Filters
total: 1316
filtered: 936
Search results for: MICROWAVE IMAGING (MWI)
-
Texture or Linker? Competitive Patterning of Receptor Assembly toward Ultra-Sensitive Impedimetric Detection of Viral Species at Gold-Nanotextured Titanium Surfaces
PublicationIn this work, we study the electrodes with a periodic matrix of gold particles pattered by titanium dimples and modified by 3-mercaptopropionic acid (MPA) followed by CD147 receptor grafting for specific impedimetric detection of SARS-CoV-2 viral spike proteins. The synergistic DFT and MM/MD modeling revealed that MPA adsorption geometries on the Au–Ti surface have preferential and stronger binding patterns through the carboxyl...
-
Two-photon perimetry utilizing picosecond laser
PublicationAge-related impairments are becoming more and more severe for aging societies. The sensory organ diseases are particularly troublesome as they exclude seniors from their everyday activity. Therefore, maintaining good quality eyesight is essential for normal functioning. New medical therapies help restrain age-related changes, but still, monitoring is essential to the treatment process. Humans do not have the natural ability to...
-
Coda wave interferometry in monitoring the fracture process of concrete beams under bending test
PublicationEarly detection of damage is necessary for the safe and reliable use of civil engineering structures made of concrete. Recently, the identification of micro-cracks in concrete has become an area of growing interest, especially using wave-based techniques. In this paper, a non-destructive testing approach for the characterization of the fracture process was presented. Experimental tests were made on concrete beams subjected to mechanical...
-
Vibrational Quenching of Optically Pumped Carbon Dimer Anions
PublicationCareful control of quantum states is a gateway to research in many areas of science such as quantum information, quantum-controlled chemistry, and astrophysical processes. Precise optical control of molecular ions remains a challenge due to the scarcity of suitable level schemes, and direct laser cooling has not yet been achieved for either positive or negative molecular ions. Using a cryogenic wire trap, we show how the internal...
-
3D Metamaterial Ultra-Wideband Absorber for curved surface
PublicationThis paper proposes a three-dimensional metamaterial absorber based on a resistive film patch array to develop a low-cost, lightweight absorber for curved surfaces. An excellent absorption over a large frequency band is achieved through two different yet controllable mechanisms; In the first mechanism, a considerable attenuation in the wave power is achieved via graphite resistive films. The absorption is then intensified through...
-
An Ultra-Low-Energy Analog Comparator for A/D Converters in CMOS Image Sensors
PublicationThis paper proposes a new solution of an ultra-low-energy analog comparator, dedicated to slope analog-to-digital converters (ADC), particularly suited for CMOS image sensors (CISs) featuring a large number of ADCs. For massively parallel imaging arrays, this number may be as high as tens-hundreds of thousands ADCs. As each ADC includes an analog comparator, the number of these comparators in CIS is always high. Detailed analysis...
-
Micropatterning of BiVO 4 Thin Films Using Laser-Induced Crystallization
PublicationRelatively high temperatures even up to 500 °C are required to obtain bismuth vanadate (BiVO4) films with the scheelite monoclinic (s-m) structure that shows the highest photocatalytic activity. This requirement limits the possible choice of substrates. Moreover, high quality thin layers of crystalline BiVO4 cannot be prepared with current methods. In this study a light-induced crystallization approach is presented, which is a...
-
An audio-visual corpus for multimodal automatic speech recognition
Publicationreview of available audio-visual speech corpora and a description of a new multimodal corpus of English speech recordings is provided. The new corpus containing 31 hours of recordings was created specifically to assist audio-visual speech recognition systems (AVSR) development. The database related to the corpus includes high-resolution, high-framerate stereoscopic video streams from RGB cameras, depth imaging stream utilizing Time-of-Flight...
-
Reliable EM-driven size reduction of antenna structures by means of adaptive penalty factors
PublicationMiniaturization has become of paramount importance in the design of modern antenna systems. In particular, compact size is essential for emerging application areas such as internet of things, wearable and implantable devices, 5G technology, or medical imaging. On the other hand, reduction of physical dimensions generally has a detrimental effect on antenna performance. From the perspective of numerical optimization, miniaturization...
-
Reconstruction of 3D image of corona discharge streamer
PublicationIn this paper, the method of reconstruction of the 3D structure of streamers in DC positive corona discharge in nozzle-to-plate electrode configuration is presented. For reconstructing of 3D image of corona discharge streamer we propose a stereographical method, where streamers are observed from several directions simultaneously. The multi-directional observation enabled to obtain fine positional coordinates of streamers for a...
