Filtry
wszystkich: 869
-
Katalog
- Publikacje 699 wyników po odfiltrowaniu
- Czasopisma 36 wyników po odfiltrowaniu
- Konferencje 53 wyników po odfiltrowaniu
- Osoby 37 wyników po odfiltrowaniu
- Projekty 2 wyników po odfiltrowaniu
- Kursy Online 19 wyników po odfiltrowaniu
- Wydarzenia 3 wyników po odfiltrowaniu
- Dane Badawcze 20 wyników po odfiltrowaniu
Wyniki wyszukiwania dla: deep neural networks, explainable artificial intelligence, adver-sarial attacks
-
Employment of University Graduates in the Era of Digitalization and Artificial Intelligence: Challenges and Prospects
PublikacjaDigital technologies are profoundly reshaping the labor market, causing structural shifts in the economy and altering the nature of work. These changes have significant implications for youth employment, exacerbating the issue of unemployment. This paper delves into the importance of graduate employment in contemporary society, with a particular focus on the influence of digital technologies and Artificial Intelligence. The authors...
-
Development of a tropical disease diagnosis system using artificial neural network and GIS
PublikacjaExpert systems for diagnosis of tropical diseases have been developed and implemented for over a decade with varying degrees of success. While the recent introduction of artificial neural networks has helped to improve the diagnosis accuracy of such systems, this aspect is still negatively affected by the number of supported diseases. A large number of supported diseases usually corresponds to a high number of overlapping symptoms,...
-
Mitigating Traffic Remapping Attacks in Autonomous Multi-hop Wireless Networks
PublikacjaMultihop wireless networks with autonomous nodes are susceptible to selfish traffic remapping attacks (TRAs). Nodes launching TRAs leverage the underlying channel access function to receive an unduly high Quality of Service (QoS) for packet flows traversing source-to-destination routes. TRAs are easy to execute, impossible to prevent, difficult to detect, and harmful to the QoS of honest nodes. Recognizing the need for providing...
-
Efficiency of Artificial Intelligence Methods for Hearing Loss Type Classification: an Evaluation
PublikacjaThe evaluation of hearing loss is primarily conducted by pure tone audiometry testing, which is often regarded as golden standard for assessing auditory function. If the presence of hearing loss is determined, it is possible to differentiate between three types of hearing loss: sensorineural, conductive, and mixed. This study presents a comprehensive comparison of a variety of AI classification models, performed on 4007 pure tone...
-
Robustness in Compressed Neural Networks for Object Detection
PublikacjaModel compression techniques allow to significantly reduce the computational cost associated with data processing by deep neural networks with only a minor decrease in average accuracy. Simultaneously, reducing the model size may have a large effect on noisy cases or objects belonging to less frequent classes. It is a crucial problem from the perspective of the models' safety, especially for object detection in the autonomous driving...
-
Artificial i business intelligence w zarządzaniu procesem logistycznym organizacji gospodarczej
PublikacjaW rozdziale zaprezentowano założenia reengineeringu procesu logistycznego zarządzania rezerwą awaryjną majątku sieciowego. Reengineering procesu polega na określeniu docelowej struktury organizacyjnej, zaprojektowaniu procedur organizacyjnych, określeniu optymalnych wielkości zapasów poszczególnych pozycji majątku sieciowego z uwzględnieniem ich przestrzennego rozmieszczenia na terytorium Spółki oraz zaprojektowaniu założeń systemu...
-
Artificial Neural Networks in Classification of Steel Grades Based on Non-Destructive Tests
Publikacja -
Designing the Composition of Cement Stabilized Rammed Earth Using Artificial Neural Networks
Publikacja -
The Influence of Input Data Standardization Method on Prediction Accuracy of Artificial Neural Networks
Publikacja -
Self-organizing Artificial Neural Networks into Hydrographic Big Data Reduction Process
Publikacja -
Artificial intelligence for biomedical engineering of polysaccharides: A short overview.
PublikacjaThe advent of computer-aided concepts and cognitive algorithms, along with fuzzy sets and fuzzy logic thoughts, supported the idea of ‘making computers think like people’ (Lotfi A. Zadeh, IEEE Spectrum, 21 (26–32), 1984). Such a school of thought enabled the sophistication of mission-oriented...
-
A note on the applications of artificial intelligence in the hospitality industry: preliminary results of a survey
PublikacjaIntelligent technologies are widely implemented in different areas of modern society but specific approaches should be applied in services. Basic relationships refer to supporting customers and people responsible for services offering for these customers. The aim of the paper is to analyze and evaluate the state-of-the art of artificial intelligence (AI) applications in the hospitality industry. Our findings show that the major...
