Filters
total: 307
filtered: 188
-
Catalog
Chosen catalog filters
Search results for: electrical conductivity
-
Preparation and Characterization of Diamond-like Carbon Coatings for Biomedical Applications—A Review
PublicationDiamond-like carbon (DLC) films are generally used in biomedical applications, mainly because of their tribological and chemical properties that prevent the release of substrate ions, extend the life cycle of the material, and promote cell growth. The unique properties of the coating depend on the ratio of the sp3/sp2 phases, where the sp2 phase provides coatings with a low coefficient of friction and good electrical conductivity,...
-
In-situ Cu-doped MnCo-spinel coatings for solid oxide cell interconnects processed by electrophoretic deposition
PublicationThe Cu doping of the Mn–Co spinel is obtained “in-situ” by electrophoretic co-deposition of CuO and Mn1.5Co1.5O4 powders and subsequent two-step reactive sintering. Cu-doped Mn1.5Co1.5O4 coatings on Crofer22APU processed by electrophoretic co-deposition method are tested in terms of long term oxidation resistance and area specific resistance tests up to 3600 h. The introduction of Cu in the spinel lead to higher level of densification...
-
Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results
PublicationAlthough titaniumand its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone....
-
Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes
PublicationFabrication processes of thin boron-doped nanocrystalline diamond (B-NCD) films on silicon-based micro- and nano-electromechanical structures have been investigated. Nanocrystalline boron doped -diamond (B-NCD) films were deposited using Microwave Plasma Assisted Chemical Vapour Deposition (MW PA CVD) method. The variation of B-NCD morphology, structure and optical parameters were particularly investigated. The use of truncated...
-
Water Solubilization Using Nonionic Surfactants from Renewable Sources in Microemulsion Systems
PublicationIn this study the effect of temperature, NaCl andoils (hydrocarbons: C8-C16) on the formation and solubilizationcapacity of the systems of oil/monoacylglycerols(MAG):ethoxylated fatty alcohols (CEO20)/propylene glycol(PG)/water was investigated. The effects of the surfactantmixture on the phase behavior and the concentration ofwater or oil in the systems were studied at three temperatures(50, 55, 60 C) and with varied NaCl solutions...
-
Tailor-Made Polysaccharides for Biomedical Applications
PublicationPolysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as...
-
Assembly of 1D Granular Structures from Sulfonated Polystyrene Microparticles
PublicationBeing able to systematically modify the electric properties of nano- and microparticles opens up new possibilities for the bottom-up fabrication of advanced materials such as the fabrication of one-dimensional (1D) colloidal and granular materials. Fabricating 1D structures from individual particles offers plenty of applications ranging from electronic sensors and photovoltaics to artificial flagella for hydrodynamic propulsion....
-
Synthesis and Characterization of Poly(zwitterionic) Structures for Energy Conversion and Storage
PublicationZwitterions are unique class of molecules that possess two functional groups bearing electric charges, one positive and second negative. This setup results in peculiar properties such as high water retention and anti-fouling capability. Therefore, zwitterionic coatings and gels are commonly applied in e.g. biosensing and bioelectronic devices. Despite those applications, there are other perspectives for zwitterionic materials....
-
Effect of alkyl sulfate on the phase behavior of microemulsions stabilized with monoacylglycerols
PublicationIn this study the effect of an anionic surfactant (sodium dodecyl sulfate SDS) and oils (hydrocarbons: C12-C16) on the formation and phase behavior of the systems of oil/monoacylglycerols (MAG):SDS/propylene glycol/water has been investigated. The effects of the surfactant mixture on the phase behavior and the concentrationof water or oil in the systems were studied at three temperatures (50, 55, 60 C). Electrical conductivity...
-
Zirconia-based mixed potential sensor with Pt electrode prepared by spin-coating of polymeric precursor
PublicationMany types of yttria-stabilized zirconia (YSZ) based gas sensors have been explored extensively in recent years. Great attention have been directed to mixed-potential-type gas sensors. It is due to growing concerns with environmental issues. Not without a significance is the fact of very attractive performance of this type of sensor allowing to detect low concentration of pollutant gases. In this paper two types of YSZ based mixed-potential...
-
High-performance NdSrCo2O5+δ–Ce0.8Gd0.2O2-δ composite cathodes for electrolyte-supported microtubular solid oxide fuel cells
PublicationNdSrCo2O5+δ (NSCO) is a perovskite with an electrical conductivity of 1551.3 S cm−1 at 500 °C and 921.7 S cm−1 at 800 °C and has a metal-like temperature dependence. This perovskite is used as the cathode material for Ce0.8Gd0.2O2-δ (GDC)-supported microtubular solid oxide fuel cells (MT-SOFCs). The MT-SOFCs fabricated in this study consist of a bilayer anode, comprising a NiO–GDC composite layer and a NiO layer, and a NSCO–GDC...