-
Use of optical skin phantoms for calibration of dermatological lasers
PublicationA wide range of dermatological diseases can be efficiently treated using laser heating. Nevertheless, before the new laser is introduced into clinical practice, its parameters and ability to interact with human skin have to be carefully examined. In order to do that optical skin phantoms can be used. Such phantoms closely imitate the scattering and absorption properties of real human skin tissue along with its thermal properties,...
-
Nanoparticles: Taking a Unique Position in Medicine
PublicationThe human nature of curiosity, wonder, and ingenuity date back to the age of humankind. In parallel with our history of civilization, interest in scientific approaches to unravel mechanisms underlying natural phenomena has been developing. Recent years have witnessed unprecedented growth in research in the area of pharmaceuticals and medicine. The optimism that nanotechnology (NT) applied to medicine and drugs is taking serious...
-
Green engineered biomaterials for bone repair and regeneration: Printing technologies and fracture analysis
PublicationDespite the exceptional self-regeneration properties of bone, severe injuries often require additional surgical intervention such as using artificial bone constructs. These structures need to meet a number of criteria regarding their structure, performance, alongside the rate and the mechanism of erosion and fracture when implanted, for stimulating the regeneration of defected bone and, more critically providing support in the...
-
Soft Tissue Retraction Maneuver in Cone Beam Computed Tomography Prior to Crown-Lengthening Procedure—A Technical Note
PublicationBackground: An accurate determination of the biological width and the relationship of the cemento-enamel junction with the border of the alveolar bone is crucial during a clinical crown-lengthening (CCL) procedure. The aim of this study was to present a technical note about the retraction techniques in cone beam computed tomography (CBCT) prior to CCL, highlighting the significant enhancement in procedural accuracy and predictability...
-
Concept of an Innovative System for Dimensioning and Predicting Changes in the Coastal Zone Topography Using UAVs and USVs (4DBatMap System)
PublicationThis publication is aimed at developing a concept of an innovative system for dimensioning and predicting changes in the coastal zone topography using Unmanned Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs). The 4DBatMap system will consist of four components: 1. Measurement data acquisition module. Bathymetric and photogrammetric measurements will be carried out with a specific frequency in the coastal zone using...
-
Cu-HKUST-1 and Hydroxyapatite–The Interface of Two Worlds toward the Design of Functional Materials Dedicated to Bone Tissue Regeneration
PublicationA novel composite based on biocompatible hydroxyapatite (HA) nanoparticles and Cu-HKUST-1 (Cu-HKUST-1@HA) has been prepared following a layer-by-layer strategy. Cu-HKUST-1 was carefully selected from a group of four Cu-based metal−organic frameworks as the material with the most promising antimicrobial activity. The formation of a colloidal Cu- HKUST-1 layer on HA nanoparticles was confirmed by various techniques, e.g., infrared...
-
Deciphering the Molecular Mechanism of Substrate-Induced Assembly of Gold Nanocube Arrays toward an Accelerated Electrocatalytic Effect Employing Heterogeneous Diffusion Field Confinement
PublicationThe complex electrocatalytic performance of gold nanocubes (AuNCs) is the focus of this work. The faceted shapes of AuNCs and the individual assembly processes at the electrode surfaces define the heterogeneous conditions for the purpose of electrocatalytic processes. Topographic and electron imaging demonstrated slightly rounded AuNC (average of 38 nm) assemblies with sizes of ≤1 μm, where the dominating patterns are (111) and...
-
Poly-L-Lysine-functionalized fluorescent diamond particles: pH triggered fluorescence enhancement via surface charge modulation
PublicationRecently, the interest in applying fluorescent diamond particles (FDPs) containing nitrogen-vacancy (NV) centers for enhancing the mechanical and chemical properties of some materials, biological imaging, and sensing has been expanding rapidly. The unique properties of NV centers such as intensive, time-stable fluorescence, and an electron spin, which exhibits long coherence time and may be manipulated using external stimuli, such...
-
Optimization of the distance between the vertical plates in the convective air heat exchanger
PublicationThis paper examines the influence of the distance between vertical plates on the intensity of free convective heat transfer along with the optimization of this distance. Experimental tests were carried out for one model channel of such an heat exchanger with widths , 0.085 and 0.18 m. This channel, open at the top and sides, was formed by two isothermal symmetrically heated parallel vertical plates of dimensions m and m. The influence...
