Wyniki wyszukiwania dla: machine design
-
Problems associated with the up of actuating system of a single-disc lapping machine for flat surfaces
PublikacjaPrzedstawiono wyniki badań nagrzewania się podstawowych elementów układu wykonawczego docierarki jednotarczowej o standardowej kinematyce do obróbki powierzchni płaskich. Analizowano przyrost temperatury zespołu napędowego, rolek i pierścieni prowadzących separatory oraz tarczy docierającej i obrabianych elementów. Badano nagrzewanie się układu obróbkowego podczas wyrównywania żeliwnego narzędzia i docierania powierzchni płaskich....
-
The Problems of Application of PVD/CVD Thin Hard Coatings for Heavy-Loaded Machine Components
Publikacja -
SIMULATION AND EXPERIMENTAL RESEARCH OF CLAW POLE MACHINE WITH A HYBRID EXCITATION AND LAMINATED ROTOR CORE
Publikacja -
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
Publikacja -
Machine learning goes global: Cross-sectional return predictability in international stock markets
Publikacja -
Comparative studies of manufacturing strategies within multi-machine production systems using simulation
PublikacjaZaprezentowano metodykę budowy struktur przestrzennych systemów produkcji typu gniazdowego wg zasad technologii grupowej, wykorzystując zaproponowane modele i algorytmy analizy zbiorów/relacji rozmytych. Generowane, z wykorzystaniem tych algorytmów, przebiegi procesów porównywano z przebiegami procesów w strukturach przestrzennych typu hybrydowego, tj. o wspólnych zasobach. Odnosząc się do zdefiniowanego studium przypadku, wykazano...
-
Quality evaluation of computer aided information retrieval from machine typed paper documents
PublikacjaCelem międzynarodowego projektu memorial jest wspomagane komputerowo rozpoznawanie maszynopisów. Referat prezentuje zagadnienie pomiaru jakości takiego procesu. Wskazano w nim potencjalne miejsca pojawiania się błędów oraz przedstawiono i sklasyfikowano odpowiednie miary.
-
Hardware accelerated implementation of wavelet transform for machine vision in road traffic monitoring system
PublikacjaW artykule został opisany system monitorowania ruchu drogowego wykorzystujący sprzętową implementację transformacji falkowej. System został zaimplementowany za pomocą procesora zrealizowanego w technologii FPGA i małej kamery z układem konwersji analogowo-cyfrowej. System wykorzystuje transformację falkową do detekcji zatorów na skrzyżowaniach. W artykule zostały przedstawione przykładowe rezultaty rozpoznawania zatorów drogowych...
-
3D Machine Vision System for Inspection of Contact Strips in Railway Vehicle Current Collectors
PublikacjaConstruction and technical condition of current collectors is crucial to reliability and safety of railway transportation. According to the Technical Specifications for Interoperability railway vehicles in the European Union should be equipped with carbon contact strips. Excessive wear or defects of contact strips degrade the capability of undisturbed power transmission, cause faster wear of contact wire, and can even result in...
-
Techniki szybkiego prototypowania w budowie maszyn = Rapid prototyping techniques in machine building
PublikacjaW artykule omówiono przygotowanie oraz wykonanie poszczególnych elementów maszyn za pomocą techniki szybkiego prototypowania. W pierwszej części przedstawiono technologię wydruku przestrzennego oraz właściwości materiału budulcowego. Druga część artykułu została poświęcona przykładowym wydrukom i ich zastosowaniom w maszynach.
-
Sensorless control system of induction machine supplied by voltage source inverter with output filter
PublikacjaThe paper focuses on sensorless control of the induction machines supplied by inverter with the output filters. “The novel” idea of the speed observer which is based on the backstepping approach is shown. The standard structure of the exponential observer is extended by the integrators and additional Z vector. The simulation and experimental results validate the proposed solution.
-
A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine
PublikacjaRNA protein interactions (RPI) play a pivotal role in the regulation of various biological processes. Experimental validation of RPI has been time-consuming, paving the way for computational prediction methods. The major limiting factor of these methods has been the accuracy and confidence of the predictions, and our in-house experiments show that they fail to accurately predict RPI involving short RNA sequences such as TERRA RNA....
