Filters
total: 641
filtered: 588
Search results for: flexible polyurethane foams
-
Termooksydacyjna i fotooksydacyjna degradacja pianek poliuretanowych
PublicationPrzeprowadzono ocenę efektywności działania wybranych środków przeciwstarzeniowych w sztywnych piankach poliuretanowych, otrzymywanych na drodze syntezy jednoetapowej. Ocenę tę oparto na pomia-rach zmian barwy oraz wytrzymałości mechanicznej zsyntezowanych materiałów. Na podstawie analizy uzyskanych wyników stwierdzono, iż dodatek 3% mieszaniny I rzędowego antyutleniacza fenolowego oraz benzotriazolowego absorbera UV znacząco zmniejsza...
-
Recycled Polyurethane as a Second Phase in Thermoset Blends and Its Effect on Thermal Degradation Kinetics Studies
PublicationA new approach is introduced in the modification of thermosetting polymer by using different amount of polyurethane of waste origin. The post consumer polyurethane foam coatings are degraded using glycolysis process and the recycled product is further converted into new polyurethane. The blending of recycled polyurethane with epoxy exhibits transparency and produces nanostructures. The effective interaction between two polymers...
-
Effect of glycolysate obtained from polyurethane wastes on mechanical properties of rubber materials
PublicationThe paper presents the possibility of utilization of wastes from polyurethane foams. In this work the results of mechanical investigations of materials obtained from natural rubber mixtures with a mixture of glycolysate and biodiesel glycerine as a plasticizer are described. The measurements of mechanical properties showed rather good tensile strength, elongation at break and modules of extensions M100%, M200%, M300% of obtained...
-
Experimentation, material modelling and simulation of bonded joints with a flexible adhesive
PublicationThe paper deals with material parameters identification of a flexible adhesive and the numerical simulation of its behaviour in a single lap bonded joint. The material modelling was based on the simple shear and tensile-shear laboratory tests of the bonded joints made of thin aluminium and polyurethane plates with the flexible adhesive Terostat MS 9360 manufactured by Henkel AG & Co. The adhesive was considered as a hyperelastic...
-
Study on the Structure-Property Dependences of Rigid PUR-PIR Foams Obtained from Marine Biomass-Based Biopolyol
PublicationThe paper describes the preparation and characterization of rigid polyurethane-polyisocyanurate (PUR-PIR) foams obtained with biopolyol synthesized in the process of liquefaction of biomass from the Baltic Sea. The obtained foams differed in the content of biopolyol in polyol mixture (0–30 wt%) and the isocyanate index (IISO = 200, 250, and 300). The prepared foams were characterized in terms of processing parameters (processing...
-
Physico‐Mechanical Properties and Flammability of PUR/PIR Foams Containing Expandable Graphite Core‐Shell Composite Particles
PublicationIn this work, polyurethane/polyisocyanurate (PUR/PIR) foams were modified by two types of expandable graphite (EG) core-shell composite particles. The pulverized EG core-shell composite particles were prepared during emulsion polymerization using methyl methacrylate or glycidyl methacrylate for the synthesis of the polymeric shells (poly(methyl methacrylate) (PMMA) and poly (glycidyl methacrylate) (PGMA)), and then the obtained EG_PMMA...
-
Mechanical Recycling via Regrinding, Rebonding, Adhesive Pressing, and Molding
PublicationIncreasing amount of polyurethane foams waste (e.g. from the building or furniture industry) produced every year resulted in the intensive development of their recycling methods. This chapter covers most important mechanical recycling methods, i.e. regrinding, rebonding, adhesive pressing, and molding. The procedure, required equipment and chemicals (if needed) for each method were described. The possible applications of the products...
-
Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties
PublicationThe present study examined the application of polyols obtained via microwave-assisted liquefaction of lignin in the production of rigid polyurethane foam. Lignin was liquefed in crude glycerol and 1,4-butanediol at diferent temperatures (130–170 °C), without a catalyst and using various biomass concentrations (15 and 30 wt%). The physicochemical properties, process yield, and FTIR-based identifcation of the obtained polyols were...
-
Chemical modifications of natural oils and examples of their usage for polyurethane synthesis
PublicationNatural oils have been used in the production of plastics for a long time. However, the number of studies dedicated to polyurethane research has shown an increase only recently. Usually, petrochemical components are used in polyurethane synthesis. Nowadays, there have been attemptsmade to replace polyols in polyurethanes with the modified oils and other natural raw materials. It is a promising and important scenario because the...