-
Pedestrian detection in low-resolution thermal images
PublicationOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
Non-enzymatic flexible glucose sensing platform based on nanostructured TiO2–Au composite
PublicationAll over the world the number of people suffering from diabetes and related complications is drastically growing. Therefore, the need for accurate, reliable and stable sensor for monitoring of glucose in human body fluids is becoming highly desirable. In this work we show that material composed of gold layers deposited onto TiO2 nanotubes (NTs) formed onto the flexible Ti foil exhibits great response toward glucose oxidation and...
-
The role of electrolysis and enzymatic hydrolysis treatment in the enhancement of the electrochemical properties of 3D-printed carbon black/poly(lactic acid) structures
PublicationAdditive manufacturing, also known as 3D printing, is beginning to play an unprecedented role in developing many applications for industrial or personalized products. The conductive composite structures require additional treatment to achieve an electroactive surface useful for electrochemical devices. In this paper, the surfaces of carbon black/poly(lactic acid) CB-PLA printouts were activated by electrolysis or enzymatic digestion...
-
Development and Assessment of Regeneration Methods for Peptide-Based QCM Biosensors in VOCs Analysis Applications
PublicationCleaning a quartz crystal microbalance (QCM) plays a crucial role in the regeneration of its biosensors for reuse. Imprecise removal of a receptor layer from a transducer’s surface can lead to unsteady operation during measurements. This article compares three approaches to regeneration of the piezoelectric transducers using the electrochemical, oxygen plasma and Piranha solution methods. Optimization of the cleaning method allowed...
-
Investigation of use of hydrophilic/hydrophobic NADESs for selective extraction of As(III) and Sb(III) ions in vegetable samples: Air assisted liquid phase microextraction and chemometric optimization
PublicationIn this paper, a green, cost-effective sample preparation method based on air assisted liquid phase microextraction (AA-LPME) was developed for the simultaneous extraction of As(III) and Sb(III) ions from vegetable samples using hydrophilic/hydrophobic natural deep eutectic solvents (NADESs). Central composite design was used for the optimization of extraction factors including NADES volume, extraction cycle, pH, and curcumin concentration....
-
Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route toward High Rates of Electrochemical Biosensing
PublicationIn this study, we have demonstrated the fabrication of novel materials called boron-doped carbon nanowalls (B:CNWs), which are characterized by remarkable electrochemical properties such as high standard rate constant (k°), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)6]3–/4– redox system, and low surface resistivity. The B:CNW samples were deposited by the microwave plasma-assisted...
-
Fabrication of high-density nitrogen-vacancy (NV) center-enriched diamond particles through methyl trityl amine (C20H19N) seeding
PublicationDiamond particles (DPs) show promise for advanced applications in bioimaging and quantum sensing due to the presence of defect centers. This work reports a unique growth process for diamond particles composed of nitrogen-vacancy centers (NV-DPs) using a methyl trityl amine (C20H19N) diamondoid seed, which acts as a nitrogen source for NV creation. Growth was performed via microwave plasma-assisted chemical vapor deposition in a...
-
A comprehensive review on Ginger (Zingiber officinale) as a potential source of nutraceuticals for food formulations: Towards the polishing of gingerol and other present biomolecules
PublicationCurrently, ginger is one the most consumed plants when dealing with the treatments of various illnesses. So far, it is known that various biologically active molecules, such as gingerols, shogaols and zingerone, among others, are the main responsible for specific biological activities, opening a new window for its utilization as a nutraceutical in foods. In pioneering extraction processes, solvent extraction has been initially...
-
Structural and physico-mechanical properties of natural rubber/GTR composites devulcanized by microwaves: Influence of GTR source and irradiation time
PublicationGround tire rubber from car and truck was modified using microwave irradiation at variable time. The irradiated ground tire rubber was used as filler in composites based on natural rubber. The composites, with high content of ground tire rubber, were prepared using an internal batch mixer and subsequently cross-linked at 160℃. The influence of the ground tire rubber source (car/truck) and irradiation time on structure, physico-mechanical...
-
Growth and Isolation of Large Area Boron‐Doped Nanocrystalline Diamond Sheets: A Route toward Diamond‐on‐Graphene Heterojunction
PublicationMany material device applications would benefit from thin diamond coatings, but current growth techniques, such as chemical vapor deposition (CVD) or atomic layer deposition require high substrate and gas‐phase temperatures that would destroy the device being coated. The development of freestanding, thin boron‐doped diamond nanosheets grown on tantalum foil substrates via microwave plasma‐assisted CVD is reported. These diamond...