-
Advances in Architectures, Big Data, and Machine Learning Techniques for Complex Internet of Things Systems
PublikacjaTe feld of Big Data is rapidly developing with a lot of ongoing research, which will likely continue to expand in the future. A crucial part of this is Knowledge Discovery from Data (KDD), also known as the Knowledge Discovery Process (KDP). Tis process is a very complex procedure, and for that reason it is essential to divide it into several steps (Figure 1). Some authors use fve steps to describe this procedure, whereas others...
-
Optimal selection of the sawdust separation device for a narrow-kerf sawing machine PRW15-M
PublikacjaW pracy przedstawiono granulometryczną analizę rozkładu wiórów i pyłu drzewnego otrzymanego w procesie przecinania suchych pryzm sosnowych na pilarce ramowej wielopiłowej PRW15-M. Wielkości wiórów mieściły się w granicach od 84,7 μm do nawet 14 mm. Te ostatnie są elementami będącymi efektem rozszczepiania dolnej powierzchni pryzmy przez wychodzące z niej ostrza piły. Większośc wiórów z najmniejszych frakcji ma postać sześciennych...
-
Work Safety and Ergonomics - L-15/C-0/L-0/P-0, Design and Production Engineering, WIMiO, undergraduate studies, engineering studies, full-time (stationary) studies, 2021/2022, se04, (M:32013W0), summer semester 2023/2024
Kursy OnlineWydział Mechaniczny Mechanika i budowa maszyn (w języku angielskim). Kurs: Specjalność: Design and Production Engineering (WM), I stopnia - inżynierskie, stacjonarne, 2018/2019 - zimowy (obecnie sem. 4), Semestr: 2019/2020 - letni. Student explains the concepts of ergonomics. Describes its goals and area of application. Defines the human - machine - environment system. Designs the human working environment taking into account...
-
Application of fiber optic sensors using Machine Learning algorithms for temperature measurement of lithium-ion batteries
PublikacjaOptical fiber sensorsusing low-coherence interferometry require processing ofthe output spectrum or interferogramto quickly and accurately determine the instantaneous value of the measured quantity, such as temperature.Methods based on machine learning are a good candidate for this application. The application of four such methods in an optical fiber temperature sensoris demonstrated.Using aZnO-coated...
-
Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management
PublikacjaParameter adjustment through numerical optimization has become a commonplace of contemporary microwave engineering. Although circuit theory methods are ubiquitous in the development of microwave components, the initial designs obtained with such tools have to be further tuned to improve the system performance. This is particularly pertinent to miniaturized structures, where the cross-coupling effects cannot be adequately accounted...
-
Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach
PublikacjaTreatment of municipal wastewater to meet the stringent effluent quality standards is an energy-intensive process and the main contributor to the costs of wastewater treatment plants (WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, and climate-based parameters on the daily consumption of EC by...
-
Control of induction machine supplied by a current source inverter using the multi-scalar transformation and backstepping approach
PublikacjaThe paper describes the voltage control technique of squire-cage induction machines supplied by a current source inverter. The control system is based on new transformation of the electric drive system (machine and inverter) state variables to the multi-scalar variables form. The backstepping approach is used to obtain the feedback control law. The control system contains the structure of the observer...
-
Sławomir Sommer dr inż.
Osoby -
A pilot study to assess manufacturing processes using selected point measures of vibroacoustic signals generated on a multitasking machine
PublikacjaThe article presents the method for the evaluation of selected manufacturing processes using the analysis of vibration and sound signals. This method is based on the use of sensors installed outside the machining zone, allowing to be used quickly and reliably in real production conditions. The article contains a developed measurement methodology based on the specific location of microphones and vibration transducers mounted on...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublikacjaThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
Active Learning on Ensemble Machine-Learning Model to Retrofit Buildings Under Seismic Mainshock-Aftershock Sequence
PublikacjaThis research presents an efficient computational method for retrofitting of buildings by employing an active learning-based ensemble machine learning (AL-Ensemble ML) approach developed in OpenSees, Python and MATLAB. The results of the study shows that the AL-Ensemble ML model provides the most accurate estimations of interstory drift (ID) and residual interstory drift (RID) for steel structures using a dataset of 2-, to 9-story...
-
Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification
PublikacjaLiquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community...
-
Wiktor Sieklicki dr inż.
OsobyTytuł magistra oraz inżyniera uzyskał w specjalności Automatyka i Robotyka w Katedrze Mechaniki i Wytrzymałości Materiałów Wydziału Mechanicznego Politechniki Gdańskiej (2006). Tytuł doktora nauk technicznych w dyscyplinie Budowa Maszyn uzyskał w 2010 roku na Wydziale Mechanicznym PG (2010). Od 2010 roku zatrudniony na stanowisku Adiunkta w Katedrze Mechaniki i Mechatroniki Wydziału Mechanicznego PG. W latach 2011-2013 zatrudniony...
