Filters
total: 2911
-
Catalog
- Publications 2395 available results
- Journals 87 available results
- Conferences 86 available results
- Publishing Houses 1 available results
- People 113 available results
- Projects 11 available results
- e-Learning Courses 37 available results
- Events 3 available results
- Open Research Data 178 available results
displaying 1000 best results Help
Search results for: dh network
-
Robust Parameter Estimation and Output Prediction for Reactive Carrier-Load Nonlinear Dynamic Networks
PublicationIn this paper an extension of on-line model simplification technique for a class of networked systems, namely reactive carrier-load nonlinear dynamic networked system (RCLNDNS), kept within point-parametric model (PPM) framework is addressed. The PPM is utilised to acquire a piece wise constant time-varying parameter linear structure for the RCLNDNS suitable for the on-line one step ahead prediction that may be applied to monitoring...
-
Evolving gene regulatory networks controlling foraging strategies of prey and predators in an artificial ecosystem
PublicationCo-evolution of predators and prey is an example of an evolutionary arms race, leading in nature to selective pressures in positive feedback. We introduce here an artificial life ecosystem in which such positive feedback can emerge. This ecosystem consists of a 2-dimensional liquid environment and animats controlled by evolving artificial gene regulatory networks encoded in linear genomes. The genes in the genome encode chemical...
-
INFLUENCE OF A VERTEX REMOVING ON THE CONNECTED DOMINATION NUMBER – APPLICATION TO AD-HOC WIRELESS NETWORKS
PublicationA minimum connected dominating set (MCDS) can be used as virtual backbone in ad-hoc wireless networks for efficient routing and broadcasting tasks. To find the MCDS is an NP- complete problem even in unit disk graphs. Many suboptimal algorithms are reported in the literature to find the MCDS using local information instead to use global network knowledge, achieving an important reduction in complexity. Since a wireless network...
-
Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support
PublicationIn this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...
-
Gas Detection Using Resistive Gas Sensors And Radial Basis Function Neural Networks
PublicationWe present a use of Radial Basis Function (RBF) neural networks and Fluctuation Enhanced Sensing (FES) method in gas detection system utilizing a prototype resistive WO3 gas sensing layer with gold nanoparticles. We investigated accuracy of gas detection for three different preprocessing methods: no preprocessing, Principal Component Analysis (PCA) and wavelet transformation. Low frequency noise voltage observed in resistive gas...
-
Effects of UV light irradiation on fluctuation enhanced gas sensing by carbon nanotube networks
PublicationThe exceptionally large active surface-to-volume ratio of carbon nanotubes makes it an appealing candidate for gas sensing applications. Here, we studied the DC and low-frequency noise characteristics of a randomly oriented network of carbon nanotubes under NO2 gas atmosphere at two different wavelengths of the UV light-emitting diodes. The UV irradiation allowed to sense lower concentrations of NO2 (at least 1 ppm) compared to...
-
Using Convolutional Neural Networks for Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening
PublicationFamilial hypercholesterolemia (FH) is a highly undiagnosed disease. Among FH patients, the onset of premature coronary artery disease is 13 times higher than in the general population. Early diagnosis and treatment is essential to prevent cardiovascular diseases and their complications, and to prolong life. One of the clinical criteria of FH is the occurrence of a corneal arcus (CA) among patients, especially those under 45 years...
-
New Alternative Passive Networks to Improve the Range Output Voltage Regulation of the PWM Inverters
PublicationThis paper presents different topologies of buck-boost converters with passive input networks that have alternative topologies; this is known in the literature as a Z-source inverter. Alternative passive networks were named by the authors as T-inverters; these improve output voltage regulation of the PWM inverters. T-inverter has fewer reactive components in comparison to conventional Z-source inverter. The most significant advantage...
-
Dynamically positioned ship steering making use of backstepping method and artificial neural networks
PublicationThe article discusses the issue of designing a dynamic ship positioning system making use of the adaptive vectorial backstepping method and RBF type arti cial neural networks. In the article, the backstepping controller is used to determine control laws and neural network weight adaptation laws. e arti cial neural network is applied at each time instant to approximate nonlinear functions containing parametric uncertainties....
-
A Reputation Scheme to Discourage Selfish QoS Manipulation in Two-Hop Wireless Relay Networks
PublicationIn wireless networks, stations can improve their received quality of service (QoS) by handling packets of source flows with higher priority. Additionally, in cooperative relay networks, the relays can handle transit flows with lower priority. We use game theory to model a two-hop relay network where each of the two involved stations can commit such selfish QoS manipulation. We design and evaluate a reputation-based incentive scheme...
-
Using LSTM networks to predict engine condition on large scale data processing framework
PublicationAs the Internet of Things technology is developing rapidly, companies have an ability to observe the health of engine components and constructed systems through collecting signals from sensors. According to output of IoT sensors, companies can build systems to predict the conditions of components. Practically the components are required to be maintained or replaced before the end of life in performing their assigned task. Predicting...