-
Mixed ionic-electronic conductivity and structural properties of strontium-borate glass containing nanocrystallites of Bi2 VO5.5
PublicationSamples of strontium borate glass containing bismuth vanadate nanocrystallites were prepared. Nanocomposites containing up to 45mol% of the Bi2VO5.5 phase exhibit electrical properties closer to the strontium-borate glass than to the ferroelectric Bi2VO5.5 ceramic. The glass matrix still may contain some part of bismuth and vanadium ions even after crystallization process and there is too little of crystalline phase to observe...
-
Nitrogen-incorporated boron-doped diamond films for enhanced electrochemical supercapacitor performance
PublicationThe electrochemical (EC) supercapacitor, known for its rapid charging, reliability, and versatile applications, demands optimized electrode characteristics and an understanding of their electrochemical behaviour. Although boron-doped diamond (BDD) holds promise as a supercapacitor electrode, a crucial gap exists in comprehending its material behaviour under specific growth conditions. Here, nitrogen-incorporated BDD (N-BDD) films...
-
Do morphometric parameters and geological conditions determine chemistry of glacier surface ice? Spatial distribution of contaminants present in the surface ice of Spitsbergen glaciers (European Arctic)
PublicationAbstract The chemism of the glaciers is strongly determined by long-distance transport of chemical substances, and their wet and dry deposition on the glacier surface. This paper concerns spatial distribution of metals, ions, and dissolved organic carbon, as well as the differentiation of physicochemical parameters (pH, electrical conductivity) determined in ice surface samples collected from four Arctic glaciers during the summer...
-
The role of atmospheric precipitation in introducing contaminants to the surface waters of the Fuglebekken catchment, Spitsbergen.
PublicationAlthough the Svalbard Archipelago is located at a high latitude, far from potential contaminant sources, it is not free from anthropogenic impact. Towards the Fuglebekken catchment, in the southern part of Spitsbergen, north of Hornsund fjord, contaminants can be transported from mainland pollution sources. In the precipitation and surface water collected in the catchment, the following elements were detected and quantified: Ag,...
-
MnWO4/reduced graphene oxide-based electrochemical sensing platform for simultaneous detection of catechol and resorcinol
Publicationn this study, a novel electrochemical sensor for accurate and sensitive catechol determination was demonstrated employing a screen-printed graphite electrode (SPGE) modified with MnWO4/reduced graphene oxide (MnWO4/rGO) nanocomposite. The MnWO4/rGO nanocomposite has been successfully prepared by using hydrothermal technique, and it was then characterized using several microscopic and spectroscopic methods (XRD, FE-SEM, and EDS)....
-
Assessment of the Bulgarian Wastewater Treatment Plants’ Impact on the Receiving Water Bodies
PublicationDeterioration of water quality is a major problem world widely according to many international non-governmental organizations (NGO). As one of the European Union (EU) countries, Bulgaria is also obliged by EU legislation to maintain best practices in assessing surface water quality and the efficiency of wastewater treatment processes. For these reasons studies were undertaken to utilize ecotoxicological (Microtox®, Phytotoxkit...
-
The chemistry of river–lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes). Part I. Analysis of ion and trace metal concentrations
PublicationThis study provides a description of water chemistry in river–lake systems located in central Mongolia, at the borderline of permafrost occurrence. The analysis involved water samples collected from two river–lake systems: Baydrag River–Böön Tsagaan Lake system, and Shargalyuut/Tuyn Rivers–Orog Lake system. In the water samples, ions and trace elements were detected and quantified. Additionally, the parameters of pH, electrical...
-
Spatial Differences in the Chemical Composition of Surface Water in the Hornsund Fjord Area: A Statistical Analysis with A Focus on Local Pollution Sources
PublicationSurface catchments in Svalbard are sensitive to external pollution, and yet what is frequently considered external contamination may originate from local sources and natural processes. In this work, we analyze the chemical composition of surface waters in the catchments surrounding the Polish Polar Station in Svalbard, Hornsund fjord area. We have pooled unpublished and already published data describing surface water composition...
-
A novel approach for processing CaAlSiON glass-ceramics by spark plasma sintering: Mechanical and electrical properties
PublicationLithium containing glassy materials can be used as solid electrolytes or electrode materials for lithium-ion batteries due to their high energy density. Conventional melt-quenched Ca11Al14Si16O49N10 glass powder containing 24 e/o N, doped with Li-ions (1, 3, and 6 wt. %) and sintered by spark plasma sintering technique (SPS) was studied. The benefits of using SPS to produce glass-ceramics are rapid heating rates compared to conventional...
