Filters
total: 175
filtered: 118
Search results for: 3d printing
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publication3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
Green engineered biomaterials for bone repair and regeneration: Printing technologies and fracture analysis
PublicationDespite the exceptional self-regeneration properties of bone, severe injuries often require additional surgical intervention such as using artificial bone constructs. These structures need to meet a number of criteria regarding their structure, performance, alongside the rate and the mechanism of erosion and fracture when implanted, for stimulating the regeneration of defected bone and, more critically providing support in the...
-
The application of a photopolymer material for the manufacture of machine elements using rapid prototyping techniques
PublicationThe paper discusses the application of polymer resin for 3D printing. The first section focuses on rapid prototyping technique and properties of the photopolymer, used as input material in the manufacture of machine components. Second part of the article was devoted to exemplary 3-D-printed elements for incorporation in machines. The article also contains detailed description of problems encountered in implementation of the selected...
-
Harnessing low-cost LiDAR scanners for deformation assessment of 3D-printed concrete-plastic columns with cross-sections based on fractals after critical compressive loading
PublicationThis article aims to explore the potential of using low-cost devices (iPhone and iPad) equipped with LiDAR scanners in the context of measuring the volume of concrete-plastic specimens with complex shapes. The goal was to assess whether these tools can support or even replace traditional metrology methods. For the purpose of the research program concrete-plastic columns with very complex cross-sections (based on different fractals)...
-
Composite Polyurethane-Polylactide (PUR/PLA) Flexible Filaments for 3D Fused Filament Fabrication (FFF) of Antibacterial Wound Dressings for Skin Regeneration
Publicationhis paper addresses the potential application of flexible thermoplastic polyurethane (TPU) and poly(lactic acid) (PLA) compositions as a material for the production of antibacterial wound dressings using the Fused Filament Fabrication (FFF) 3D printing method. On the market, there are medical-grade polyurethane filaments available, but few of them have properties required for the fabrication of wound dressings, such as flexibility...
-
The role of electrolysis and enzymatic hydrolysis treatment in the enhancement of the electrochemical properties of 3D-printed carbon black/poly(lactic acid) structures
PublicationAdditive manufacturing, also known as 3D printing, is beginning to play an unprecedented role in developing many applications for industrial or personalized products. The conductive composite structures require additional treatment to achieve an electroactive surface useful for electrochemical devices. In this paper, the surfaces of carbon black/poly(lactic acid) CB-PLA printouts were activated by electrolysis or enzymatic digestion...
-
Rapid Design of 3D Reflectarray Antennas by Inverse Surrogate Modeling and Regularization
PublicationReflectarrays (RAs) exhibit important advantages over conventional antenna arrays, especially in terms of realizing pencil-beam patterns without the employment of the feeding networks. Unfortunately, microstrip RA implementations feature narrow bandwidths, and are severely affected by losses. A considerably improved performance can be achieved for RAs involving grounded dielectric layers, which are also easy to manufacture using...
-
Low-Loss 3D-Printed Waveguide Filters Based on Deformed Dual-Mode Cavity Resonators
PublicationThis paper introduces a new type of waveguide filter with smooth profile, based on specially designed dual-mode (DM) cavity resonators. The DM cavity design is achieved by applying a shape deformation scheme. The coupling between the two orthogonal cavity modes is implemented by breaking the symmetry of the structure, thus eliminating the need for additional coupling elements. The modes operating in the cavity are carefully analyzed...
-
The Impact Of The Selected Parameters Of Fdm Manufacturing Technology On Tribological Performance Of Abs–Steel Pair Under Dry Friction
PublicationThe paper presents the result of tribological test of ABS and steel samples sliding under dry friction. Polymeric samples were manufactured of ABS material using FDM technology. Testing was carried out in unidirectional sliding in a ring-on-flat contact in a PT-3 tribometer. The scope of tested parameters included volumetric and mass wear, the friction coefficient, and polymeric specimen temperature. Polymeric specimens used in...
-
THE USE OF THE Ti-13Zr-13Nb ALLOY POWDER FOR MANUFACTURING OF PROSTHETIC PARTS BY SELECTIVE LASER MELTING
PublicationThe 3D printing is a manufacturing technique belonging to the additive methods able to prepare the designed parts for various purposes. The present reasearch was aimed to fabricate the prosthetic foundations and bridges made of the new Ti-13Zr-13Nb alloy by the selective laser melting (SLM) of a metal powder. The scanning electron examinations and micro scanning tomography were used to investigate the surface quality and intrinsic...
