Publications
Filters
total: 197
Catalog Publications
Year 2023
-
Energetics of formation and stability in high pressure steam of barium lanthanide cobaltite double perovskites
PublicationThis study concerns energetics of formation and the stability in high water partial pressure of BaLnCo2O6−δ, (Ln = La, Pr, Nd, and Gd) (BLnC) and BaGd1−xLaxCo2O6−δ, where x = 0.2, 0.5, and 0.7 (BGLC) double perovskite cobaltites. Those materials are extensively studied due to their potential applications as a positrode in electrochemical devices. Therefore, their stability under such conditions is a key issue. All investigated...
-
Highly Occupied Surface States at Deuterium-Grown Boron-Doped Diamond Interfaces for Efficient Photoelectrochemistry
PublicationPolycrystalline boron-doped diamond is a promising material for high-power aqueous electrochemical applications in bioanalytics, catalysis, and energy storage. The chemical vapor deposition (CVD) process of diamond forma-tion and doping is totally diversified by using high kinetic energies of deu-terium substituting habitually applied hydrogen. The high concentration of deuterium in plasma induces atomic arrangements and steric...
-
The new method of ZnIn2S4 synthesis on the titania nanotubes substrate with enhanced stability and photoelectrochemical performance
PublicationThe new method of ZnIn2S4 synthesis on the titania nanotubes substrate with enhanced stability and photoelectrochemical performance
Year 2022
-
NOx Photooxidation over Different Noble Metals Modified TiO2
PublicationWe compared the activity enhancement effect of noble metal deposited on TiO2 in photocatalytic nitrogen oxides oxidation. Titanium dioxide was decorated with Ag, Au, Pt or Pd in the sol-gel process. Synthesized catalysts were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller measurement (BET), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX)....
Year 2021
-
Hydrothermal Cobalt Doping of Titanium Dioxide Nanotubes towards Photoanode Activity Enhancement
PublicationDoping and modification of TiO2 nanotubes were carried out using the hydrothermal method. The introduction of small amounts of cobalt (0.1 at %) into the structure of anatase caused an increase in the absorption of light in the visible spectrum, changes in the position of the flat band potential, a decrease in the threshold potential of water oxidation in the dark, and a significant increase in the anode photocurrent. The material...
-
Tin Oxide Encapsulated into Pyrolyzed Chitosan as a Negative Electrode for Lithium Ion Batteries
PublicationTin oxide is one of the most promising electrode materials as a negative electrode for lithium-ion batteries due to its higher theoretical specific capacity than graphite. However, it suffers lack of stability due to volume changes and low electrical conductivity while cycling. To overcome these issues, a new composite consisting of SnO2 and carbonaceous matrix was fabricated. Naturally abundant and renewable chitosan was chosen...
Year 2020
-
Antimony substituted lanthanum orthoniobate proton conductor – structure and electronic properties.
PublicationX‐ray and neutron diffraction have been utilized to analyze the crystalline and electronic structure of lanthanum orthoniobate substituted by antimony. Using X‐ray absorption spectroscopy and photoelectron spectroscopy, changes in the electronic structure of the material upon substitution have been analyzed. The structural transition temperature between fergusonite and scheelite phases for 30 mol% antimony substitution was found...
-
Ceramic composites for single-layer fuel cells
PublicationComposite materials consisting of acceptor doped lanthanum orthoniobate electrolyte phase (La0.98Ca0.02NbO4) and Li2O:NiO:ZnO semiconducting phase were synthesized. The precursor powder of La0.98Ca0.02NbO4 was prepared in nanocrystalline (mechanosynthesis) and microcrystalline (solid-state synthesis) form. The composite can be applied in a single-layer fuel cell, because of the presence of two phases acting as an anode and a cathode...
-
Conductivity, structure, and thermodynamics of Y2Ti2O7–Y3NbO7 solid solutions
PublicationThe defect fluorite yttrium niobate Y3NbO7 and pyrochlore yttrium titanate Y2Ti2O7 solid solutions have been synthesized via a solid state synthesis route. The resulting stoichiometry of the oxides is Y2+xTi2−2xNbxO7, where x = 0 to x = 1. All of the samples were single-phase; however, for those with a predominant fluorite phase, a small amount of additional pyrochlore phase was detected. The volume of the solid solution unit cells...