-
Unraveling the role of boron dimers in the electrical anisotropy and superconductivity in boron-doped diamond
PublicationWe use quantum mechanics (QM) to determine the states formed by B dopants in diamond. We find that isolated B sites prefer to form BB dimers and that the dimers pair up to form tetramers (BBCBB) that prefer to aggregate parallel to the (111) surface in the <110> direction, one double layer below the H-terminated surface double layer. These tetramers lead to metallic character (Mott metal Insulator Transition) with holes in the...
-
Nonlinear electrical properties of glass-ceramics nanocomposites containing ferroelectric nanocrystallites of Bi2VO5.5
PublicationNonlinear A.C. impedance measurements were conducted in the 50BiV-50SrBAlO nanocomposite as a function of frequency, temperature and A.C. voltage. This material is ferroelectric below temperature of 730 K, and above 730 K is a good ion-conductor. For this nanocomposite a low A.C. voltage of 1 V rms is enough to observe high nonlinearities. The origin of these nonlinear effects depends on the temperature and frequency. In the high...
-
Enhancing electrical properties through in-situ controlled nanocrystallization of V2O5–TeO2 glass
PublicationV2O5–TeO2 glass–ceramics (VTGC) were prepared by controlled annealing of the V2O5–TeO2 glass (VTG), which illustrates a parent glass matrix with a single charge carrier. The annealing proceeded at six temperatures selected between the glass transition and the maximum of the frst crystallization process to obtain various nanocrystallite sizes. Heat treatment caused an increase in DC conductivity by 2.5–3.5 (250–285 °C) order of...
-
Graphene-based Silicone rubber Nanocomposites: Preparation, Characterization, and Properties
PublicationThis study aims to understand better the mechanical, thermal, and tribological behavior of silicone rubber nanocomposites. Graphite, exfoliated graphite, reduced graphene oxide, ionic liquid modified graphene oxide, silane-modified graphene oxide, fumed silica, and other fillers were used in this study. Adding graphene-based fillers to the silicone rubber matrix substantially improves the nanocomposite's mechanical, thermal, and...
-
Cathodic activation of synthesized highly defective monoclinic hydroxyl‐functionalized ZrO2 nanoparticles for efficient electrochemical production of hydrogen in alkaline media
PublicationThe high electrochemical stability of Zirconia (ZrO2) at high potentials strongly suggested it as an alternative to carbon supports, which experience reduced efficiency due to some corrosion problems particularly during prolonged electrocatalysis activity. However, the use of ZrO2 was limited by its low electrical conductivity and surface area. In this work, we developed a methodology for synthesizing monoclinic ZrO2 NPs with increased...
-
Electroactive polymer/graphene oxide nanostructured composites; evidence for direct chemical interactions between PEDOT and GOx
PublicationThis work concerns electrochemical synthesis of nanocomposites consisting of conducting polymer and reduced graphene oxide (rGOx) as electrode materials for supercapacitors. The electrosynthesis was performed in an aqueous solution of the 3,4-ethylenedioxytiophene (EDOT) monomer and graphene oxide (GOx) without supporting electrolyte. The amount of GOx was optimized to obtain the best electrochemical performance of the nanocomposite...
-
Reducing Monitoring Costs in Industrially Contaminated Rivers: Cluster and Regression Analysis Approach
PublicationMonitoring contamination in river water is an expensive procedure, particularly for developing countries where pollution is a significant problem. This study was conducted to provide a pollution monitoring strategy that reduces the cost of laboratory analysis. The new monitoring strategy was designed as a result of cluster and regression analysis on field data collected from an industrially influenced river. Pollution sources in...
-
Enhanced capacitance of composite TiO2 nanotube / boron-doped diamond electrodes studied by impedance spectroscopy
PublicationWe report on the novel composite nanostructures based on boron-doped diamond thin film grown on top of TiO2 nanotubes. The nanostructures made of BDD-modified titania nanotubes showed an increase in activity and performance when used as electrodes in electrochemical environments. The BDD thin films (~200-500 nm) were deposited using microwave plasma assisted chemical vapor deposition (MW PA CVD) onto anodically fabricated TiO2...
-
N-doped graphene quantum dot-decorated MOF-derived yolk-shell ZnO/NiO hybrids to boost lithium and sodium ion battery performance
PublicationSurface engineering at the nanoscale to obtain robust interface between metal oxides and quantum dots is essential for improving the performance and stability of battery materials. Herein, we designed and prepared novel N-doped graphene quantum dot-modified ZnO/NiO anode materials with a well-defined yolk-shell structure for lithium and sodium-ion batteries. NG QDs were assembled on the ZnO/NiO microspheres using three different...