-
Highlights from RNDM 2018 – 10th Anniversary Workshop on Resilient Networks Design and Modeling
PublicationArtykuł prezentujący relację z workshopu RNDM 2018
-
Performance Evaluation of GAM in Off-Body Path Loss Modelling for Body Area Networks
PublicationThis paper addresses the performance evaluation of an off-body path loss model, based on measurements at 2.45 GHz, which has been developed with the use of the Generalised Additive Model, allowing to model a non-linear dependence on different predictor variables. The model formulates path loss as a function of distance, antennas’ heights, antenna orientation angle and polarisation, results showing that performance is very sensitive...
-
Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks
PublicationThe importance of surrogate modeling techniques has been gradually increasing in the design of antenna structures over the recent years. Perhaps the most important reason is a high cost of full-wave electromagnetic (EM) analysis of antenna systems. Although imperative in ensuring evaluation reliability, it entails considerable computational expenses. These are especially pronounced when carrying out EM-driven design tasks such...
-
Optimizing FSO networks resilient to adverse weather conditions by means of enhanced uncertainty sets
PublicationThis work deals with dimensioning of wireless mesh networks (WMN) composed of FSO (free space optics) links. Although FSO links realize broadband transmission at low cost, their drawback is sensitivity to adverse weather conditions causing transmission degradation on multiple links. Hence, designing such FSO networks requires an optimization model to find the cheapest configuration of link capacities that will be able to carry...
-
Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition
PublicationPredictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural...
-
Approximation of Fractional Order Dynamic Systems Using Elman, GRU and LSTM Neural Networks
PublicationIn the paper, authors explore the possibility of using the recurrent neural networks (RNN) - Elman, GRU and LSTM - for an approximation of the solution of the fractional-orders differential equations. The RNN network parameters are estimated via optimisation with the second order L-BFGS algorithm. It is done based on data from four systems: simple first and second fractional order LTI systems, a system of fractional-order point...
-
On the Usefulness of the Generalised Additive Model for Mean Path Loss Estimation in Body Area Networks
PublicationIn this article, the usefulness of the Generalised Additive Model for mean path loss estimation in Body Area Networks is investigated. The research concerns a narrow-band indoor off-body network operating at 2.45 GHz, being based on measurements performed with four different users. The mean path loss is modelled as a sum of four components that depend on path length, antenna orientation angle, absolute difference between transmitting...
-
Development of cooperation in localized cooperation networks: A comparative study of cluster organizations and technology parks
PublicationThe main aim of the paper is to analyze the level of development of cooperative relationships in localized cooperation networks – among enterprises associated in cluster organizations and park tenants. The author reports the findings from the quantitative study carried out in the selected cluster organizations and technology parks functioning in Poland. The basic method of data collection was a survey questionnaire. The research...
-
High-Power Jamming Attack Mitigation Techniques in Spectrally-Spatially Flexible Optical Networks
PublicationThis work presents efficient connection provisioning techniques mitigating high-power jamming attacks in spectrally-spatially flexible optical networks (SS-FONs) utilizing multicore fibers. High-power jamming attacks are modeled based on their impact on the lightpaths’ quality of transmission (QoT) through inter-core crosstalk. Based on a desired threshold on a lightpath’s QoT, the modulation format used, the length of the path,...
-
Application of artificial neural networks (ANN) as multiple degradation classifiers in thermal and flow diagnostics
PublicationPrzedyskutowano problem zwiększenia dokładności rozpoznawania wielokrotnych degradacji eksploatacyjnych urządzeń składowych dużych obiektów energetycznych. Zastosowani sieć neuronową (SSN) o skokowych funkcjach przejścia. Sprawdzono możliwości przyspieszenia treningu sieci neuronowych. Zastosowano modułową metodę budowy SSN, polegającą na dedykowaniu pojedynczej sieci do rozpoznawania tylko jednego typu degradacji.
-
Accidental wow defect evaluation using sinusoidal analysis enhanced by artificial neural networks
PublicationArtykuł przedstawia metodę do wyznaczania charakterystyki pasożytniczych modulacji częstotliwości (kołysanie) obecnych w archiwalnych nagraniach dźwiękowych. Prezentowane podejście wykorzystuje śledzenie zmian sinusoidalnych komponentów dźwięku które odzwierciedlają przebieg kołysania. Analiza sinusoidalna wykorzystana jest do ekstrakcji składowych tonalnych ze zniekształconych nagrań dźwiękowych. Dodatkowo, w celu zwiększenia...
-
Piotr Rajchowski dr inż.