-
Electric and magnetic properties of Lanthanum Barium Cobaltite
PublicationThe cubic Ba0.5La0.5CoO3‐δ was synthesized using solid state reaction. The structural properties were determined by the simultaneous refinement of Synchrotron Powder X‐ray Diffraction and Neutron Powder Diffraction data. Iodometric titration was used to examine the oxygen stoichiometry and average cobalt oxidation state. Low‐temperature magnetic studies show soft ferromagnetic character of fully oxidized material, with θP = 198(3)...
-
Evolution of magnetic and transport properties in (Cr1−xMnx)2AlC MAX-phase synthesized by arc melting technique
PublicationHerein we initiate a comeback to the arc melting technique to produce MAX-phase solid solutions. Bulk samples of (Cr1−xMnx)2AlC MAX-phase with X = 0, 0.025, 0.05 and 0.1 were synthesized and studied by means of X-ray diffractometry, scanning electron microscopy in combination with energy-dispersive X-ray spectroscopy. Samples were established to be homogeneous with an incorporation of Cr7C3, AlCr2 and Al2O3 secondary phases which...
-
Functional phase bistability in a nanocrystalline RbMn[Fe(CN)6] thin film fabricated by matrix-assisted laser evaporation
PublicationOne of the main barriers hindering applications of Prussian blue metal assemblies is their poor processability, which makes the fabrication of intact thin films very difficult. In this work, a nanocrystalline RbMn[Fe(CN)6]·xH2O film on silicon substrate was obtained for the first time via laser-stimulated deposition and investigated. Temperature-induced phase transition and bistability within broad hysteresis loop (120 K), along...
-
High-Temperature Structural and Electrical Properties of BaLnCo2O6 Positrodes
PublicationThe application of double perovskite cobaltites BaLnCo2O6−δ (Ln = lanthanide element) in electrochemical devices for energy conversion requires control of their properties at operating conditions. This work presents a study of a series of BaLnCo2O6−δ (Ln = La, Pr, Nd) with a focus on the evolution of structural and electrical properties with temperature. Symmetry, oxygen non-stoichiometry, and cobalt valence state have been examined...
-
Investigation of praseodymium and samarium co-doped ceria as an anode catalyst for DIR-SOFC fueled by biogas
PublicationThe Pr and Sm co-doped ceria (with up to 20 mol.% of dopants) compounds were examined as catalytic layers on the surface of SOFC anode directly fed by biogas to increase a lifetime and the efficiency of commercially available DIR-SOFC without the usage of an external reformer. The XRD, SEM and EDX methods were used to investigate the structural properties and the composition of fabricated materials. Furthermore, the electrical...
-
Nano Tin/Tin Oxide Attached onto Graphene Oxide Skeleton as a Fluorine Free Anode Material for Lithium-Ion Batteries
PublicationHerein, we show a composite formation method of tin/tin oxide nanoparticles with graphene oxide and CMC based on laser ablation technique as an electrode material for energy storage devices. The material exhibited a three-dimensional conducting graphene oxide network decorated with tin or tin oxide nanoparticles. The structure, homogeneous distribution of nanoparticles, and direct contact between inorganic and organic parts were...
-
Novel Class of Proton Conducting Materials—High Entropy Oxides
PublicationHere, for the first time, we present data on proton conductivity of high-entropy, single-phase perovskites. The BaZr0.2Sn0.2Ti0.2Hf0.2Ce0.2O3−δ, BaZr0.2Sn0.2Ti0.2Hf0.2Y0.2O3−δ, BaZr1/7Sn1/7Ti1/7Hf1/7Ce1/7Nb1/7Y1/7O3−δ, and BaZr0.15Sn0.15Ti0.15Hf0.15Ce0.15Nb0.15Y0.10O3−δ single-phase perovskites were synthesized. Before electrical measurements, materials were characterized using X-ray diffraction (XRD), scanning electron microscopy...
-
Pulsed Laser Deposition of Bismuth Vanadate Thin Films—The Effect of Oxygen Pressure on the Morphology, Composition, and Photoelectrochemical Performance
PublicationThin layers of bismuth vanadate were deposited using the pulsed laser deposition technique on commercially available FTO (fluorine-doped tin oxide) substrates. Films were sputtered from a sintered, monoclinic BiVO4 pellet, acting as the target, under various oxygen pressures (from 0.1 to 2 mbar), while the laser beam was perpendicular to the target surface and parallel to the FTO substrate. The oxygen pressure strongly affects...
