Filtry
wszystkich: 508
Wyniki wyszukiwania dla: DATASET QUALITY
-
Categorization of emotions in dog behavior based on the deep neural network
PublikacjaThe aim of this article is to present a neural system based on stock architecture for recognizing emotional behavior in dogs. Our considerations are inspired by the original work of Franzoni et al. on recognizing dog emotions. An appropriate set of photographic data has been compiled taking into account five classes of emotional behavior in dogs of one breed, including joy, anger, licking, yawning, and sleeping. Focusing on a particular...
-
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublikacjaThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Independent dynamics of low, intermediate, and high frequency spectral intracranial EEG activities during human memory formation
PublikacjaA wide spectrum of brain rhythms are engaged throughout the human cortex in cognitive functions. How the rhythms of various frequency ranges are coordinated across the space of the human cortex and time of memory processing is inconclusive. They can either be coordinated together across the frequency spectrum at the same cortical site and time or induced independently in particular bands. We used a large dataset of human intracranial...
-
Super-resolved Thermal Imagery for High-accuracy Facial Areas Detection and Analysis
PublikacjaIn this study, we evaluate various Convolutional Neural Networks based Super-Resolution (SR) models to improve facial areas detection in thermal images. In particular, we analyze the influence of selected spatiotemporal properties of thermal image sequences on detection accuracy. For this purpose, a thermal face database was acquired for 40 volunteers. Contrary to most of existing thermal databases of faces, we publish our dataset...
-
The use of fast molecular descriptors and artificial neural networks approach in organochlorine compounds electron ionization mass spectra classification
PublikacjaDeveloping of theoretical tools can be very helpful for supporting new pollutant detection. Nowadays, a combination of mass spectrometry and chromatographic techniques are the most basic environmental monitoring methods. In this paper, two organochlorine compound mass spectra classification systems were proposed. The classification models were developed within the framework of artificial neural networks (ANNs) and fast 1D and...
-
Classification of Glacial and Fluvioglacial Landforms by Convolutional Neural Networks Using a Digital Elevation Model
PublikacjaThe rise of artificial neural networks (ANNs) has revolutionized various fields of research, demonstrating their effectiveness in solving complex problems. However, there are still unexplored areas where the application of neural networks, particularly convolutional neural network (CNN) models, has yet to be explored. One area is where the application of ANNs is even expected is geomorphology. One of the tasks of geomorphology...
-
Machine learning-based prediction of preplaced aggregate concrete characteristics
PublikacjaPreplaced-Aggregate Concrete (PAC) is a type of preplaced concrete where coarse aggregate is placed in the mold and a Portland cement-sand grout with admixtures is injected to fill the voids. Due to the complex nature of PAC, many studies were conducted to determine the effects of admixtures and the compressive and tensile strengths of PAC. Considering that a prediction tool is needed to estimate the compressive and tensile strengths...
-
Platelet RNA Sequencing Data Through the Lens of Machine Learning
PublikacjaLiquid biopsies offer minimally invasive diagnosis and monitoring of cancer disease. This biosource is often analyzed using sequencing, which generates highly complex data that can be used using machine learning tools. Nevertheless, validating the clinical applications of such methods is challenging. It requires: (a) using data from many patients; (b) verifying potential bias concerning sample collection; and (c) adding interpretability...
-
Towards High-Value Datasets Determination for Data-Driven Development: A Systematic Literature Review
PublikacjaOpen government data (OGD) is seen as a political and socio-economic phenomenon that promises to promote civic engagement and stimulate public sector innovations in various areas of public life. To bring the expected benefits, data must be reused and transformed into value-added products or services. This, in turn, sets another precondition for data that are expected to not only be available and comply with open data principles,...