PeoplePiotr Rajchowski (Member, IEEE) was born in Poland, in 1989. He received the E.Eng., M.Sc., and Ph.D. degrees in radio communication from the Gdańsk University of Technology (Gdańsk Tech), Poland, in 2012, 2013, and 2017, respectively. Since 2013, he has been working at the Department of Radiocommunication Systems and Networks, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, as a IT...
-
On the Importance of Resilience Engineering for Networked Systems in a Changing World
PublicationResilience is featured increasingly often in the media, usually applied to society when faced, for example, with disasters such as flooding and the enormous challenges that the Covid-19 pandemic posed. There are now many resilience-related discussion groups worldwide, and some standards initiatives devoted in particular to city resilience. However, there is relatively little explicit interest in resilience engineering for communication...
-
Security Evaluation of IT Systems Underlying Critical Networked Infrastructures
PublicationCritical infrastructures have become highly dependent on information and communication technology (ICT). The drawback of this situation is that the consequences of disturbances of the underlying ICT networks may be serious as cascading effects can occur. This raises a high demand for security assurance, with a high importance assigned to security evaluations. In this paper we present an experiment-centric approach for the characterisation...
-
Networkig activities of general judiciary - from theory to practice
PublicationOver the last three decades, networks - as a field of research - have acquired a significant place among management sciences. Unfortunately, in the judiciary they have become a subject of more careful analyses only recently, which resulted in a large discrepancy of knowledge - both in theory and in its practical adaptation for the needs of the courts. In order to fill this cognitive gap, an attempt was made to identify levels of...
-
Sa1376 EFFICACY OF PROBIOTICS REGIMENS FOR HELICOBACTER ERADICATION: A SYSTEMATIC REVIEW, PAIR-WISE AND NETWORK META-ANALYSIS OF RANDOMIZED CONTROLLED TRIALS
Publication -
The development of an artificial neural network correlation for prediction of rotating magnetic field effects on the process of production of disperse systems Fe3O4–Liquid
Publication -
Learning from mistakes within organizations: An adaptive network-oriented model for a double bias perspective for safety and security through cyberspace
PublicationAlthough making mistakes is a crucial part of learning, it is still often being avoided in companies as it is considered as a shameful incident. This goes hand in hand with a mindset of a boss who dominantly believes that mistakes usually have negative consequences and therefore avoids them by only accepting simple tasks. Thus, there is no mechanism to learn from mistakes. Employees working for and being influenced by such a boss...
-
Recurrent Neural Network Based Adaptive Variable-Order Fractional PID Controller for Small Modular Reactor Thermal Power Control
PublicationThis paper presents the synthesis of an adaptive PID type controller in which the variable-order fractional operators are used. Due to the implementation difficulties of fractional order operators, both with a fixed and variable order, on digital control platforms caused by the requirement of infinite memory resources, the fractional operators that are part of the discussed controller were approximated by recurrent neural networks...
-
Energy Management for PV Powered Hybrid Storage System in Electric Vehicles Using Artificial Neural Network and Aquila Optimizer Algorithm
PublicationIn an electric vehicle (EV), using more than one energy source often provides a safe ride without concerns about range. EVs are powered by photovoltaic (PV), battery, and ultracapacitor (UC) systems. The overall results of this arrangement are an increase in travel distance; a reduction in battery size; improved reaction, especially under overload; and an extension of battery life. Improved results allow the energy to be used efficiently,...
-
A Dynamic Forecast Demand Scenario Analysis to Design an Automated Parcel Lockers Network in Pamplona (Spain) Using a Simulation-Optimization Model
Publication -
Metabolic Profiling of Jasminum grandiflorum L. Flowers and Protective Role against Cisplatin-Induced Nephrotoxicity: Network Pharmacology and In Vivo Validation
Publication -
Prediction of skin color, tanning and freckling from DNA in Polish population: linear regression, random forest and neural network approaches
Publication -
Artificial neural network model of hardness, porosity and cavitation erosion wear of APS deposited Al2O3 -13 wt% TiO2 coatings
Publication -
Application of Generalized Regression Neural Network and Gaussian Process Regression for Modelling Hybrid Micro-Electric Discharge Machining: A Comparative Study
Publication -
Burst loss probability for the combination of extended offset time based service differentiation scheme and PPS in optical burst switching network
PublicationIn the paper analytical model for calculating burst loss probabilities for the combination of two service differentiation schemes for OBS network namely: extended offset time based scheme and PPS (Preemption Priority Schemes) is revised. Moreover authors introduce analytical model for calculating burst loss probabilities for an optical path when OBS network employs both service differentiation schemes and JET signaling. The comparison...