-
Structural Properties and Water Uptake of SrTi1−xFexO3−x/2−δ
PublicationIn this work, Fe-doped strontium titanate SrTi1−xFexO3−x/2−δ, for x = 0–1 (STFx), has been fabricated and studied. The structure and microstructure analysis showed that the Fe amount in SrTi1−xFexO3−x/2−δ has a great influence on the lattice parameter and microstructure, including the porosity and grain size. Oxygen nonstoichiometry studies performed by thermogravimetry at different atmospheres showed that the Fe-rich compositions...
-
Structure and water uptake in BaLnCo2O6−δ (Ln =La, Pr, Nd, Sm, Gd, Tb and Dy)
PublicationThe structure of BaLnCo2O6-δ (Ln =La, Pr, Nd, Sm, Gd, Tb and Dy) was studied by the means of synchrotron radiation powder X-ray diffraction, neutron powder diffraction and Transmission Electron Microscopy (TEM), while water uptake properties were analysed with the use of thermogravimetry (TG) and water adsorption isotherms. The structure refinement revealed that the dominant phase in all compositions was orthorhombic with an ordering...
-
Systematic Water Uptake Energetics of Yttrium-Doped Barium Zirconate—A High Resolution Thermochemical Study
PublicationA combination of surface area analyzer and microcalorimetry was employed to investigate the in situ water uptake energetics and the mechanism of proton incorporation in yttrium-doped barium zirconate in the temperature range 200–400 °C. The BaZr1–xYxO3 solid solutions are made with variable yttrium content (x = 10, 20, and 30 mol %) by a controlled oxidant-peroxo synthesis method. The water uptake increases as the partial pressure...
-
The effect of morphology and crystalline structure of Mo/MoO3 layers on photocatalytic degradation of water organic pollutants
PublicationMolybdenum oxide layers were formed by anodization of the Mo metallic foil in a water/ethylene glycol-based electrolyte containing fluoride ions. The as-prepared, amorphous samples were annealed in air at different temperatures in a range from 100 �C to 700 �C. The crystal phase and morphology of anodized and annealed MoO3 layers were investigated using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The...
Year 2019
-
A negative effect of carbon phase on specific capacity of electrode material consisted of nanosized bismuth vanadate embedded in carbonaceous matrix
PublicationLithium-ion batteries (LIBs) are widely used all over the world. The LIBs belong to a renewable energy source and energy storage devices. The increase in energy demand causes that new materials of higher energy and higher power densities are still under investigation. Herein, we compare electrochemical properties of bismuth vanadate (BiVO4) embedded and not embedded into carbonaceous matrix as an anode material along with structural...
-
Copper and cobalt co-doped ceria as an anode catalyst for DIR-SOFCs fueled by biogas
PublicationThe nanocrystalline compounds of Co and Cu co-doped ceria (with up to 20 mol.% of dopants) were fabricated by the reverse microemulsion synthesis method. They were deposited in a form of layers on the surface of SOFC anode in an aim to act as electrochemically active materials for biogas reforming process. Fourier Transformed Infrared Spectroscopy was used to analyze a composition of outlet gases simultaneously with the tests of...
-
Fabrication and Structural Properties of LaNb 1‐x As x O 4 Ceramics
PublicationLanthanum niobate substituted with arsenic was synthesized by three methods: solid state reaction from binary oxides and two different methods combining co-precipitation and solidstate reaction. In the first of the combined methods LaNb1- xAsxO4 was synthesized from LaAsO4, obtained from coprecipitation method, and lanthanum and niobium oxides. In the second LaNbO4 was first synthesized from binary oxides and then mixed with LaAsO4...
-
High-temperature properties of titanium-substituted yttrium niobate
Publicationhe defect fluorite titanium-doped yttrium niobate samples Y3Nb1−xTixO7−δ have been synthesized and investigated by the means of high-temperature X-ray diffraction, dilatometry, and thermogravimetry. Thermal expansion coefficients (TECs) as well as chemical expansion coefficients for material with 5, 10, and 15 mol% of titanium were determined. All investigated samples exhibit chemical contraction caused by Ti doping. The values...