-
Diurnal variability of atmospheric water vapour, precipitation and cloud top temperature across the global tropics derived from satellite observations and GNSS technique
PublikacjaThe diurnal cycle of convection plays an important role in clouds and water vapour distribution across the global tropics. In this study, we utilize integrated moisture derived from the global navigation satellite system (GNSS), satellite precipitation estimates from TRMM and merged infrared dataset to investigate links between variability in tropospheric moisture, clouds development and precipitation at a diurnal time scale. Over...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublikacjaMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Dependent self-employed individuals: are they different from paid employees?
PublikacjaThis study focuses on dependent self-employment, which covers a situation where a person works for the same employer as a typical worker while on a self-employment contractual basis, i.e., without a traditional employment contract and without certain rights granted to "regular" employees. The research exploits the individual-level dataset of 35 European countries extracted from the 2017 edition of the European Labour Force Survey...
-
Machine learning-based prediction of preplaced aggregate concrete characteristics
PublikacjaPreplaced-Aggregate Concrete (PAC) is a type of preplaced concrete where coarse aggregate is placed in the mold and a Portland cement-sand grout with admixtures is injected to fill the voids. Due to the complex nature of PAC, many studies were conducted to determine the effects of admixtures and the compressive and tensile strengths of PAC. Considering that a prediction tool is needed to estimate the compressive and tensile...
-
Exploring the Solubility Limits of Edaravone in Neat Solvents and Binary Mixtures: Experimental and Machine Learning Study
PublikacjaThis study explores the edaravone solubility space encompassing both neat and binary dissolution media. Efforts were made to reveal the inherent concentration limits of common pure and mixed solvents. For this purpose, the published solubility data of the title drug were scrupulously inspected and cured, which made the dataset consistent and coherent. However, the lack of some important types of solvents in the collection called...
-
Impact of optimization of ALS point cloud on classification
PublikacjaAirborne laser scanning (ALS) is one of the LIDAR technologies (Light Detection and Ranging). It provides information about the terrain in form of a point cloud. During measurement is acquired: spatial data (object’s coordinates X, Y, Z) and collateral data such as intensity of reflected signal. The obtained point cloud is typically applied for generating a digital terrain model (DTM) and a digital surface model (DSM). For DTM...
-
Deep learning-based waste detection in natural and urban environments
PublikacjaWaste pollution is one of the most significant environmental issues in the modern world. The importance of recycling is well known, both for economic and ecological reasons, and the industry demands high efficiency. Current studies towards automatic waste detection are hardly comparable due to the lack of benchmarks and widely accepted standards regarding the used metrics and data. Those problems are addressed in this article by...
-
Magnetic Signature Description of Ellipsoid-Shape Vessel Using 3D Multi-Dipole Model Fitted on Cardinal Directions
PublikacjaThe article presents a continuation of the research on the 3D multi-dipole model applied to the reproduction of magnetic signatures of ferromagnetic objects. The model structure has been modified to improve its flexibility - model parameters determined by optimization can now be located in the cuboid contour representing the object's hull. To stiffen the model, the training dataset was expanded to data collected from all four cardinal...
-
Know your safety indicator – A determination of merchant vessels Bow Crossing Range based on big data analytics
PublikacjaEven in the era of automatization maritime safety constantly needs improvements. Regardless of the presence of crew members on board, both manned and autonomous ships should follow clear guidelines (no matter as bridge procedures or algorithms). To date, many safety indicators, especially in collision avoidance have been proposed. One of such parameters commonly used in day-to-day navigation but usually omitted by researchers is...
-
Interrelations between Travel Patterns and Urban Spatial Structure of the Largest Russian Cities
PublikacjaThe study presented within this dissertation involves the analysis of the relationship between urban spatial structure and travel patterns in the largest Russian cities. It is an empirical investigation of how the spatial structure, formed during the Soviet and post-Soviet periods, affects the travel patterns in the largest cities of contemporary Russia. It aims to determine what measures, both urban structure and transportation...
-
Fault diagnosis of marine 4-stroke diesel engines using a one-vs-one extreme learning ensemble
PublikacjaThis paper proposes a novel approach for intelligent fault diagnosis for stroke Diesel marine engines, which are commonly used in on-road and marine transportation. The safety and reliability of a ship's work rely strongly on the performance of such an engine; therefore, early detection of any type of failure that affects the engine is of crucial importance. Automatic diagnostic systems are of special importance because they can...