-
Enhancement of PUR/PIR foam thermal stability after addition of Zostera marina biomass component investigated via thermal analysis and isoconversional kinetics
PublicationIn the present work, a thorough thermogravimetric (TG) analysis of bio-based polyurethane–polyisocyanurate (PUR–PIR) foams in both nitrogen and oxygen atmosphere is performed. A sustainable element of the foam is a biopolyol obtained via acid-catalyzed liquefaction of Zostera marina and Enteromorpha Algae biomass. Based on isoconversional analysis and apparent activation energies, several conclusions are obtained. In contradiction...
-
The porosity and morphology of PU foams prepared by solvent casting/salt leaching method with different solvents
PublicationIn this study, the polyurethane (PU) system based on poly(ethylene-butylene) adipate diol, 1,6-hexamethylene diisocyanate, 1,4-butanediol and ascorbic acid is used to prepare a foamed material. Polymer foams were created using solvent casting/salt-particle leaching (SC/PL) method. The influence of the PU concentration in different solutions [either in a DMF or in DMF with THF as a co-solvent] on the morphology and porosity of the...
-
Performance properties of rigid polyurethane-polyisocyanurate/brewers’ spent grain foamed composites as function of isocyanate index
PublicationIn the presented work, rigid polyurethane-polyisocyanurate (PUR-PIR) foams filled with brewers’ spent grain (BSG) were prepared. The influence of the isocyanate index (II) on its performance was investigated. Foams obtained with higher isocyanate index required a higher amount of hydrofluorocarbon physical blowing agent to provide the same apparent density of material. An increase of isocyanate index resulted in a slight decrease...
-
Chemical structures, rheological and physical properties of biopolyols prepared via solvothermal liquefaction of Enteromorpha and Zostera marina biomass
PublicationIn this work, liquefied biomass from the Baltic Sea was used for the preparation of rigid polyurethane (PUR) foams. The biomass contained 10 wt% of Enteromorpha macroalgae and 90 wt% of Zostera marina seagrass characterized by a high content of cellulose. The influence of time, temperature and the type of solvent on the efficiency of the liquefaction process and properties of biopolyols was determined. Obtained materials were analyzed...
-
Polyurethane glycolysate from industrial waste recycling to develop low dielectric constant, thermally stable materials suitable for the electronics
PublicationWe are utilizing a new method to improve the dielectric properties of a conventional polymer using a recycled polymer product. The polyurethane foams are recycled by glycolysis process and the derived material was applied to improve the dielectric properties of the brittle DGEBA epoxy resin. Two main parameters that determine the applicability of the material as a dielectric (the dielectric constant and dielectric loss), were studied...
-
Rheological properties, oxidative and thermal stability, and potential application of biopolyols prepared via two-step process from crude glycerol
PublicationIn this work, previously synthesized biopolyols were analyzed in terms of their rheological and thermal properties, very important from the technological point of view. For better evaluation of performed synthesis, the influence of its time and temperature on the properties of biopolyols was determined. In the end, obtained materials were used to prepare rigid polyurethane-polyisocyanurate (PUR-PIR) foams, to evaluate their potential...
-
One More Step Towards a Circular Economy for Thermal Insulation Materials—Development of Composites Highly Filled with Waste Polyurethane (PU) Foam for Potential Use in the Building Industry
PublicationThe rapid development of the building sector has created increased demand for novel materials and technologies, while on the other hand resulting in the generation of a severe amount of waste materials. Among these are polyurethane (PU) foams, which are commonly applied as thermal insulation materials. Their management is a serious industrial problem, due to, for example, their complex chemical composition. Although some chemical...
-
Biopolyols obtained via crude glycerol-based liquefaction of cellulose: their structural, rheological and thermal characterization
PublicationIn this work lignocellulose biomass liquefaction was used to produce biopolyols suitable for the manufacturing of rigid polyurethane foams. In order to better evaluate the mechanism of the process, pure cellulose was applied as a raw material. The effect of time and temperature on the effectiveness of liquefaction and the parameters of resulting biopolyols were characterized. The prepared materials were analyzed in terms of their...
-
Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology
PublicationThe possibility of using additive manufacturing (AM) in the medicine area has created new opportunities in health care. This has contributed to a sharp increase in demand for 3D printers, their systems and materials that are adapted to strict medical requirements. We described herein a medical-grade thermoplastic polyurethane (S-TPU) which was developed and then formed into a filament for Fused Deposition Modeling (FDM) 3D printers...