-
Evaluation of Facial Pulse Signals Using Deep Neural Net Models
PublikacjaThe reliable measurement of the pulse rate using remote photoplethysmography (PPG) is very important for many medical applications. In this paper we present how deep neural networks (DNNs) models can be used in the problem of PPG signal classification and pulse rate estimation. In particular, we show that the DNN-based classification results correspond to parameters describing the PPG signals (e.g. peak energy in the frequency...
-
Categorization of emotions in dog behavior based on the deep neural network
PublikacjaThe aim of this article is to present a neural system based on stock architecture for recognizing emotional behavior in dogs. Our considerations are inspired by the original work of Franzoni et al. on recognizing dog emotions. An appropriate set of photographic data has been compiled taking into account five classes of emotional behavior in dogs of one breed, including joy, anger, licking, yawning, and sleeping. Focusing on a particular...
-
Physics-guided neural networks (PGNNs) to solve differential equations for spatial analysis
PublikacjaNumerous examples of physically unjustified neural networks, despite satisfactory performance, generate contradictions with logic and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage involves extending...
-
Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
PublikacjaIn this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with comparison to the methods described in the literature. The effectiveness of the proposed deep feedforward neural network was checked on...
-
Some Artificial Intelligence Driven Algorithms For Mobile Edge Computing in Smart City
PublikacjaSmart mobile devices can share computing workload with the computer cloud that is important when artificial intelligence tools support computer systems in a smart city. This concept brings computing on the edge of the cloud, closer to citizens and it can shorten latency. Edge computing removes a crucial drawback of the smart city computing because city services are usually far away from citizens, physically. Besides, we introduced...
-
Hybrid of Neural Networks and Hidden Markov Models as a modern approach to speech recognition systems
PublikacjaThe aim of this paper is to present a hybrid algorithm that combines the advantages ofartificial neural networks and hidden Markov models in speech recognition for control purpos-es. The scope of the paper includes review of currently used solutions, description and analysis of implementation of selected artificial neural network (NN) structures and hidden Markov mod-els (HMM). The main part of the paper consists of a description...
-
Performance Analysis of Convolutional Neural Networks on Embedded Systems
PublikacjaMachine learning is no longer confined to cloud and high-end server systems and has been successfully deployed on devices that are part of Internet of Things. This paper presents the analysis of performance of convolutional neural networks deployed on an ARM microcontroller. Inference time is measured for different core frequencies, with and without DSP instructions and disabled access to cache. Networks use both real-valued and...
-
A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification
PublikacjaThe article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with...
-
Artificial intelligence and productivity: global evidence from AI patent and bibliometric data
PublikacjaIn this paper we analyse the relationship between technological innovation in the artificial intelligence (AI) domain and macroeconomic productivity. We embed recently released data on patents and publications related to AI in an augmented model of productivity growth, which we estimate for the OECD countries and compare to an extended sample including non-OECD countries. Our estimates provide evidence in favour of the modern productivity...
-
Application of artificial neural networks (ANN) as multiple degradation classifiers in thermal and flow diagnostics
PublikacjaPrzedyskutowano problem zwiększenia dokładności rozpoznawania wielokrotnych degradacji eksploatacyjnych urządzeń składowych dużych obiektów energetycznych. Zastosowani sieć neuronową (SSN) o skokowych funkcjach przejścia. Sprawdzono możliwości przyspieszenia treningu sieci neuronowych. Zastosowano modułową metodę budowy SSN, polegającą na dedykowaniu pojedynczej sieci do rozpoznawania tylko jednego typu degradacji.
-
Accidental wow defect evaluation using sinusoidal analysis enhanced by artificial neural networks
PublikacjaArtykuł przedstawia metodę do wyznaczania charakterystyki pasożytniczych modulacji częstotliwości (kołysanie) obecnych w archiwalnych nagraniach dźwiękowych. Prezentowane podejście wykorzystuje śledzenie zmian sinusoidalnych komponentów dźwięku które odzwierciedlają przebieg kołysania. Analiza sinusoidalna wykorzystana jest do ekstrakcji składowych tonalnych ze zniekształconych nagrań dźwiękowych. Dodatkowo, w celu zwiększenia...