-
ELECTRICAL CONDUCTIVITY AND pH IN SURFACE WATER AS TOOL FOR IDENTIFICATION OF CHEMICAL DIVERSITY
PublikacjaIn the present study, the creeks and lakes located at the western shore of Admiralty Bay were analysed. The impact of various sources of water supply was considered, based on the parameters of temperature, pH and specific electrolytic conductivity (SEC25). All measurements were conducted during a field campaign in January-February 2017. A multivariate dataset was also created and a biplot of SEC25 and pH of the investigated waters...
-
An Analysis of Neural Word Representations for Wikipedia Articles Classification
PublikacjaOne of the current popular methods of generating word representations is an approach based on the analysis of large document collections with neural networks. It creates so-called word-embeddings that attempt to learn relationships between words and encode this information in the form of a low-dimensional vector. The goal of this paper is to examine the differences between the most popular embedding models and the typical bag-of-words...
-
Graph Representation Integrating Signals for Emotion Recognition and Analysis
PublikacjaData reusability is an important feature of current research, just in every field of science. Modern research in Affective Computing, often rely on datasets containing experiments-originated data such as biosignals, video clips, or images. Moreover, conducting experiments with a vast number of participants to build datasets for Affective Computing research is time-consuming and expensive. Therefore, it is extremely important to...
-
Emissions and toxic units of solvent, monomer and additive residues released to gaseous phase from latex balloons
PublikacjaThis study describes the VOCs emissions from commercially available latex balloons. Nine compounds are determined to be emitted from 13 types of balloons of different colors and imprints in 30 and 60°C. The average values of total volatile organic compounds (TVOCs) emitted from studied samples ranged from 0.054 up to 7.18 μg∙g-1 and from 0.27 up to 36.13 μg∙g-1 for 30oC and 60oC, respectively. The dataset is treated with principal...
-
imPlatelet classifier: image‐converted RNA biomarker profiles enable blood‐based cancer diagnostics
PublikacjaLiquid biopsies offer a minimally invasive sample collection, outperforming traditional biopsies employed for cancer evaluation. The widely used material is blood, which is the source of tumor-educated platelets. Here, we developed the imPlatelet classifier, which converts RNA-sequenced platelet data into images in which each pixel corresponds to the expression level of a certain gene. Biological knowledge from the Kyoto Encyclopedia...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublikacjaA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
The surface of the sensor used in the analysis of odorous substances
Dane BadawczeHuman industrial activity usually leads to smaller or larger interference with the ecosystem, contributing to changes affecting the quality of life. An example may be the emission of gaseous substances, not necessarily toxic, but due to their intense smell, they can cause discomfort to people exposed to their inhalation. The problem is so important...
-
Metoda OptD do redukcji danych w opracowaniu wyników pomiarów linii elektroenergetycznych
PublikacjaSkaning laserowy to technologia dostarczająca we względnie krótkim czasie dużą ilość danych pomiarowych. Jest to zarazem pozytywna jak i negatywna cecha tej technologii. Z jednej strony w wyniku skaningu otrzymuje się dane, które szczegółowo odzwierciedlają pomierzony obiekt. Z drugiej strony trudność sprawia przetwarzanie takiej ilości danych i nie zawsze wszystkie dane ze skaningu są niezbędne do realizacji wybranego zadania....
-
LDNet: A Robust Hybrid Approach for Lie Detection Using Deep Learning Techniques
PublikacjaDeception detection is regarded as a concern for everyone in their daily lives and affects social interactions. The human face is a rich source of data that offers trustworthy markers of deception. The deception or lie detection systems are non-intrusive, cost-effective, and mobile by identifying facial expressions. Over the last decade, numerous studies have been conducted on deception detection using several advanced techniques....