-
Insight into the microstructural and durability characteristics of 3D printed concrete: Cast versus printed specimens
PublicationThis study presents the comparison of microstructural and durability characteristics of 3D printed concrete (3DPC) depending on its production method (printing or casting). Printed samples with different numbers of layers, as well as a cast specimen with an identical mix composition, were produced and compared, with their microstructural pore and solid characteristics quantitatively and qualitatively investigated. For this purpose,...
-
A novel method of creating thermoplastic chitosan blends to produce cell scaffolds by FDM additive manufacturing
PublicationDue to its remarkable and promising biological and structural properties, chitosan has been widely studied in several potential applications in the biomedical sector. Attempts are being made to use this polymer and its properties in thermoplastics dedicated to 3D printing in FDM technology. However, chitosan can be processed only from acid solution, which limits its applications. The paper presents a new path for the production...
-
Damage detection in 3D printed plates using ultrasonic wave propagation supported with weighted root mean square calculation and wavefield curvature imaging
Publication3D printing (additive manufacturing, AM) is a promising approach to producing light and strong structures with many successful applications, e.g., in dentistry and orthopaedics. Many types of filaments differing in mechanical properties can be used to produce 3D printed structures, including polymers, metals or ceramics. Due to the simplicity of the manufacturing process, biodegradable polymers are widely used, e.g., polylactide (polylactide...
-
Miniaturized and Lightweight ESPAR Antenna for WSN and IoT Applications
PublicationA new compact ESPAR antenna is investigated in this paper. The proposed antenna has 12 directional radiation patterns based on 12 passive elements and can be successfully used in Wireless Sensor Network applications. In proposed antenna design, the possibilities of 3D printing were used to implement a dielectric miniaturization overlay that allowed for reducing antenna occupied area by almost 60% and antenna profile by 27% in comparison...
-
Applications of Additively Manufactured Tools in Abrasive Machining—A Literature Review
PublicationHigh requirements imposed by the competitive industrial environment determine the development directions of applied manufacturing methods. 3D printing technology, also known as additive manufacturing (AM), currently being one of the most dynamically developing production methods, is increasingly used in many different areas of industry. Nowadays, apart from the possibility of making prototypes of future products, AM is also used...
-
Recent advances in compatibilization strategies of wood-polymer composites by isocyanates
PublicationWood-polymer composites technologies are gaining more and more attention in the scientific community, positively affecting the increase in their industrial applications, for example, automotive, building, 3D printing, etc. Many research works are focused on the improvement in matrix–lignocellulosic filler interactions to produce highly filled composites with satisfying performance properties. In this field of research, using isocyanates...
-
Rectangular Waveguide Filters Based on Deformed Dual-Mode Cavity Resonators
PublicationIn this paper, a novel design for rectangular waveguide filters with deformed dual-mode (DM) cavity resonators is demonstrated. The new resonant cavity shape is a result of applying shape deformation to the basic rectangular cavity to enable its dual-mode operation. Internal coupling between the two orthogonal cavity modes is realized by geometry deformation, eliminating the need for additional coupling elements. The designs are...
-
Polyurethanes
PublicationHandbook of Thermoset Plastics, Fourth Edition provides complete coverage of the chemical processes, manufacturing techniques and design properties of each polymer, along with its applications. This new edition has been expanded to include the latest developments in the field, with new chapters on radiation curing, biological adhesives, vitrimers, and 3D printing. This detailed handbook considers the practical implications of using...
-
Experimental study on the effect of selected sterilization methods on mechanical properties of polylactide FFF specimens
PublicationPurpose: Biodegradable polymers are widely used in personalized medical devices or scaffolds for tissue engineering. The manufacturing process should be finished with sterilization procedure. However, it is not clear how the different sterilization methods have an impact on the mechanical strength of the three-dimensional (3D)-printed parts, such as bone models or personalized mechanical devices. This paper aims to present the...
-
Arabinoxylans: A review on protocols for their recovery, functionalities and roles in food formulations
PublicationArabinoxylans (AXs) are compounds with high nutritional value and applicability, including prebiotics or supplementary ingredients, in food manufacturing industries. Unfortunately, the recovery of AXs may require advanced separation and integrated strategies. Here, an analysis of the emerging techniques to extract AXs from cereals and their by-products is discussed. This review covers distinct methods implemented over the last...
-
Planetary roller extruders in the sustainable development of polymer blends and composites – Past, present and future
PublicationScrew extruders as continuous flow reactors allow the synthesis of new polymers, preparation of polymer blends and composites, and modification or functionalization of commercially available polymers. Literature data shows that the twin screw extrusion is the most popular solution used for this purpose. In contrast, the number of scientific papers on alternative methods, such as multi-screw extruders, is somewhat limited. This...