-
Waldemar Karaszewski dr hab. inż.
Osoby -
Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various Machine learning techniques
PublikacjaMachine Learning (ML) method is widely used in engineering applications such as fracture mechanics. In this study, twenty different ML algorithms were employed and compared for the prediction of the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) of various materials, including fibre-reinforced concrete, cement mortar, sandstone, white travertine, marble, and granite. A set of 401 specimens of “Brazilian...
-
Power Hardware-in-the-Loop Approach In Power System Development
PublikacjaThe main objective of the research is the verification of the Power Hardware-In-The-Loop (PHIL) approach in power system analysis and design. The premise of the article is that using PHIL approach the performance of the power system in steady and transient state conditions can be analysed in real power system conditions. Models of induction machine were developed and real time simulations were performed. Simulation variables were...
-
Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
PublikacjaOne of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was...
-
Cost-Efficient Measurement Platform and Machine-Learning-Based Sensor Calibration for Precise NO2 Pollution Monitoring
PublikacjaAir quality significantly impacts human health, the environment, and the economy. Precise real-time monitoring of air pollution is crucial for managing associated risks and developing appropriate short- and long-term measures. Nitrogen dioxide (NO2) stands as a common pollutant, with elevated levels posing risks to the human respiratory tract, exacerbating respiratory infections and asthma, and potentially leading to chronic lung...
-
Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
PublikacjaNowadays, Buckling-Restrained Brace Frames (BRBFs) have been used as lateral force-resisting systems for low-, to mid-rise buildings. Residual Interstory Drift (RID) of BRBFs plays a key role in deciding to retrofit buildings after seismic excitation; however, existing formulas have limitations and cannot effectively help civil engineers, e.g., FEMA P-58, which is a conservative estimation method. Therefore, there is a need to...
-
An algorithm for selecting a machine learning method for predicting nitrous oxide emissions in municipal wastewater treatment plants
PublikacjaThis study presents an advanced algorithm for selecting machine learning (ML) models for nitrous oxide (N2O) emission prediction in wastewater treatment plants (WWTPs) employing the activated sludge process. The examined ML models comprised multivariate adaptive regression spline (MARS), support vector machines (SVM), and extreme gradient boosting (XGboost). The study explores the concept that involves new criteria to select the...
-
Hybrid Processing: the Impact of Mechanical and Surface Thermal Treatment Integration onto the Machine Parts Quality
Publikacja -
Modelling of First- and Second-order Chemical Reactions on ARUZ – Massively-parallel FPGA-based Machine
Publikacja -
Perception of Pathologists in Poland of Artificial Intelligence and Machine Learning in Medical Diagnosis—A Cross-Sectional Study
Publikacja -
Analysis of surface roughness of chemically impregnated Scots pine processed using frame-sawing machine
PublikacjaThe objective of this work was to evaluate the effect of the impregnation process of pine wood (Pinus sylvestris L.) on roughness parameters of the surface processed on a frame sawing. The samples weredried and impregnated using a commercial procedure by a local company. The touch method withthe use of measuring stylus (pin) was employed to determine of surface roughness of the samplesconsidering parameters, namely, arithmetical...
-
Investigations of methods to measure longitudinal forces in continuous welded rail tracks using the tamping machine.
PublikacjaPraca przedstawia w sposób poglądowy próby znalezienia efektywnej metody określania sił podłużnych w szynach toru bezstykowego. Szczególną uwagę poświęcono metodzie wymuszonych przemieszczeń poprzecznych. Podstawowym stwierdzeniem z przeprowadzonych własnych badań była konieczność odejścia od podnoszenia odłączonego od podkładów odcinka szyny i skoncentrowanie się na przemieszczeniach poprzecznych; doprowadziło to koncepcji zastosowania...
-
Forecasting values of cutting power for the sawing process of impregnated pine wood on band sawing machine
PublikacjaW artykule przedstawiono prognozowane wartości mocy skrawania dla pilarki taśmowej (ST100R firmy STENNER), które są stosowane w polskich tartakach. Wartości mocy skrawania oszacowano dla drewna sosny zwyczajnej (Pinus sylvestris L.), które zostało poddane impregnacji. Dla porównania wyznaczono również wartości mocy skrawania dla drewna niezaimpregnowanego. Wartości te określono za pomocą innowacyjnej metody prognozowania sił skrawania,...