-
Partycypacja obywatelska młodzieży w opinii gmin polskich na przykładzie projektu South Baltic Youth Core Group Network
PublicationCelem badań było ukazanie partycypacji obywatelskiej młodzieży w opinii gmin polskich na przykładzie projektu South Baltic Youth Core Group Network
-
The significance of institutions' potential to increase Youth civic participation – case study of the South Baltic Youth Core Groups Network Project
PublicationYoung people are a very important group of modern societies, they will replace the currently ruling generation and will shape our common future. Due to that, young people have become the relevant target of national and international policy and science researches. Youth civic participation is a key aspect of the development of a society and should be shaped by effective youth policy at the national and international levels. This...
-
Personalized nutrition in ageing society: redox control of major-age related diseases through the NutRedOx Network (COST Action CA16112)
PublicationA healthy ageing process is important when it is considered that one-third of the population of Europe is already over 50 years old, although there are regional variations. This proportion is likely to increase in the future, and maintenance of vitality at an older age is not only an important measure of the quality of life but also key to participation and productivity. So, the binomial “nutrition and ageing” has different aspects...
-
JOIN THE NETWORK INTERNATIONAL ALUMNI - JOIN THE NETWORK. Działania wspierające nawiązanie współpracy z absolwentami zagranicznymi Politechniki Gdańskiej
ProjectsProject realized in Careers and Alumni Office
-
Ewa Lechman prof. dr hab.
PeopleEWA LECHMAN (ur. 24 III 1977 Katowice), ekonomistka, profesor ► Politechniki Gdańskiej (PG). Córka Andrzeja i Anny. W 1996 absolwentka III Liceum Ogólnokształcącego im. Adama Mickiewicza w Katowicach. Do 2001 studiowała na Wydziale Ekonomii ► Uniwersytetu Gdańskiego (UG) na kierunku ekonomia, w specjalności polityka gospodarcza i strategia przedsiębiorczości. Studia ukończyła obroną pracy magisterskiej o przystąpieniu Meksyku do...
-
Sławomir Jerzy Ambroziak dr hab. inż.
PeopleSławomir J. Ambroziak was born in Poland, in 1982. He received the M.Sc., Ph.D. and D.Sc. degrees in radio communication from Gdańsk University of Technology (Gdańsk Tech), Poland, in 2008, 2013, and 2020 respectively. Since 2008 he is with the Department of Radiocommunication Systems and Networks of the Gdańsk Tech: 2008-2013 as Research Assistant, 2013-2020 as Assistant Professor, and since 2020 as Associate Professor. He is...
-
Application of Bayesian Networks in risk diagnostics arising from the degree of urban regeneration area degradation
PublicationUrban regeneration as a complex project, generates many extremely specific threats affecting the increase of investment risk. Its unique nature causes that probability parameter, normally applied in the process of risk quantification, is extremely difficult to estimate. Due to lack of historical data urban regeneration related activities are therefore associated with uncertainty. According to the authors, a useful tool for resolving...
-
INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY
PublicationIn recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...
-
Determination of Odour Interactions in Gaseous Mixtures Using Electronic Nose Methods with Artificial Neural Networks
PublicationThis paper presents application of an electronic nose prototype comprised of eight sensors, five TGS-type sensors, two electrochemical sensors and one PID-type sensor, to identify odour interaction phenomenon in two-, three-, four- and five-component odorous mixtures. Typical chemical compounds, such as toluene, acetone, triethylamine, α-pinene and n-butanol, present near municipal landfills and sewage treatment plants were subjected...
-
A novel genetic approach to provide differentiated levels of service resilience in IP-MPLS/WDM networks
PublicationThis paper introduces a novel class-based method of survivable routing for connection-oriented IP-MPLS/WDM networks, called MLS-GEN-H. The algorithm is designed to provide differentiated levels of service survivability in order to respond to varying requirements of end-users. It divides the complex problem of survivable routing in IP-MPLS/WDM networks into two subproblems, one for each network layer, which enables finding the...
-
When Neural Networks Meet Decisional DNA: A Promising New Perspective for Knowledge Representation and Sharing
PublicationABSTRACT In this article, we introduce a novel concept combining neural network technology and Decisional DNA for knowledge representation and sharing. Instead of using traditional machine learning and knowledge discovery methods, this approach explores the way of knowledge extraction through deep learning processes based on a domain’s past decisional events captured by Decisional DNA. We compare our approach with kNN (k-nearest...
-
Redefining brain tumor segmentation: a cutting-edge convolutional neural networks-transfer learning approach
Publication -
The Impact of 8- and 4-Bit Quantization on the Accuracy and Silicon Area Footprint of Tiny Neural Networks
PublicationIn the field of embedded and edge devices, efforts have been made to make deep neural network models smaller due to the limited size of the available memory and the low computational efficiency. Typical model footprints are under 100 KB. However, for some applications, models of this size are too large. In low-voltage sensors, signals must be processed, classified or predicted with an order of magnitude smaller memory. Model downsizing...