-
Tuning the Laser-Induced Processing of 3D Porous Graphenic Nanostructures by Boron-Doped Diamond Particles for Flexible Microsupercapacitors
PublicationCarbon (sp3)-on-carbon (sp2) materials have the potential to revolutionize fields such as energy storage and microelectronics. However, the rational engineering and printing of carbon-on-carbon materials on flexible substrates remains a challenge in wearable electronics technology. This study demon-strates the scalable fabrication of flexible laser-induced graphene (LIG)-boron doped diamond nanowall (BDNW) hybrid nanostructures...
-
Introduction to the RSC Advances themed collection on nano and microscale modifications of biomaterials
PublicationThe dramatically increasing development of novel biomaterials, their manufacturing techniques, and surface modications, as well as their application in in vivo tests and clinical trials, is evident. It is interesting to note in what a relatively short time the well-known long-term implants have become medical standard: titanium dental implants started in 1965, and total hip arthroplasty (not very successful) was rst attempted...
-
Poloxamer: A versatile tri-block copolymer for biomedical applications
PublicationPoloxamers, also called Pluronic, belong to a unique class of synthetic tri-block copolymers containing central hydrophobic chains of poly(propylene oxide) sandwiched between two hydrophilic chains of poly(ethylene oxide). Some chemical characteristics of poloxamers such as temperature-dependent self-assembly and thermo-reversible behavior along with biocompatibility and physiochemical properties make poloxamer-based biomaterials...
-
Vascular stents - materials and manufacturing technologies
PublicationThe objective of this article is to present materials and technology for the manufacture of vascular stents with appropriate design requirements. The use of the right material is very important in implantology. A biomaterial introduced into the circulatory system must be biocompatible and hemocompatible. At the same time, it should not initiate toxic, mutagenic, or immunological reactions. Currently, 316L stainless steel (316L...
-
A Closed Bipolar Electrochemical Cell for the Interrogation of BDD Single Particles: Electrochemical Advanced Oxidation
PublicationA closed bipolar electrochemical cell containing two conductive boron-doped diamond (BDD) particles of size 250 – 350 m, produced by high-pressure high-temperature (HPHT) synthesis, has been used to demonstrate the applicability of single BDD particles for electrochemical oxidative degradation of the dye, methylene blue (MB). The cell is fabricated using stereolithography 3D printing and the BDD particles are located at either...
-
Sustainable polymers targeted at the surgical and otolaryngological applications: Circularity and future
PublicationThe ongoing climate changes, high air and noise pollution have significant impact on humans’ health. This influence is especially visible in otolaryngology, which focuses on respiratory and hearing systems disfunctions. However, even though surgeries are done in response to diseases related to climate changes, they also have a negative impact on the environment, mostly connected with the inherence of single-use fossil fuel derived...
-
A pilot study to assess an in-process inspection method for small diameter holes produced by Direct Metal Laser Sintering
PublicationPurpose The purpose of this research is to evaluate the geometric quality of small diameter holes in parts printed by DMLS technology. An in-process optical inspection method is proposed and assessed during a pilot study. The influence of the theoretical hole diameter assumed in a CAD system and the sample thickness (hole length) on the hole clearance was analysed. Design/methodology/approach The samples made of two different...
-
Latest Achievements in Concrete Structures Three-Dimensional Printing
PublicationWe can hear about three-dimensional printed concrete structures for several years, up to date solutions in this technology allow entire printing settlements of tiny concrete houses. Due to technical limitations, these houses are still small and not very durable, but undoubtedly, this technology is developing. Home printed in three-dimensional technology can be an alternative to modular container buildings implemented in areas affected...
-
Low-Cost 3-D Printed Lens Antenna for Ka-Band Connectivity Applications
PublicationThis paper discusses the use of low-cost 3-D printing technology to fabricate dielectric lenses for Ka-band wireless networks. A low-cost FDM alternative to previously presented 3-D printed lens in SLA technology with high performance resin is presented. The presented approach has been demonstrated for a 39 GHz MU-MIMO antenna array modified to realize multibeam or switched-beam antenna that can support demanding energy-efficient...
-
On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity
PublicationIn this paper, it is proven an existence and uniqueness theorem for weak solutions of the equilibrium problem for linear isotropic dilatational strain gradient elasticity. Considered elastic bodies have as deformation energy the classical one due to Lamé but augmented with an additive term that depends on the norm of the gradient of dilatation: only one extra second gradient elastic coefficient is introduced. The studied class...