-
RAGN-R: A multi-subject ensemble machine-learning method for estimating mechanical properties of advanced structural materials
PublikacjaThe utilization of advanced structural materials, such as preplaced aggregate concrete (PAC), fiber-reinforced concrete (FRC), and FRC beams has revolutionized the field of civil engineering. These materials exhibit enhanced mechanical properties compared to traditional construction materials, offering engineers unprecedented opportunities to optimize the design, construction, and performance of structures and infrastructures....
-
Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
PublikacjaBreast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private...
-
Enhancing Renal Tumor Detection: Leveraging Artificial Neural Networks in Computed Tomography Analysis
PublikacjaRenal cell carcinoma is one of the most common cancers in Europe, with a total incidence rate of 18.4 cases per 100 000 population. There is currently significant overdiagnosis (11% to 30.9%) at times of planned surgery based on radiological studies. The purpose of this study was to create an artificial neural network (ANN) solution based on computed tomography (CT) images as an additional tool to improve the differentiation of...
-
How do responsible universities perceive their social engagement? In search of signs of Creating Shared Value by the University
PublikacjaObjectives: University social responsibility still lacks legitimisation and is perceived as a burden that hinders academics from doing research and teaching. Creating Shared Value by the University may serve as a tool to motivate universities to engage in initiatives for society, as this is beneficial for both parties. Yet, some researchers perceive the creation of economic value as inappropriate for academia. Thus, it was interesting...
-
An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory
PublikacjaSentiment analysis is an automated approach which is utilized in process of analysing textual data to describe public opinion. The sentiment analysis has major role in creating impact in the day-to-day life of individuals. However, a precise interpretation of text still relies as a major concern in classifying sentiment. So, this research introduced Bidirectional Long Short Term Memory with Ranger AdaBelief Optimizer (Bi-LSTM RAO)...
-
Spatiotemporal Assessment of Satellite Image Time Series for Land Cover Classification Using Deep Learning Techniques: A Case Study of Reunion Island, France
PublikacjaCurrent Earth observation systems generate massive amounts of satellite image time series to keep track of geographical areas over time to monitor and identify environmental and climate change. Efficiently analyzing such data remains an unresolved issue in remote sensing. In classifying land cover, utilizing SITS rather than one image might benefit differentiating across classes because of their varied temporal patterns. The aim...
-
Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance
PublikacjaWastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...
-
Towards Scalable Simulation of Federated Learning
PublikacjaFederated learning (FL) allows to train models on decentralized data while maintaining data privacy, which unlocks the availability of large and diverse datasets for many practical applications. The ongoing development of aggregation algorithms, distribution architectures and software implementations aims for enabling federated setups employing thousands of distributed devices, selected from millions. Since the availability of...
-
Detecting Apples in the Wild: Potential for Harvest Quantity Estimation
PublikacjaKnowing the exact number of fruits and trees helps farmers to make better decisions in their orchard production management. The current practice of crop estimation practice often involves manual counting of fruits (before harvesting), which is an extremely time-consuming and costly process. Additionally, this is not practicable for large orchards. Thanks to the changes that have taken place in recent years in the field of image...
-
Colvolutional calibration of AFM probe
Dane BadawczeAtomic force microscopy is based on the interaction of the examined surface with a probe of a pyramidal shape, tipped with a sharp end with a radius of curvature ranging from single nanometers to hundreds of nanometers. The resolution of the obtained image is of course dependent on the above-mentioned geometric size, and the resulting image is a convolutional...
-
Diversity, Equality, and Inclusion Maturity Model: Setting New Standards in Responsible Business Education – Evidence from PRIME Reports
PublikacjaPurpose Creating diverse, equal and inclusive (DEI) environments is an important and relevant area of research on corporate social responsibility (CSR). This paper aims to identify recent trends in the business schools context, as they are primary sources of ethical management innovation. The paper also aims to identify business school DEI maturity levels. Design/methodology/approach The research design is qualitative. Using thematic...