-
Recent Advances in Development of Waste-Based Polymer Materials: A Review
PublicationLimited petroleum sources, suitable law regulations, and higher awareness within society has caused sustainable development of manufacturing and recycling of polymer blends and composites to be gaining increasing attention. This work aims to report recent advances in the manufacturing of environmentally friendly and low-cost polymer materials based on post-production and postconsumer wastes. Sustainable development of three groups...
-
Risks related to car fire on innovative Poroelastic Road Surfaces-PERS
PublicationTo reduce tyre/road noise, the concept of poroelastic road surfaces (PERS) was invented. PERS is a road surface material that is porous, and at the same time, it is flexible because of the substantial amount of rubber granulate content (from 20% to 85%). The rubber and stone particles are bound by polyurethane resin instead of bitumen. It was feared that in case of fire, because of the high content of rubber and polyurethane, there...
-
Experimental study on polymer mass used to repair damaged structures
PublicationA new method of repairing damaged structures by injecting the cracks with specially designed polymer mass (flexible two-component grout based on polyurethane resin) has been recently proposed. The technique is mainly dedicated to damaged masonries, especially historical structures where minimum intervention is permitted. The cracks are filled with the special injection, forming the flexible joints bonding the disrupted structural...
-
Recycling of Polyurethanes Containing Flame-Retardants and Polymer Waste Transformed into Flame-Retarded Polyurethanes
PublicationThe growing number of polyurethanes (PUs) produced every year has developed methods for their mechanical and chemical recycling which yield valuable products like substitutes for commercial polyols or flame-retardants. PUs can be produced in different shapes and forms (i.e., elastomers, flexible or rigid foams, coatings, etc.) using several different components (i.e., di- or polyisocyanates, ester- or ether-based polyols, low-molecular...
-
Mathematical Modelling of a Seismic Isolation System to Protect Structures During Damaging Earthquakes
PublicationThe present study aims to determine the effectiveness of a nonlinear mathematical model in simulating complex mechanical behaviour of a seismic isolation system to protect structures during strong and damaging earthquakes. In order to construct the Polymeric Bearings considered in this research, a specially prepared flexible polyurethane elastomer with increased damping properties has been used. The usefulness of the proposed mathematical...
-
Shaking table experimental study on the effectiveness of polymer bearings for seismic isolation of structures
PublicationSeismic isolation has been recognised to be a very effective way of protecting structures from damage during earthquakes. It allows us to extend the natural period of the structure and therefore avoid resonance with the ground motion. Moreover, by increasing damping in the isolation devices, more energy can be dissipated and thus the structural response can be further reduced. The aim of this paper is to show the results of the...
-
Poroelastic Low Noise Road Surfaces
PublicationNoise is one of the most important problems related to road traffic. During the last decades, noise emitted by engine and powertrain of vehicles was greatly reduced and tyres became a clearly dominant noise source. The paper describes the concept of low noise poroelastic road surfaces that are composed with mineral and rubber aggregate bound by polyurethane resin. Those surfaces have a porous structure and are much more flexible...
-
Ultra Low Noise Poroelastic Road Surfaces
PublicationNoise is one of the most important environmental problems related to road traffic. During the last decades, the noise emitted by the engines and powertrains of vehicles was greatly reduced and tires became a clearly dominant noise source. The article describes the concept of low noise poroelastic road surfaces that are composed of mineral and rubber aggregate bound by polyurethane resin. Those surfaces have a porous structure and...
-
Graphene Reinforced Phenolic Foams
PublicationPhenolic foams (PF) belong to the polymeric materials, which are very attractive from the point of many possible applications such as insulation or fire protection materials. This chapter attempts to explain the influence of graphene and graphene derivatives on the phenolic foams. This work briefly presents different graphene nanoparticles introduced to the phenolic foams matrix, in terms of impact on the thermal, mechanical, and...
-
The miniaturised emission chamber system and home-made passive flux sampler studies of monoaromatic hydrocarbons emissions from selected commercially-available floor coverings
PublicationThe estimation of the emission rate of organic compounds released from various types of indoor materials can be performed using stationary environmental test chambers (ETC) classified as ex-situ methods or small-scale portable analytical devices based on the use of passive technique at the stage of analytes sampling from the gaseous phase (in-situ methods). The paper presents results of emissions of selected organic compounds from...