-
Machine Learning Applied to Aspirated and Non-Aspirated Allophone Classification—An Approach Based on Audio "Fingerprinting"
PublikacjaThe purpose of this study is to involve both Convolutional Neural Networks and a typical learning algorithm in the allophone classification process. A list of words including aspirated and non-aspirated allophones pronounced by native and non-native English speakers is recorded and then edited and analyzed. Allophones extracted from English speakers’ recordings are presented in the form of two-dimensional spectrogram images and...
-
Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches
PublikacjaExamining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent advances in sensitivity analysis methodology, optimization of training hyperparameters, and state-of-the-art ensemble techniques have greatly simplified and enhanced the forecasting of biochar output and composition from various biomass...
-
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
PublikacjaWetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral...
-
Development and performance analysis of a novel multiphase doubly-fed induction generator
PublikacjaThis paper presents the research into the design and performance analysis of a novel five-phase doubly-fed induction generator (DFIG). The designed DFIG is developed based on standard induction motor components and equipped with a five-phase rotor winding supplied from the five-phase inverter. This approach allows the machine to be both efficient and reliable due to the ability of the five-phase rotor winding to operate during...
-
Katarzyna Zasińska dr inż.
OsobyKatarzyna Zasińska otrzymała tytuł doktora nauk technicznych w dyscyplinie Inżynieria Materiałowa na Wydziale Mechanicznym Politechniki Gdańskiej (2017). Tytuł rozprawy doktorskiej: Wpływ implantacji jonowej na wybrane właściwości użytkowe stopu Ti-13Nb-13Zr w aspekcie zastosowania na elementy trące w endoprotezach stawu biodrowego. Tytuł mgr inż. uzyskała kończąc studia na międzyuczelnianym kierunku Inżynieria Mechaniczno-Medyczna...
-
Grzegorz Rotta dr inż.
Osoby -
Optical method supported by machine learning for dynamics of C‐reactive protein concentrations changes detection in biological matrix samples
PublikacjaIn this article we present the novel spectroscopy method supported with machine learning for real-time detection of infectious agents in wastewater. In the case of infectious diseases, wastewater monitoring can be used to detect the presence of inflammation biomarkers, such as the proposed C-reactive protein, for monitoring inflammatory conditions and mass screening during epidemics for early detection in communities of concern,...
-
Is it too late now to say we’re sorry? Examining anxiety contagion and crisis communication strategies using machine learning
PublikacjaIn this paper, we explore the role of perceived emotions and crisis communication strategies via organizational computer-mediated communication in predicting public anxiety, the default crisis emotion. We use a machine-learning approach to detect and predict anxiety scores in organizational crisis announcements on social media and the public’s responses to these posts. We also control for emotional and language tones in organizational...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublikacjaNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
The chemistry, properties and performance of flame-retardant rubber composites: Collecting, analyzing, categorizing, machine learning modeling, and visualizing
PublikacjaRubbers combine the flexibility with mechanical strength, supporting myriad applications, but suffer from inherent flammability. Formulation and production of flame-retardant rubber composites (FRRCs) have intensively been practiced over years, but not comprehensively reviewed. This necessity has outlined collecting, analyzing, screening, classifying, and interpreting the literature with the aim of classifying the FRRCs. We quantified...
-
Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls
PublikacjaEfficient seismic risk assessment aids decision-makers in formulating citywide risk mitigation plans, providing insights into building performance and retrofitting costs. The complexity of modeling, analysis, and post-processing of the results makes it hard to fast-track the seismic probabilities, and there is a need to optimize the computational time. This research addresses seismic probability and risk assessment of reinforced...
-
PRZYCZEPY DO BADANIA OPORU TOCZENIA OPON DO SAMOCHODÓW OSOBOWYCH
PublikacjaPrzedstawiono doświadczenia Zespołu Pojazdów Katedry Konstrukcji Maszyn i Pojazdów Wydziału Mechanicznego Politechniki Gdańskiej dotyczące urządzeń badawczych (przyczep) do pomiaru oporu toczenia opon do samochodów osobowych i nawierzchni drogowych. Opisano przyczepy pomiarowe tego typu. Pomiary oporu toczenia opon samochodowych wymuszane są koniecznością osiągania przez pojazd jak największej swojej sprawności...