-
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublikacjaComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series
PublikacjaThis study assessed the usefulness of algorithms in estimating energy consumption and carbon dioxide emissions in Viet- nam, in which the training dataset was used to train the models linear regression, random forest, XGBoost, and AdaBoost, allowing them to comprehend the patterns and relationships between population, GDP, and carbon dioxide emissions, energy consumption. The results revealed that random forest, XGBoost, and AdaBoost...
-
OOA-modified Bi-LSTM network: An effective intrusion detection framework for IoT systems
PublikacjaCurrently, the Internet of Things (IoT) generates a huge amount of traffic data in communication and information technology. The diversification and integration of IoT applications and terminals make IoT vulnerable to intrusion attacks. Therefore, it is necessary to develop an efficient Intrusion Detection System (IDS) that guarantees the reliability, integrity, and security of IoT systems. The detection of intrusion is considered...
-
Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
PublikacjaPredicting the Maximum Interstory Drift Ratio (M-IDR) of Steel Moment-Resisting Frames (SMRFs) is a useful tool for designers to approximately evaluate the vulnerability of SMRFs. This study aims to explore supervised Machine Learning (ML) algorithms to build a surrogate prediction model for SMRFs to reduce the need for complex modeling. For this purpose, twenty well-known ML algorithms implemented in Python software are trained...
-
Application of COSMO-RS-DARE as a Tool for Testing Consistency of Solubility Data: Case of Coumarin in Neat Alcohols
PublikacjaCoumarin is a naturally occurring lactone-type benzopyrone with various applications in the pharmaceutical, food, perfume, and cosmetics industries. This hydrophobic compound is poorly soluble in water but dissolves well in protic organic solvents such as alcohols. Despite the extensive use of coumarin, there are only a few reports documenting its solubility in organic solvents, and some reported data are incongruent, which...
-
On the Role of Polarimetric Decomposition and Speckle Filtering Methods for C-Band SAR Wetland Classification Purposes
PublikacjaPrevious wetlands studies have thoroughly verified the usefulness of data from synthetic aperture radar (SAR) sensors in various acquisition modes. However, the effect of the processing parameters in wetland classification remains poorly explored. In this study, we investigated the influence of speckle filters and decomposition methods with different combinations of filter and decomposition windows sizes on classification accuracy....
-
Concurrent Video Denoising and Deblurring for Dynamic Scenes
PublikacjaDynamic scene video deblurring is a challenging task due to the spatially variant blur inflicted by independently moving objects and camera shakes. Recent deep learning works bypass the ill-posedness of explicitly deriving the blur kernel by learning pixel-to-pixel mappings, which is commonly enhanced by larger region awareness. This is a difficult yet simplified scenario because noise is neglected when it is omnipresent in a wide...
-
Measurements of power supply system properties of "Magnetic SpeedLine" ultra-fast robot prototype for IML labeling
Dane BadawczeTests of the power supply system of "SpeedLine magnetic" ultra-fast industrial robot for IML labeling were carried out to analyze the effect of the active power filter (APF) parameters on the power quality. at the target duty cycle. Tests were performed with the target duty cycle. Linear synchronous motors with permanent magnets were used to drive...
-
Measurements of drive system properties of the "Magnetic SpeedLine" ultra-fast robot prototype for IML labeling
Dane BadawczeTests of the drive system of the ultra-fast robot "SpeedLine magnetic" for labeling with the IML method were carried out in order to analyze the influence of the operating parameters of the drive system on the correctness and quality of the drive system.
-
Multiplicative Long Short-Term Memory with Improved Mayfly Optimization for LULC Classification
PublikacjaLand Use and Land Cover (LULC) monitoring is crucial for global transformation, sustainable land control, urban planning, urban growth prediction, and the establishment of climate regulations for long-term development. Remote sensing images have become increasingly important in many environmental planning and land use surveys in recent times. LULC is evaluated in this research using the Sat 4, Sat 6, and Eurosat datasets. Various...