-
THE INFLUENCE OF POLYMER STRIPS IN REDUCTION OF A STEEL GRANDSTAND VIBRATIONS
PublicationGrandstands are types of structures commonly used during sport events or music concerts. Dynamic loads generated by crowd movement may have significant influence on human perception as well as may lead to the destruction of a structure. Lighter and more slender structural steel members are more easily excitable by spectators. If the synchronized movement is tuned with the natural frequency of the affected part of the structure,...
-
Synthesis and characterisation of polyurethane elastomers with semi-products obtained from polyurethane recycling
PublicationIn this work polyurethane elastomers were synthesised by using different mixtures of a petrochemical and glycerolysate polyols and 4,4-diphenylmethane diisocyanate (MDI). Glycerolysate polyol was produced from polyurethane foam decomposition using crude glycerine as a decomposition agent. The structure and thermal properties of obtained semi-product were similar to the polyol used in the synthesis of original foam. Glycerolysate...
-
Nonlinear Viscoelastic Properties of Polyurethane Nanocomposites
PublicationIn recent years, the nonlinear viscoelastic behaviors of elastomeric nanocomposites have been examined, especially for a wide range of rubbery composite (including natural rubber) materials. This chapter describes the influence of fillers and nanofillers on the nonlinear viscoelastic properties of elastomeric polyurethane systems. These filled elastomers (similar to the classic natural rubber reinforced elastomers), also exhibit...
-
Renewable Resources for Polyurethanes and Polyurethane Composites: A Review
PublicationEach year, more than two million tons of polyurethane is produced in the EU by reacting isocyanates with polyols made from fossil fuel. In addition, there are appreciable quantities of petroleum based functional additives applied in the industry nowadays for both polyols and polyurethane materials. It is therefore of key importance to develop sustainable economically viable polyols with enhanced functionalities, and thereby reducing...
-
Polyurethane-based aerogels: Preparation, properties, and applications
PublicationPolyurethane aerogels (PUAs) are interesting materials because of their high porosity, low density, and low thermal conductivity, which result in their application as thermal insulations. PUAs are mainly synthesized using di- and polyisocyanates, diols or polyols, catalysts (tertiary amines and organometallic), and solvents (which are used as reaction medium, purifying of obtained semiproducts). Preparation procedure involves several...
-
Molecular dynamics studies of polyurethane nanocomposite hydrogels
PublicationPolyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite R 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means...
-
Shape memory thin films of Polyurethane: Does graphene content affect the recovery behavior of Polyurethane nanocomposites?
PublicationThin nanocomposite films of polyurethane have received remarkable attention due to their shape memory properties. As most of the reports focus on the beneficial aspects of the presence of nanofillers such as graphene nanoplatelets (GNPs) introduced into shape memory polymers, some research results reveal the opposite trend. The polyether/polyester-based polyurethane was synthesized through a condensation polymerization and the...
-
Preparation of Well-Compatibilized PP/PC Blends and Foams Thereof
PublicationThe performance of polypropylene-poly(ethylene brassylate) block and graft copolymers and a polypropylene-polycaprolactone graft copolymer as compatibilizers for polypropylene-rich polypropylene/bisphenol A polycarbonate (PP/PC, 80/20 wt/wt) blends was elucidated. The copolymers were synthesized either by metal-catalyzed ring-opening polymerization or transesterification of a presynthesized polyester, initiated by hydroxyl-functionalized...
-
Transport of paracetamol in swellable and relaxing polyurethane nanocomposite hydrogels
PublicationPolyurethane hydrogels are potentially attractive materials for biomedical applications. They are able to absorb large amount of water, biological fluids or active substances, and thus, they have potential to be used as absorbents or wound-healing dressings. They are also used for the controlled release of therapeutics because of their capacity to embed biologically active agents in their water-swollen network. The presence of...
-
Keep It Flexible: Driving Macromolecular Rotary Motions in Atomistic Simulations with GROMACS
PublicationWe describe a versatile method to enforce the rotation of subsets of atoms, e.g., a protein subunit, in molecular dynamics (MD) simulations. In particular, we introduce a “flexible axis” technique that allows realistic flexible adaptions of both the rotary subunit as well as the local rotation axis during the simulation. A variety of useful rotation potentials were implemented for the GROMACS 4.5 MD package. Application to the...
-
New polish catalogue of typical flexible and semi-rigid pavements
PublicationThe paper covers the following topics important for the development of the new Polish Catalogue of typical flexible and semi-rigid pavements: reasons for preparing the new issue of the Catalogue of typical flexible and semi-rigid pavements, items introduced in the new issue, organise the terminology related to pavements, design traffic calculations and new equivalent axle load factors,...
