant advantage...
-
Enhancing Renal Tumor Detection: Leveraging Artificial Neural Networks in Computed Tomography Analysis
PublicationRenal cell carcinoma is one of the most common cancers in Europe, with a total incidence rate of 18.4 cases per 100 000 population. There is currently significant overdiagnosis (11% to 30.9%) at times of planned surgery based on radiological studies. The purpose of this study was to create an artificial neural network (ANN) solution based on computed tomography (CT) images as an additional tool to improve the differentiation of...
-
An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks
PublicationIn this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent...
-
Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach
PublicationIn recent years, we have been witnessing a growing interest in the subject of communication at sea. One of the promising solutions to enable widespread access to data transmission capabilities in coastal waters is the possibility of employing an on-shore wireless access infrastructure. However, such an infrastructure is a heterogeneous one, managed by many independent operators and utilizing a number of different communication...
-
Using LSTM networks to predict engine condition on large scale data processing framework
PublicationAs the Internet of Things technology is developing rapidly, companies have an ability to observe the health of engine components and constructed systems through collecting signals from sensors. According to output of IoT sensors, companies can build systems to predict the conditions of components. Practically the components are required to be maintained or replaced before the end of life in performing their assigned task. Predicting...
-
Security Evaluation of IT Systems Underlying Critical Networked Infrastructures
PublicationCritical infrastructures have become highly dependent on information and communication technology (ICT). The drawback of this situation is that the consequences of disturbances of the underlying ICT networks may be serious as cascading effects can occur. This raises a high demand for security assurance, with a high importance assigned to security evaluations. In this paper we present an experiment-centric approach for the characterisation...
-
On the Importance of Resilience Engineering for Networked Systems in a Changing World
PublicationResilience is featured increasingly often in the media, usually applied to society when faced, for example, with disasters such as flooding and the enormous challenges that the Covid-19 pandemic posed. There are now many resilience-related discussion groups worldwide, and some standards initiatives devoted in particular to city resilience. However, there is relatively little explicit interest in resilience engineering for communication...
-
Networkig activities of general judiciary - from theory to practice
PublicationOver the last three decades, networks - as a field of research - have acquired a significant place among management sciences. Unfortunately, in the judiciary they have become a subject of more careful analyses only recently, which resulted in a large discrepancy of knowledge - both in theory and in its practical adaptation for the needs of the courts. In order to fill this cognitive gap, an attempt was made to identify levels of...
-
Sławomir Jerzy Ambroziak dr hab. inż.
PeopleSławomir J. Ambroziak was born in Poland, in 1982. He received the M.Sc., Ph.D. and D.Sc. degrees in radio communication from Gdańsk University of Technology (Gdańsk Tech), Poland, in 2008, 2013, and 2020 respectively. Since 2008 he is with the Department of Radiocommunication Systems and Networks of the Gdańsk Tech: 2008-2013 as Research Assistant, 2013-2020 as Assistant Professor, and since 2020 as Associate Professor. He is...
-
Adrian Bekasiewicz dr hab. inż.
PeopleAdrian Bekasiewicz received the MSc, PhD, and DSc degrees in electronic engineering from Gdansk University of Technology, Poland, in 2011, 2016, and 2020, respectively. In 2014, he joined Engineering Optimization & Modeling Center at Reykjavik University, Iceland, where he held a Research Associate and a Postdoctoral Fellow positions, respectively. Currently, he is an Associate Professor and the head of Teleinformation Networks...