-
Artificial Neural Network in Forecasting the Churn Phenomena Among Costumers of IT and Power Supply Services
PublikacjaThis paper presents an attempt to use an artificial neural network to investigate the churn phenomenon among the customers of a telecommunications operator. An attempt was made to create a data model based on the customer lifetime value (CLV) rather than on activity alone. A multilayered artificial neural network was used for the experiments. The results yielded a 99% successful identification rate for customers in no danger of...
-
Artificial intelligence and productivity: global evidence from AI patent and bibliometric data .
PublikacjaIn this paper we analyse the relationship between technological innovation in the artificial intelligence (AI) domain and macroeconomic productivity. We embed recently released data on patents and publications related to AI in an augmented model of productivity growth, which we estimate for the OECD countries and compare to an extended sample including non-OECD countries. Our estimates provide evidence in favour of the modern...
-
INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY
PublikacjaIn recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...
-
Bożena Kostek prof. dr hab. inż.
Osoby -
Artificial intelligence models in prediction of response to cardiac resynchronization therapy: a systematic review
PublikacjaThe aim of the presented review is to summarize the literature data on the accuracy and clinical applicability of artificial intelligence (AI) models as a valuable alternative to the current guidelines in predicting cardiac resynchronization therapy (CRT) response and phenotyping of patients eligible for CRT implantation. This systematic review was performed...
-
Adjusted SpikeProp algorithm for recurrent spiking neural networks with LIF neurons
PublikacjaA problem related to the development of a supervised learning method for recurrent spiking neural networks is addressed in the paper. The widely used Leaky-Integrate-and-Fire model has been adopted as a spike neuron model. The proposed method is based on a known SpikeProp algorithm. In detail, the developed method enables gradient descent learning of recurrent or multi-layer feedforward spiking neural networks. The research included...
-
Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks
PublikacjaThe importance of surrogate modeling techniques has been gradually increasing in the design of antenna structures over the recent years. Perhaps the most important reason is a high cost of full-wave electromagnetic (EM) analysis of antenna systems. Although imperative in ensuring evaluation reliability, it entails considerable computational expenses. These are especially pronounced when carrying out EM-driven design tasks such...
-
The Effectiveness of Using a Pretrained Deep Learning Neural Networks for Object Classification in Underwater Video
Publikacja -
Service restoration in survivable networks under attacks
PublikacjaW artykule dokonano porównania jakości odtwarzania usług w przeżywalnych sieciach optycznych, uszkadzanych w wyniku awarii fizycznych oraz na skutek ataków. Przeanalizowano wariant ochrony ścieżek ('path protection') poprzez wyznaczane zawczasu ścieżki zabezpieczające. Z uwagi na NP-zupełność problemu optymalizacji doboru tras w przeżywalnych sieciach optycznych, zaproponowano efektywny algorytm heurystyczny SCNDP. Autorski symulator...
-
Enhancing Facial Palsy Treatment through Artificial Intelligence: From Diagnosis to Recovery Monitoring
PublikacjaThe objective of this study is to develop and assess a mobile application that leverages artificial intelligence (AI) to support the rehabilitation of individuals with facial nerve paralysis. The application features two primary functionalities: assessing the paralysis severity and facilitating the monitoring of rehabilitation exercises. The AI algorithm employed for this purpose was Google's ML Kit “face-detection”. The classification...
-
Towards the 4th industrial revolution: networks, virtuality, experience based collective computational intelligence, and deep learning
PublikacjaQuo vadis, Intelligent Enterprise? Where are you going? The authors of this paper aim at providing some answers to this fascinating question addressing emerging challenges related to the concept of semantically enhanced knowledge-based cyber-physical systems – the fourth industrial revolution named Industry 4.0.
-
Abdominal Aortic Aneurysm segmentation from contrast-enhanced computed tomography angiography using deep convolutional networks
PublikacjaOne of the most common imaging methods for diagnosing an abdominal aortic aneurysm, and an endoleak detection is computed tomography angiography. In this paper, we address the problem of aorta and thrombus semantic segmentation, what is a mandatory step to estimate aortic aneurysm diameter. Three end-to-end convolutional neural networks were trained and evaluated. Finally, we proposed an ensemble of deep neural networks with underlying...
-
Lessons learned from developing an Industry 4.0 mobile process management system supported by Artificial Intelligence
PublikacjaResearch, development and innovation (RDI) projects are undertaken in order to improve existing, or develop new, more efficient products and services. Moreover, the goal of innovation is to produce new knowledge through research, and disseminating it through education and training. In this line of thinking, this paper reports and discusses the lessons learned from the undertaken project, regarding three areas: machine learning...