-
Polyurethane Glycerolysate as a Modifier of the Properties of Natural Rubber Mixtures and Vulcanizates
PublicationChemical recycling of polyurethanes can be realized in several different ways, but the most important methods are glycolysis and glycerolysis. Both methods permit recovery of polyols (when the process is realized with the mass excess of depolymerizing agent) or substitutes of polyols, which contain urethane moieties in the main chains and terminate mainly in hydroxyl groups (when the process is realized with the mass excess of...
-
Structure, Mechanical, Thermal and Fire Behavior Assessments of Environmentally Friendly Crude Glycerol-Based Rigid Polyisocyanurate Foams
PublicationIn this work, rigid polyisocyanurate foams were prepared at partial substitution (0–70 wt%) of commercially available petrochemical polyol, with previously synthesized biopolyol based on crude glycerol and castor oil. Influence of the biopolyol content on morphology, chemical structure, static and dynamic mechanical properties, thermal insulation properties, thermal stability and flammability was investigated. Incorporation of...
-
Fuzzy logic in controlling flexible manufacturing cell
PublicationIn the present work a controlling method based on fuzzy rule base is proposed. Practical approaches are developed and focused on real time problems related to flexible manufacturing cell. Techniques for design and implementation of fuzzy systems in the framework of control production and quality states are presented. Keywords: controlling, manufacturing system, fuzzy logic, turning, burnishingW artykule przedstawiono propozycję...
-
Stress Relaxation Behaviour Modeling in Rigid Polyurethane (PU) Elastomeric Materials
PublicationPolyurethane (PU) has been used in a variety of industries during the past few years due to its exceptional qualities, including strong mechanical strength, good abrasion resistance, toughness, low-temperature flexibility, etc. More specifically, PU is easily “tailored” to satisfy particular requirements. There is a lot of potential for its use in broader applications due to this structure–property link. Ordinary polyurethane items...
-
Discussion. Numerical analysis of thin-walled frames with flexible joints
PublicationPrzedstwiono uwagi do artkułu Tews R., Rachowicz W. ''Numerical Analysis of Thin-Walled Frames with Flexible Joints'', Archives of Civil Engineering, 51, 3, 2005, ss. 344-369.
-
Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation
PublicationA new method of obtaining functional foam material has been proposed. The materials were created by mixing the poly lactic acid (PLA) solution in chloroform, chitosan (CS) dissolved in water saturated with CO2 and polyethylene glycol (PEG), and freeze-dried for removal of the solvents. The composite foams were characterized for their structural (SEM, FT-IR, density, porosity), thermal (DSC), functional (hardness, elasticity, swelling...
-
Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation
PublicationA new method of obtaining functional foam material has been proposed. The materials were created by mixing the poly lactic acid (PLA) solution in chloroform, chitosan (CS) dissolved in water saturated with CO2 and polyethylene glycol (PEG), and freeze-dried for removal of the solvents. The composite foams were characterized for their structural (SEM, FT-IR, density, porosity), thermal (DSC), functional (hardness, elasticity, swelling...
-
Investigation of polyurethane elastomer–steel joints using glass lacquer as an adhesive agent
PublicationThis article describes an innovative method of coupling polyurethane elastomer (based on polyurethane glycolysate) with constructional steel, by implementation of a Glaspur®—glass lacquer containing latent polyurethanes and monosilane adhesion promoters. The commonly applied coupling agent is Cilbond® 45SF glue or its derivatives. Additionally, glycolysate was synthesised from polyurethane waste and 1,3-propylene glycol in 6:1...
-
Application of artificial intelligence into/for control of flexible manufacturing cell
PublicationThe application of artificial intelligence in technological processes control is usually limited. One problem is how to respond to changes in the environment of manufacturing system. A way to overcome the above shortcoming is to use fuzzy logic for representation of the inexact information. In this paper fundamentals of artificial intelligence and fuzzy logic are introduced from a theoretical point of view. Still more the fuzzy...
-
A review: Fabrication of porous polyurethane scaffolds
PublicationThe aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical...
-
Thermoplastic polyurethanes with glycolysate intermediates from polyurethane waste recycling
PublicationThe polyol is a major component in polyurethane formulations and therefore introducing to the formulation recycled polyol (obtained during decomposition process) allows decreasing the usage of pure petrochemical components. In this work, thermoplastic polyurethanes were prepared using various mixtures of a petrochemical macrodiol poly(ethylene-butylene adipate)diol (PEBA) and a recycled glycolysate intermediate, called glycolysate...