-
Nanocrystalline Polymer Impregnated [Fe(pz)Pt(CN)4] Thin Films Prepared by Matrix-Assisted Pulsed Laser Evaporation
PublicationIn this work, the fabrication of [Fe(pz)Pt(CN)4] (pz = pyrazine) thin films by means of matrix-assisted pulsed laser evaporation (MAPLE) was investigated. As starting material, a cryogenically cooled suspension of anocrystalline [Fe(pz)Pt- (CN)4] (0.35wt.-%) in a mixture of 1,1-dichloroethane and polyethylene glycol (PEG) was used. Films of a thickness up to 150–200 nm were deposited on Si substrates by laser ablation at λ = 1064...
-
Pressure effects on the electronic structure and superconductivity of (TaNb)0.67(HfZrTi)0.33 high entropy alloy
PublicationEffects of pressure on the electronic structure, electron-phonon interaction, and superconductivity of the high entropy alloy ( TaNb ) 0.67 ( HfZrTi ) 0.33 are studied in the pressure range 0–100 GPa. The electronic structure is calculated using the Korringa-Kohn-Rostoker method with the coherent potential approximation. Effects of pressure on the lattice dynamics are simulated using the Debye-Grüneisen model and the Grüneisen...
-
Synthesis, microstructure and electrical properties of nanocrystalline calcium doped lanthanum orthoniobate
PublicationThe single phase lanthanum orthoniobate with tetragonal structure has been synthesized by the means of mechanosynthesis method. The studies have shown the crystal structure of La0.98Ca0.02NbO4 depends on the synthesis stage. The samples were predominantly in the tetragonal phase with a trace amount of the monoclinic phase. The SEM studies of morphology and microstructure have shown nanocrystallinity of the materials. The Raman...
-
Terbium Substituted Lanthanum Orthoniobate: Electrical and Structural Properties
PublicationThe results of electrical conductivity studies, structural measurements and thermogravimetric analysis of La1−xTbxNbO4+δ (x = 0.00, 0.05, 0.1, 0.15, 0.2, 0.3) are presented and discussed. The phase transition temperatures, measured by high-temperature x-ray diffraction, were 480 °C, 500 °C, and 530 °C for La0.9Tb0.1NbO4+δ, La0.8Tb0.2NbO4+δ, and La0.7Tb0.3NbO4+δ, respectively. The impedance spectroscopy results suggest mixed conductivity...
-
Water uptake analysis of acceptor-doped lanthanum orthoniobates
PublicationIn this work, lanthanum orthoniobates doped with either antimony, calcium, or both have been synthesized and studied. The water uptake of the investigated materials has been analyzed by means of thermogravimetric studies. The results show the difference between the thermodynamics of hydration between the lanthanum orthoniobate system and other proton conducting ceramics. The relation between the water uptake and effective acceptor...
Year 2018
-
Praseodymium substituted lanthanum orthoniobate: Electrical and structural properties
PublicationThe results of ionic transport and structural measurements for the lanthanum orthoniobate doped by praseodymium are presented and discussed. The influence of calcium co-doping on these properties has also been analyzed. The results suggest the predominant protonic conductivity for the investigated system in the whole range of investigated temperatures. The influence of calcium co-doping on phase purity is analyzed.
-
Structural and electrical properties of titanium-doped yttrium niobate
PublicationIn this work, the influence of the substitution of niobium by titanium in Y3Nb1-xTixO7-δ on the structural and electrical properties is reported. Several experimental techniques, i.e. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-Ray Photoelectron Spectroscopy (XPS) and Electrochemical Impedance Spectroscopy (EIS), were applied to investigate the system Y3Nb1-xTixO7-δ. Titanium in Y3Nb1-xTixO7-δ is an acceptor-type...
-
Tailoring structural properties of lanthanum orthoniobates through an isovalent substitution on the Nb-site
PublicationTetragonal polymorph of lanthanum orthoniobate can be stabilized to room temperature by the substitution of Nb with an isovalent element. LaNb1-xAsxO4 (0 < x ≤ 0.3), where As is an element stabilizing tetragonal structure, were successfully synthesized with combined co-precipitation and solid-state reaction method. The phase transition temperature, above which the material has tetragonal structure, decreases linearly with increasing...
Year 2017
-
Biosilica from sea water diatoms algae—electrochemical impedance spectroscopy study
PublicationHere, we report on an electrochemical impedance study of silica of organic origin as an active electrode material. The electrode material obtained from carbonized marine biomass containing nanoporous diatoms has been characterised by means of XRD, IR, SEM and EIS. Dif- ferent kinds of crystallographic phases of silica as a result of thermal treatment have been found. The electrode is electrochemically stable during subsequent cyclic...