-
Multi-Camera Vehicle Tracking Using Local Image Features and Neural Networks
PublikacjaA method for tracking moving objects crossing fields of view of multiple cameras is presented. The algorithm utilizes Artificial Neural Networks (ANNs). Each ANN is trained to recognize images of one moving object acquired by a single camera. Local image features calculated in the vicinity of automatically detected interest points are used as object image parameters. Next, ANNs are employed to identify the same objects captured...
-
On Memory-Based Precise Calibration of Cost-Efficient NO2 Sensor Using Artificial Intelligence and Global Response Correction
PublikacjaNitrogen dioxide (NO2) is a prevalent air pollutant, particularly abundant in densely populated urban regions. Given its harmful impact on health and the environment, precise real-time monitoring of NO2 concentration is crucial, particularly for devising and executing risk mitigation strategies. However, achieving precise measurements of NO2 is challenging due to the need for expensive and cumbersome equipment. This has spurred...
-
Clothes Detection and Classification Using Convolutional Neural Networks
PublikacjaIn this paper we describe development of a computer vision system for accurate detection and classification of clothes for e-commerce images. We present a set of experiments on well established architectures of convolutional neural networks, including Residual networks, SqueezeNet and Single Shot MultiBox Detector (SSD). The clothes detection network was trained and tested on DeepFashion dataset, which contains box annotations...
-
Architectural Modifications to Enhance Steganalysis with Convolutional Neural Networks
PublikacjaThis paper investigates the impact of various modifications introduced to current state-of-the-art Convolutional Neural Network (CNN) architectures specifically designed for the steganalysis of digital images. Usage of deep learning methods has consistently demonstrated improved results in this field over the past few years, primarily due to the development of newer architectures with higher classification accuracy compared to...
-
Data and codes accompanying the paper: Parteka A., Kordalska A. "Artificial intelligence and productivity: global evidence from AI patent and bibliometric data". Technovation, Volume 125, July 2023, 102764
Dane BadawczeThe folder contains the data and codes used in the analysis described in the paper: Parteka A., Kordalska A. (2023) Artificial intelligence and productivity: global evidence from AI patent and bibliometric data. Technovation, Volume 125, July 2023, 102764
-
Automatic Breath Analysis System Using Convolutional Neural Networks
PublikacjaDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is not uncommon for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected...
-
Automatic Breath Analysis System Using Convolutional Neural Networks
PublikacjaDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is common for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected as...
-
Use of Neural Networks in Diagnostics of Rolling-Element Bearing of the Induction Motor
PublikacjaBearing defect is statistically the most frequent cause of an induction motor fault. The research described in the paper utilized the phenomenon of the current change in the induction motor with bearing defect. Methods based on the analysis of the supplying current are particularly useful when it is impossible to install diagnostic devices directly on the motor. The presented method of rolling-element bearing diagnostics used indirect...
-
Radiomics and artificial intelligence in lung cancer screening
Publikacja -
Artificial Intelligence and Computational Issues in Engineering Applications
Publikacja -
A Novel Iterative Decoding for Iterated Codes Using Classical and Convolutional Neural Networks
PublikacjaForward error correction is crucial for communication, enabling error rate or required SNR reduction. Longer codes improve correction ratio. Iterated codes offer a solution for constructing long codeswith a simple coder and decoder. However, a basic iterative code decoder cannot fully exploit the code’s potential, as some error patterns within its correction capacity remain uncorrected.We propose two neural network-assisted decoders:...
-
“ARTIFICIAL INTELLIGENCE – IN SEARCH FOR SYNERGY
WydarzeniaKonferencja poświęcona jest omówieniu stanu badań i zastosowań sztucznej inteligencji AI z wykorzystaniem technologii satelitarnych
-
User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning
PublikacjaIn this paper, the issue of detecting a user’s position in relation to the antenna geometry in ultra-wideband (UWB) off-body wireless body area network (WBAN) communication using deep learning methods is presented. To measure the impulse response of the channel, a measurement stand consisting of EVB1000 devices and DW1000 radio modules was developed and indoor static measurement scenarios were performed. It was proven that for...
-
Graph Neural Networks and Structural Information on Ionic Liquids: A Cheminformatics Study on Molecular Physicochemical Property Prediction
PublikacjaIonic liquids (ILs) provide a promising solution in many industrial applications, such as solvents, absorbents, electrolytes, catalysts, lubricants, and many others. However, due to the enormous variety of their structures, uncovering or designing those with optimal attributes requires expensive and exhaustive simulations and experiments. For these reasons, searching for an efficient theoretical tool for finding the relationship...