-
Locust bean gum as green and water-soluble binder for LiFePO4 and Li4Ti5O12 electrodes
PublicationLocust Bean Gum (LBG, carob bean gum) was investigated as an environmentally friendly, natural, and water-soluble binder for cathode (LFP) and anode (LTO) in lithium-ion batteries (Li-ion). For the frst time, we show LBG as an electrode binder and compare to those of the most popular aqueous (CMC) and conventional (PVDF) binders. The electrodes were characterized using TGA/DSC, the galvanostatic charge–discharge cycle test, cyclic...
-
Enzyme-conjugated MXene nanocomposites for biosensing and biocatalysis acuities
PublicationEngineered two-dimensional (2-D) MXenes-based materials with tunable characteristics and multi-functionalities have brought up new paradigms in the biosensing and catalysis of chemical compounds. The profusion of electroactive functional moieties on the surface of few/multi-layer MXenes facilitates their ability to retain biomolecules such as enzymes resulting in unique dimensions for bioanalytical and biosensing applications....
-
PREPARATION AND CHARACTERIZATION OF CoFe2O4/TiO2-PANI HYBRID NANOCOMPOSITE WITH MAGNETIC AND PHOYOCATALYTIC ACTIVITY
PublicationHybrid nanocomposites consisting of inorganic component and organic conducting polymer are promising materials, which can be applied in heterogeneous photocatalysis. Titanium(IV) oxide is widely used photocatalysts due to its non-toxicity, low cost and chemical stability. The main disadvantage of TiO2 is low photocatalytic activity under visible light. Conducting polymers, also known as conjugated polymers are polymer materials...
-
Nanokrystaliczne warstwy ceramiczne otrzymywane metodą pirolizy aerozolowej w tlenkowych ogniwach paliwowych
PublicationNiniejsza rozprawa doktorska dotyczy badań materiałów wytwarzanych w postaci cienkich, nanokrystalicznych warstw ceramicznych metodą pirolizy aerozolowej dla zastosowań w tlenkowych ogniwach paliwowych (SOFC). Badane są trzy możliwe obszary zastosowań wytwarzanych warstw tj. osadzanie powłok ochronnych na stalowych interkonektorach dostarczających gazy do elektrody tlenowej, wytwarzanie bariery ochronnej zapobiegającej dyfuzji...
-
Rubber wastes recycling for developing advanced polymer composites: A warm handshake with sustainability
PublicationRecycling and management of rubber wastes experiences an early-stage maturity in the quest for sustainable and circular materials. Up to now, solutions proposed for sustainable development of rubber wastes are limited, so that properties and performance features of recycled products are inadequate for practical applications. Herein, an experimental protocol is introduced for manufacturing semi-sustainable polymer composites based...
-
Methane emissions from mangrove soils in hydrologically disturbed and reference mangrove tidal creeks in southwest Florida
PublicationStudies have suggested that some mangrove soils might contribute to wetland methane (CH4) production and emissions, especially when the mangroves are disturbed. CH4 emissions were measured seasonally from nine locations on two mangrove creeks on Naples Bay in southwest Florida, USA. One of the tidal creeks has been impacted in the past few decades with alteration of upstream watersheds and freshwater inflows; the other creek was...
-
Application of nanofluids in selected thermal technologies
PublicationSome peculiarities regarding convective heat transfer of nanofluids are presented. Particularly, results of the fundamental research concerning pool boiling and single phase convection of nanofluids as well as data obtained for selected heat exchangers operated with nanofluids are discussed.
-
Cost-effective methods of fabricating thin rare-earth element layers on SOC interconnects based on low-chromium ferritic stainless steel and exposed to air, humidified air or humidified hydrogen atmospheres
PublicationMost oxidation studies involving interconnects are conducted in air under isothermal conditions, but during real-life solid oxide cell (SOC) operation, cells are also exposed a mixture of hydrogen and water vapor. For this study, an Fe–16Cr low-chromium ferritic stainless steel was coated with different reactive element oxides – Gd2O3, CeO2, Ce0.9Y0.1O2 – using an array of methods: dip coating, electrodeposition and spray pyrolysis....
-
Effectiveness of a dual surface modification of metallic interconnects for application in energy conversion devices
PublicationA dual surface modification of an SOFC metallic interconnect with a Gd2O3 layer and an MnCo2O4 coating was evaluated. The tested samples were oxidized for 7000 h in air at 1073 K. Oxidation products were characterized using XRD, SEM-EDS, and confocal Raman imaging, and ASR was measured. The effect of gadolinium segregation at grain boundaries in Cr2O3 was evaluated using S/TEM-EDS. Area specific-resistance was measured and fuel...