-
Comprehensive study on graphene hydrogels and aerogels synthesis and their ability of gold nanoparticles adsorption
PublicationGraphene hydrogels were prepared by ascorbic acid-assisted gelation of graphene oxide (GO) aqueous suspensions both in acidic and basic conditions. Different mass ratio of ascorbic acid (AA) to GO was used (namely 20:1 and 10:1). In order to eliminate the influence of AA on the final structure of hydrogels, samples without AA were prepared by a hydrothermal gelation of GO in an autoclave. An in-depth structural characterization...
-
Effect of irradiation intensity and initial pollutant concentration on gas phase photocatalytic activity of TiO2 nanotube arrays
PublicationWell-organized TiO2 nanotube arrays were fabricated via one-step anodization process. The as-prepared TiO2 nanotubes were characterized by X-ray powder diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM). Photocatalytic activity of obtained photocatalyst was studied in reaction of toluene degradation in the gas phase using low powered and low...
-
Electrodes consisting of PEDOT modified by Prussian Blue analogues deposited onto titania nanotubes – Their highly improved capacitance
PublicationIn this work we present the outstanding energy storage of prepared inorganic-organic heterojunction where hydrogenated ordered titania nanotubes (H-TiO2NT) were modified by the hybrid made of poly(3,4-ethylenedioxythiophene) (pEDOT) and iron hexacyanoferrate centres (Fehcf, Prussian Blue). The material TiO2NT/pEDOT:Fechf was obtained electrochemically by means of: anodization, hydrogenation and finally, electropolymerization of...
-
Influence of electropolymerization temperature on corrosion, morphological and electrical properties of PPy doped with salicylate on iron
PublicationIn this work, the influence of the electropolymerization temperature on corrosion, morphological and electrical properties of polypyrrole (PPy) film is studied. Polypyrrole is electrochemically synthesized on iron in the presence of sodium salicylate. The X-ray diffraction and scanning electron microscopy are performed in order to study the structure and morphology of electrodeposited PPy. The electroactive surface area, corrosion...
-
La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ oxygen electrodes for solid oxide cells prepared by polymer precursor and nitrates solution infiltration into gadolinium doped ceria backbone
PublicationInfiltration is a method, which can be applied for the electrode preparation. In this paper oxygen electrode is prepared solely by the infiltration of La0.6Sr0.4Co0.2Fe0.8O3‐δ (LSCF) into Ce0.8Gd0.2O2-δ (CGO) backbone. The use a polymer precursor as an infiltrating medium, instead of an aqueous nitrate salts solution is presented. It is shown that the polymer forms the single-phase perovskite at 600 °C, contrary to the nitrates...
-
Mixed ionic-electronic conductivity and structural properties of strontium-borate glass containing nanocrystallites of Bi2 VO5.5
PublicationSamples of strontium borate glass containing bismuth vanadate nanocrystallites were prepared. Nanocomposites containing up to 45mol% of the Bi2VO5.5 phase exhibit electrical properties closer to the strontium-borate glass than to the ferroelectric Bi2VO5.5 ceramic. The glass matrix still may contain some part of bismuth and vanadium ions even after crystallization process and there is too little of crystalline phase to observe...
-
Nanosize effect of clay mineral nanoparticles on the drug diffusion processes in polyurethane nanocomposite hydrogels
PublicationStudies of swelling and release of naproxen sodium (NAP) solution by polyurethane nanocomposite hydrogels containing Cloisite® 30B (organically modified montmorillonite (OMMT)) have been performed. Polyurethane nanocomposite hydrogels are hybrid, nontoxic biomaterials with unique swelling and release properties in comparison with unmodified hydrogels. These features enable to use nanocomposite hydrogels as a modern wound dressing....
-
Organic semiconductor rubrene thin films deposited by pulsed laser evaporation of solidified solutions
PublicationOrganic semiconductor rubrene (C42H28) belongs to most preferred spintronic materials because of the high charge carrier mobility up to 40 cm2(V·s)-1. However, the fabrication of a defect-free, polycrystalline rubrene for spintronic applications represents a difficult task. We report preparation and properties of rubrene thin films deposited by pulsed laser evaporation of solidified solutions. Samples of rubrene dissolved in aromatic...