-
Marine polymers in tissue bioprinting: Current achievements and challenges
PublicationBioprinting has a critical role in tissue engineering, allowing the creation of sophisticated cellular scaffolds with high resolution, shape fidelity, and cell viability. Achieving these parameters remains a challenge, necessitating bioinks that are biocompatible, printable, and biodegradable. This review highlights the potential of marine-derived polymers and crosslinking techniques including mammalian collagen and gelatin along...
-
Volatile Compound Emissions from Stereolithography Three-Dimensional Printed Cured Resin Models for Biomedical Applications
PublicationStereolithography three-dimensional printing is used increasingly in biomedical applications to create components for use in healthcare and therapy. The exposure of patients to volatile organic compounds (VOCs) emitted from cured resins represents an element of concern in such applications. Here, we investigate the biocompatibility in relation to inhalation exposure of volatile emissions of three different cured commercial resins...
-
Screen-printed Sn-doped TiO2 nanoparticles for photocatalytic dye removal from wastewater: A technological perspective
PublicationTiO2 is widely used as a photocatalyst with a wide band gap, which limited its application. Ion doping and formulating a high-quality screen-printing paste enhance its features. However, the printability of objects for advanced application seems essential nowadays. In this research, the Sn-doped TiO2 nanoparticles were prepared through a sol-gel method followed by calcination at various temperatures of 450 °C, 550 °C, 650 °C, 750...
-
A Low-Profile 3-D Printable Metastructure for Performance Improvement of Aperture Antennas
PublicationIn order to increase the radiation performance of aperture-type antennas, this paper demonstrates a low-profile, planar, single-layer, three-dimensional (3-D) printable metastructure. The proposed hybridized metastructure is highly transparent as it is made out of novel hybrid meta-atoms having transmission coefficient magnitudes greater than -0.72 dB and fully complies with the near-field phase transformation principle. The hybridized...
-
Polymer-Enhanced Active Layer Crystallization in Low-Temperature Carbon-Based Perovskite Solar Cells
PublicationHigh-efficiency perovskite solar cells (PSCs) are emerging as a promising next-generation, low-cost, photovoltaic technology. A key advantage of PSCs is their compatibility with diverse manufacturing techniques, enabling the pursuit of low-cost, stable PSCs. Carbon electrodes, known for their scalability, chemical inertness, and ease of processing through screen printing, have recently seen the development of low-temperature carbon...
-
Mechanical Properties of Additively Manufactured Polymeric Materials—PLA and PETG—For Biomechanical Applications
PublicationThe study presented herein concerns the mechanical properties of two common polymers for potential biomedical applications, PLA and PETG, processed through fused filament fabrication (FFF)—Material Extrusion (ME). For the uniaxial tension tests carried out, two printing orientations—XY (Horizontal, H) and YZ (Vertical, V)—were considered according to the general principles for part positioning, coordinates, and orientation typically...
-
Freelance technical writing application for a job which I did not get.
PublicationIn this essay I am going to explore the different ways in which developments in engineering technology and materials science have improved the quality of learning and at the same time somewhat diminished students innate intellectual ability which came as the result of what we know as A.I. According to wikipedia.org the word "education" comes from the conjunction of a Latin words "I lead" or "duco" meaning "I...
-
Orientation effects on the fracture behaviour of additively manufactured stainless steel 316L subjected to high cyclic fatigue
PublicationIn this paper, stainless steel 316L (SS316L) bars were additively manufactured (AM) in three orientations (Z – vertical, XY – horizontal, ZX45 – midway between vertical and horizontal) by using the Laser Powder Bed Fusion Melting (LPBF-M) method. The AM specimens were subjected to load control fatigue testing under full tension and compression (R = -1) at stress amplitudes ±350, ±400 and ±450 MPa. The XY and ZX45 printing orientations...
-
Design of a Wideband High-Gain Monopulse Antenna for X- and Ku-Bands Applications
PublicationThe present study provides a wideband high-gain monopulse antenna based on a dielectric lens operating in X- and Ku-bands, in which a wideband dielectric lens is designed and employed to fulfill the radiation pattern and bandwidth necessities of a monopulse antenna. The proposed configuration has four horns allowing for the simultaneous creation of 1 and 6 designs in two perpendicular planes. The main advantages of the proposed...
-
Multi-Beam Antenna for Ka-Band CubeSat Connectivity Using 3-D Printed Lens and Antenna Array
PublicationIn this paper, the design of a passive multi-beam lens antenna is proposed for the CubeSat space communication system as an alternative application of a 2-D microstrip antenna array that has originally been designed for a 39 GHz 5 G MU-MIMO system. The half-ellipsoid lens is 3-D printed using stereolithography (SLA) technology. The antenna prototype is capable of selecting the main beam between 16 different directions with a gain...