-
Wytwarzanie i charakterystyka cienkich warstw diamentowych na podłożach ze szkła kwarcowego, w szczególności na światłowodach włóknistych, dla zastosowań w sensorach optoelektronicznych
PublicationGłównym celem naukowym prac badawczych przeprowadzonych w rozprawie było wytwarzanie i modyfikacja funkcjonalności cienkich, przewodzących warstw diamentowych syntezowanych na podłożach optycznych. W ramach przeprowadzonych badań wytworzono szereg warstw diamentowych o specyficznych właściwościach optycznych i elektrycznych, mających na celu wykazanie możliwości wykorzystania takich struktur dla celów sensorycznych. Do poprawy...
-
Low-strain sensor based on the flexible boron-doped diamond-polymer structures
PublicationA free-standing high boron-doped diamond nanosheet (BDDNS) has been fabricated for the development of a flexible BDDNS strain senor. High boron-doped diamond was initially grown on a tantalum substrate in a microwave plasma-assisted chemical vapor deposition method, and was then transferred to a Kapton polymer substrate to fabricate the flexible BDDNS/Kapton device. Before performing the transfer process, the thin BDDNS’s morphology...
-
Bandwidth-size design trade-offs for compact spline-parameterised patch couplers by means of electromagnetic-driven multi-objective optimisation
PublicationBroad bandwidth and small size are the key performance figures for contemporary microwave couplers. These requirements are conflicting, i.e. improvement of one generally leads to degradation of the other assuming fixed topology of the circuit at hand. From a designer's perspective, the knowledge about available design trade-offs is indispensable as it permits for tailoring the circuit for particular applications as well as comparing...
-
Enhanced electrochemical kinetics of highly-oriented (111)-textured boron-doped diamond electrodes induced by deuterium plasma chemistry
PublicationNovel highly-oriented (111)-textured boron-doped diamond electrodes (BDDD) featuring high electrochemical activity and electrode stability toward electrochemical analytics were fabricated by deuterium-rich microwave plasma CVD. The high flux deuterium plasma-induced preferential formation of (111)-faceted diamond as revealed by XRD. The highly-oriented diamond surface exhibited improved boron dopant incorporation and activation,...
-
Boron-Doped Diamond/GaN Heterojunction—The Influence of the Low-Temperature Deposition
PublicationWe report a method of growing a boron-doped diamond film by plasma-assisted chemical vapour deposition utilizing a pre-treatment of GaN substrate to give a high density of nucleation. CVD diamond was deposited on GaN substrate grown epitaxially via the molecular-beam epitaxy process. To obtain a continuous diamond film with the presence of well-developed grains, the GaN substrates are exposed to hydrogen plasma prior to deposition....
-
Volumetric incorporation of NV diamond emitters in nanostructured F2 glass magneto-optical fiber probes
PublicationIntegration of optically-active diamond particles with glass fibers is a powerful method of scaling diamond's magnetic sensing functionality. We propose a novel approach for the integration of diamond particles containing nitrogen-vacancy centers directly into the fiber core. The core is fabricated by stacking the preform from 790 soft glass canes, drawn from a single rod dip-coated with submicron diamond particles suspended in...
-
Cost-Efficient Design Methodology for Compact Rat-Race Couplers
PublicationIn this article, a reliable and low-cost design methodology for simulation-driven optimization of miniaturized rat-race couplers (RRCs) is presented. We exploit a two-stage design approach, where a composite structure (a basic building block of the RRC structure) is first optimized using a pattern search algorithm, and, subsequently, the entire coupler is tuned by means of surrogate-based optimization (SBO) procedure. SBO is executed...
-
Generalized Pareto ranking bisection for computationally feasible multi-objective antenna optimization
PublicationMulti-objective optimization (MO) allows for obtaining comprehensive information about possible design trade-offs of a given antenna structure. Yet, executing MO using the most popular class of techniques, population-based metaheuristics, may be computationally prohibitive when full-wave EM analysis is utilized for antenna evaluation. In this work, a low-cost and fully deterministic MO methodology is introduced. The proposed generalized...
-
Inverse modeling for fast design optimization of small-size rat-race couplers incorporating compact cells
PublicationIn the paper, a framework for computationally-efficient design optimization of compact rat-race couplers (RRCs) is discussed. A class of hybrid RRCs with variable operating conditions is investigated, whose size reduction is obtained by replacing ordinary transmission lines with compact microstrip resonant cells (CMRCs). Our approach employs a bottom-up design strategy leading to the development of compact RRCs through rapid design...
-
Multi-objective design optimization of antennas for reflection, size, and gain variability using kriging surrogates and generalized domain segmentation
PublicationCost-efficient multi-objective design optimization of antennas is presented. The framework exploits auxiliary data-driven surrogates, a multi-objective evolutionary algorithm for initial Pareto front identification, response correction techniques for design refinement, as well as generalized domain segmentation. The purpose of this last mechanism is to reduce the volume of the design space region that needs to be sampled in order...