-
Performance of a single layer fuel cell based on a mixed proton-electron conducting composite
PublicationMany of the challenges in solid oxide fuel cell technology stem from chemical and mechanical incompatibilities between the anode, cathode and electrolyte materials. Numerous attempts have been made to identify compatible materials. Here, these challenges are circumvented by the introduction of a working single layer fuel cell, fabricated from a composite of proton conducting BaCe0.6Zr0.2Y0.2O3-δ and a mixture of semiconducting...
-
Protective properties of Al2O3 + TiO2 coating produced by the electrostatic spray deposition method
PublicationMechanical resistance of Al2O3 + TiO2 nanocomposite ceramic coating deposited by electrostatic spray deposition method onto X10CrAlSi18 steel to thermal and slurry tests was investigated. The coating was produced from colloidal suspension of TiO2 nanoparticles dispersed in 3 wt% solution of Al2(NO3)3, as Al2O3 precursor, in ethanol. TiO2 nanoparticles of two sizes, 15 nm and 32 nm, were used in the experiments. After deposition,...
-
Protonic Ceramic Fuel Cells as novel electrochemical devices
PublicationProton ceramic conductors are novel materials which are interesting from the application point of view. For example, Protonic Ceramic Fuel Cells (PCFCs) is a type of a solid oxide fuel cell, which uses proton ceramic conductors as an electrolyte. Scientists are looking for the most efficient materials for these devices. In recent years main focus has been put on the search for new proton and mixed proton-electron conductors which...
-
Status report on high temperature fuel cells in Poland – Recent advances and achievements
PublicationThe paper presents recent advances in Poland in the field of high temperature fuel cells. The achievements in the materials development, manufacturing of advanced cells, new fabrication techniques, modified electrodes and electrolytes and applications are presented. The work of the Polish teams active in the field of solid oxide fuel cells (SOFC) and molten carbonate fuel cell (MCFC) is presented and discussed. The review is oriented...
-
Structural, spectral and magnetic properties of Ni(II), Co(II) and Cd(II) compounds with imidazole derivatives and silanethiolate ligands
PublicationA series of new metal heteroleptic complexes have been obtained in simple reactions of 1-(3-aminopropyl)-imidazole (api) and 1,4-bis(imidazol-1-yl)-butane (bbi) ligands with metal silanethiolates or acetylacetonates. The obtained complexes are the coordination polymers [Ni{SSi(tBuO)3}2(μ-api)]n1, [Co{SSi(tBuO)3}2(μ-api)]n2, [Cd{SSi(tBuO)3}2(μ-api)·2CH3OH]n3, [Cd{SSi(tBuO)3}2(μ-bbi)·CHCl3]n4 and the dimer [Co{SSi(tBuO)3}2(μ-bbi)·3CH3OH]25....
Year 2016
-
Characterization of structural, thermal and mechanical properties of bismuth silicate glasses
Publicationhe influence of heating and reduction processes on the structural, thermal and mechanical properties of bismuth-silicate glasses has been investigated. Two compositions of glasses: 40Bi2O3–60SiO2 (Bi0.57Si0.43Ox) and 27Bi2O3–73SiO2 (Bi0.43Si0.57Ox) were fabricated by a typical melt quenching technique. Then the reduction in hydrogen at 380 °C for 20, 42 or 67 h was performed. It was found that a 50 μm-thick layer was formed on...
-
Determination of the ionic conductivity of Sr-doped lanthanum manganite by modified Hebb–Wagner technique
PublicationThe Hebb–Wagne rpolarization method with the electron blocking electrode has been discussed in this paper in aim to determine a partial ionic conductivity of Sr-doped lanthanum manganite.The “limiting current” in the proposed system was measured using the two-point DC technique with additional Pt electrode between LSM and blocking electrode.The electrochemical model based on bulk diffusion processes and Boltzmann statistics has...
-
Graphene hydrogels with embedded metal nanopatricles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization
PublicationSynthesis and characterization of the graphene hydrogels with three different metallic nanoparticles, that is Au, Ag and Cu, respectively is presented. Synthesized in a one-pot approach graphene hydrogels with embedded metallic nanoparticles were tested as heterogeneous catalysts in a model reaction of 4-nitrophenol reduction. The highest activity was obtained for graphene hydrogel with Cu NPs and additional reaction of methylene...