-
A Dynamic Forecast Demand Scenario Analysis to Design an Automated Parcel Lockers Network in Pamplona (Spain) Using a Simulation-Optimization Model
Publication -
Prediction of skin color, tanning and freckling from DNA in Polish population: linear regression, random forest and neural network approaches
Publication -
Artificial neural network model of hardness, porosity and cavitation erosion wear of APS deposited Al2O3 -13 wt% TiO2 coatings
Publication -
Application of Generalized Regression Neural Network and Gaussian Process Regression for Modelling Hybrid Micro-Electric Discharge Machining: A Comparative Study
Publication -
Metabolic Profiling of Jasminum grandiflorum L. Flowers and Protective Role against Cisplatin-Induced Nephrotoxicity: Network Pharmacology and In Vivo Validation
Publication -
Sa1376 EFFICACY OF PROBIOTICS REGIMENS FOR HELICOBACTER ERADICATION: A SYSTEMATIC REVIEW, PAIR-WISE AND NETWORK META-ANALYSIS OF RANDOMIZED CONTROLLED TRIALS
Publication -
The development of an artificial neural network correlation for prediction of rotating magnetic field effects on the process of production of disperse systems Fe3O4–Liquid
Publication -
Learning from mistakes within organizations: An adaptive network-oriented model for a double bias perspective for safety and security through cyberspace
PublicationAlthough making mistakes is a crucial part of learning, it is still often being avoided in companies as it is considered as a shameful incident. This goes hand in hand with a mindset of a boss who dominantly believes that mistakes usually have negative consequences and therefore avoids them by only accepting simple tasks. Thus, there is no mechanism to learn from mistakes. Employees working for and being influenced by such a boss...
-
Burst loss probability for the combination of extended offset time based service differentiation scheme and PPS in optical burst switching network
PublicationIn the paper analytical model for calculating burst loss probabilities for the combination of two service differentiation schemes for OBS network namely: extended offset time based scheme and PPS (Preemption Priority Schemes) is revised. Moreover authors introduce analytical model for calculating burst loss probabilities for an optical path when OBS network employs both service differentiation schemes and JET signaling. The comparison...
-
Personalized nutrition in ageing society: redox control of major-age related diseases through the NutRedOx Network (COST Action CA16112)
PublicationA healthy ageing process is important when it is considered that one-third of the population of Europe is already over 50 years old, although there are regional variations. This proportion is likely to increase in the future, and maintenance of vitality at an older age is not only an important measure of the quality of life but also key to participation and productivity. So, the binomial “nutrition and ageing” has different aspects...
-
Partycypacja obywatelska młodzieży w opinii gmin polskich na przykładzie projektu South Baltic Youth Core Group Network
PublicationCelem badań było ukazanie partycypacji obywatelskiej młodzieży w opinii gmin polskich na przykładzie projektu South Baltic Youth Core Group Network
-
The significance of institutions' potential to increase Youth civic participation – case study of the South Baltic Youth Core Groups Network Project
PublicationYoung people are a very important group of modern societies, they will replace the currently ruling generation and will shape our common future. Due to that, young people have become the relevant target of national and international policy and science researches. Youth civic participation is a key aspect of the development of a society and should be shaped by effective youth policy at the national and international levels. This...
-
Recurrent Neural Network Based Adaptive Variable-Order Fractional PID Controller for Small Modular Reactor Thermal Power Control
PublicationThis paper presents the synthesis of an adaptive PID type controller in which the variable-order fractional operators are used. Due to the implementation difficulties of fractional order operators, both with a fixed and variable order, on digital control platforms caused by the requirement of infinite memory resources, the fractional operators that are part of the discussed controller were approximated by recurrent neural networks...
-
Energy Management for PV Powered Hybrid Storage System in Electric Vehicles Using Artificial Neural Network and Aquila Optimizer Algorithm
PublicationIn an electric vehicle (EV), using more than one energy source often provides a safe ride without concerns about range. EVs are powered by photovoltaic (PV), battery, and ultracapacitor (UC) systems. The overall results of this arrangement are an increase in travel distance; a reduction in battery size; improved reaction, especially under overload; and an extension of battery life. Improved results allow the energy to be used efficiently,...
-
JOIN THE NETWORK INTERNATIONAL ALUMNI - JOIN THE NETWORK. Działania wspierające nawiązanie współpracy z absolwentami zagranicznymi Politechniki Gdańskiej
ProjectsProject realized in Careers and Alumni Office
-
Set membership estimation of parameters and variables in dynamic networks by recursive algorithms with moving measurment window
PublicationW artykule rozważana jest łączna estymacja przedziałowa zmiennych i parametrów w złożonej sieci dynamicznej w oparciu niepewne modele parametryczne i ograniczoną liczbę pomiarów. Opracowany został rekursywny algorytm estymacji z przesuwnym oknem pomiarowym, odpowiedni dla monitorowania sieci on-line. Okno pomiarowe pozwala na stabilizowanie klasycznego algorytmu rekurencyjnego estymacji i znacznie poprawienie obcisłości estymat....