-
Fluctuation-Enhanced Sensing of Organic Vapors by Ink-Printed MoS2 Devices under UV Irradiation
PublicationThis work presents the results of fluctuationenhanced sensing (FES) of selected organic gases by MoS2 sensor fabricated via a simple ink printing method. We demonstrate that low-frequency noise measured under UV irradiation (275 nm) is more sensitive to different gases than measured in the dark. The noise at 1 Hz under UV light increased 3.3, 3.5, 1.6, and 2.9 times for chloroform, tetrahydrofuran, acetonitrile, and acetone ambiances, respectively....
-
Spray deposited carbon nanotubes counter electrodes for dye-sensitized solar cells
PublicationCarbon nanotubes due to their catalytic properties are a promising alternative to platinum counter electrodes (CE) for dye-sensitized solar cells (DSSC). In this study, counter electrodes were made from double-walled carbon nanotube (DWCNT) ink using the spray printing technique and afterwards thermally treated at temperatures ranging from 120 to 300 °C. Morphology and structure was studied using scanning electron microscopy and...
-
Spray-deposited carbon-nanotube counter-electrodes for dye-sensitized solar cells
PublicationCarbon nanotubes due to their catalytic properties are a promising alternative to platinum counter electrodes (CE) for dye-sensitized solar cells (DSSC). In this study, counter electrodes were made from double-walled carbon nanotube (DWCNT) ink using the spray printing technique and afterwards they were thermally treated at temperatures ranging from 120 to 300 °C. Morphology and structure was studied using scanning electron microscopy...
-
High-performance anode-supported solid oxide fuel cells with co-fired Sm0.2Ce0.8O2-δ/La0.8Sr0.2Ga0.8Mg0.2O3−δ/Sm0.2Ce0.8O2-δ sandwiched electrolyte
PublicationIn this study, intermediate-temperature solid oxide fuel cells (IT-SOFCs) with a nine-layer structure are constructed via a simple method based on the cost-effective tape casting-screen printing-co-firing process with the structure composed of a NiO-based four-layer anode, a Sm0.2Ce0·8O2-δ(SDC)/La0·8Sr0.2Ga0.8Mg0·2O3−δ (LSGM)/SDC tri-layer electrolyte, and an La0·6Sr0·4Co0·2Fe0·8O3-δ (LSCF)-based bi-layer cathode. The resultant...
-
Symbiosis of Art and Technology – From Renaissance to Interactive Art,
PublicationThe article presents the mutual relations between art and technology from the Renaissance to the interactive art of today. It indicates important factors influencing the possibilities of imaging and interpreting reality by artists, ranging from the development of oil painting techniques, linear perspective, the invention of printing and photography, to achievements related to the development of information technologies (computers,...
-
Developing Screen-Printing Processes for Silver Electrodes Towards All-Solution Coating Processes for Solar Cells
PublicationIn recent years, third-generation solar cells have experienced a remarkable growth in efficiency, making them a highly promising alternative energy solution. Currently, high-efficiency solar cells often use top electrodes fabricated by thermal evaporation, which rely on high-cost and high energy-consumption vacuum equipment, raising significant concerns for mass production. This study develops a method for fabricating silver electrodes...
-
RCS Enhancement of Millimeter Wave LTCC Van Atta Arrays With 3-D Printed Lenses for Chipless RFID Applications
PublicationIn this paper, we present a new method to enhance the radar- cross section (RCS) of Van Atta arrays which can be used in chipless radio-frequency identification tags operating in millimeter wave frequency bands. Small planar Low-Temperature Co-fired Ceramic (LTCC) Van Atta arrays, that are durable and can operate in harsh environments, are combined with 3-D printed lenses to increase or modify the shape of their RCS by up to 10...
-
UV light-activated gas mixture sensing by ink-printed WS2 layer
PublicationWe fabricated a sensing layer from ink-printed WS2 flakes and utilized it for UV-activated gas sensing. The optical imaging of the structure made by repeated printing revealed the continuous layer comprising sub-µm flakes, confirmed independently by small-area AFM images (1×1 µm2). The activity of the sensing surface was investigated locally via AFM scanning of the surface with a polarized probing tip. The results indicated that...
-
Near-Field Wireless Sensing of Plastics and Papers Using Frugal Peel-Off Passive Tag
PublicationThis article presents a novel frugal approach of testing plastics and papers using a near-field microwave sensing technique with a peel-off tag. The proposed sensing technique involves two electrical entities: the sensor, which may be regarded as a reader, and a disposable tag. The reader is a modified design of a gap-coupled microstrip line (GCML) sensor, while the passive tag is a standard double-ring complementary split-ring...