-
Reduced-cost surrogate modeling of input characteristics and design optimization of dual-band antennas using response features
PublicationIn this article, a procedure for low-cost surrogate modeling of input characteristics of dual-band antennas has been discussed. The number of training data required for construction of an accurate model has been reduced by representing the antenna reflection response to the level of suitably defined feature points. The points are allocated to capture the critical features of the reflection characteristic, such as the frequencies...
-
Analysis of circular polarization antenna design trade‐offs using low‐cost EM‐driven multiobjective optimization
PublicationCircular polarization (CP) antennas are vital components of modern communication systems. Their design involves handling several requirements such as low reflection and axial ratio (AR) within the frequency range of interest. Small size is an important criterion for antenna mobility which is normally achieved as a by‐product of performance‐oriented modifications of the structure topology. In this work, multiobjective optimization...
-
Expedited simulation-driven design optimization of UWB antennas by means of response features
PublicationIn this work, a method for fast design optimization of broadband antennas is considered. The approach is based on a feature-based optimization (FBO) concept where reflection characteristics of the structure at hand are formulated in terms of suitably defined feature points. Redefinition of the design problem allows for reducing the design optimization cost, because the dependence of feature point coordinates on antenna dimensions...
-
Compact Electromagnetic Lens Antennas Using Cascaded Metasurfaces for Gain Enhancement and Beam Steering Applications
PublicationElectromagnetic (EM) lens antenna designs using cascaded metasurfaces for gain enhancement and beam steering applications are proposed. Two different lens aperture designs are proposed and populated with aperiodic unit cells of size 0.2λo × 0.2λo. In lens Design 1, the unit cells of different phases are distributed in concentric circular zones, whereas in lens Design 2, the unit cells of different phases are distributed in vertical...
-
Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes
PublicationThe optical properties of ultrathin (less than 100 nm) boron-doped nanocrystalline diamond (B-NCD) film were investigated in a wavelength range of 200 ÷ 20000 nm. The B-NCD refractive index showed values close to that of monocrystalline diamond (n = 2.45) in a broad wavelength range (450 ÷ 4000 nm). A transmittance up to 70% and the average film thickness of 70 nm were achieved. A special cone-shaped shim was used in the deposition...
-
Ionic liquids for nano- and microstructures preparation. Part 1: Properties and multifunctional role
PublicationIonic liquids (ILs) are a broad group of organic salts of varying structure and properties, used in energy conversion and storage, chemical analysis, separation processes, as well as in the preparation of particles in nano- and microscale. In material engineering, ionic liquids are applied to synthesize mainly metal nanoparticles and 3D semiconductor microparticles. They could generally serve as a structuring agent or as a reaction...
-
Application of autoencoder to traffic noise analysis
PublicationThe aim of an autoencoder neural network is to transform the input data into a lower-dimensional code and then to reconstruct the output from this code representation. Applications of autoencoders to classifying sound events in the road traffic have not been found in the literature. The presented research aims to determine whether such an unsupervised learning method may be used for deploying classification algorithms applied to...
-
Editorial for the special issue on advances in forward and inverse surrogate modeling for high-frequency design
PublicationThe design of modern‐day high‐frequency devices and circuits, including microwave/RF, antenna and photonic components, historically has relied on full‐wave electromagnetic (EM) simulation tools. Initially used for design verification, EM simulations are nowadays used in the design process itself, for example, for finding optimum values of geometry and/or material parameters of the structures of interest. In a growing number of...
-
Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen
PublicationFast, efficient, and accurate detection of SARS-CoV-2 spike antigen is pivotal to control the spread and reduce themortality of COVID-19. Nevertheless, the sensitivity of available nanobiosensors to detect recombinant SARS-CoV-2 spike antigen seems insufficient. As a proof-of-concept, MOF-5/CoNi2S4 is developed as a low-cost, safe, and bioactive hybrid nanostructure via the one-pot high-gravity protocol. Then, the porphyrin, H2TMP,...
-
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublicationHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
Exploring the landscape of automatic cerebral microbleed detection: A comprehensive review of algorithms, current trends, and future challenges
PublicationThis paper provides the first review to date which gathers, describes, and assesses, to the best of our knowledge, all available publications on automating cerebral microbleed (CMB) detection. It provides insights into the current state of the art and highlights the challenges and opportunities in this topic. By incorporating the best practices identified in this review, we established guidelines for the development of CMB detection...