Filters
total: 665
filtered: 597
Search results for: ELECTRON MICROSCOPY
-
Emerging oxidized and defective phases in low-dimensional CrCl3
PublicationTwo-dimensional (2D) magnets such as chromium trihalides CrX3 (X ¼ I, Br, Cl) represent a frontier for spintronics applications and, in particular, CrCl3 has attracted research interest due its relative stability under ambient conditions without rapid degradation, as opposed to CrI3. Herein, mechanically exfoliated CrCl3 flakes are characterized at the atomic scale and the electronic structures of pristine, oxidized, and defective...
-
Intense and stable room-temperature photoluminescence from nanoporous vanadium oxide formed by in-ambient degradation of VI3 crystals
PublicationVanadium oxides have attracted research interest because their optoelectronic properties make them optically active with room-temperature photoluminescence (PL) emission, which, however, is not sufficiently intense for real applications. For this reason, many nanostructured vanadium oxides are currently fabricated through several precursors and different treatments to improve the PL efficiency and enhance the PL intensity. Herein,...
-
Insight into Potassium Vanadates as Visible-Light-Driven Photocatalysts: Synthesis of V(IV)-Rich Nano/Microstructures for the Photodegradation of Methylene Blue
PublicationPhotocatalysis is regarded as a promising tool for wastewater remediation. In recent years, many studies have focused on investigating novel photocatalysts driven by visible light. In this study, K2V6O16·nH2O nanobelts and KV3O8 microplatelets were synthesized and investigated as photocatalysts. Samples were obtained via the facile method based on liquid-phase exfoliation with ion exchange. By changing the synthesis temperature...
-
Optical and photocatalytic properties of rare earth metal-modified ZnO quantum dots
PublicationA series of novel ZnO quantum dots modified with rare earth metals was successfully prepared by a simple sol-gel approach. The effects of types (Eu, Er, Tb, Yb, Ho, La) and amounts (from 0.09 to 0.45 mmol) of lanthanides on the optical properties, structural characterization and photocatalytic activity of ZnO/RE QDs were systematically investigated. The X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform...
-
Structure and Stability Characterization of Natural Lake Pigments Made from Plant Extracts and Their Potential Application in Polymer Composites for Packaging Materials
PublicationNatural dyes were extracted from various plant sources and converted into lake pigments based on aluminum and tin. Three different plants (weld, Persian berries, and Brazilwood) were chosen as representative sources of natural dyes. High-performance liquid chromatography (HPLC) and triple-quadrupole mass spectrometry (QqQ MS) were used to identify dyestuffs in the raw extracts. The natural dyes and lake pigments were further characterized...
-
Titanium lanthanum three oxides decorated magnetic graphene oxide for adsorption of lead ions from aqueous media
PublicationThe current study presents a viable and straightforward method for synthesizing titanium lanthanum three oxide nanoparticles (TiLa) and their decoration onto the ferrous graphene oxide sheets to produce FeGO-TiLa as efficient magnetic adsorbent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and vibration sample magnetometer (VSM) were used to evaluate...
-
Investigating the Impact of Curing System on Structure-Property Relationship of Natural Rubber Modified with Brewery By-Product and Ground Tire Rubber
PublicationThe application of wastes as a filler/reinforcement phase in polymers is a new strategy to modify the performance properties and reduce the price of biocomposites. The use of these fillers, coming from agricultural waste (cellulose/lignocellulose-based fillers) and waste rubbers, constitutes a method for the management of post-consumer waste. In this paper, highly-filled biocomposites based on natural rubber (NR) and ground tire...
-
Scalable Route toward Superior Photoresponse of UV-Laser-Treated TiO2 Nanotubes
PublicationTitanium dioxide nanotubes gain considerable attention as a photoactive material due to chemical stability, photocorrosion resistance, or lowcost manufacturing method. This work presents scalable pulsed laser modification of TiO2 nanotubes resulting in enhanced photoactivity in a system equipped with a motorized table, which allows for modifications of both precisely selected and any-large sample area. Images obtained from scanning...
-
The Influence of Microstructure on the Passive Layer Chemistry and Corrosion Resistance for Some Titanium-Based Alloys
PublicationThe effect of microstructure and chemistry on the kinetics of passive layer growth and passivity breakdown of some Ti-based alloys, namely Ti-6Al-4V, Ti-6Al-7Nb and TC21 alloys, was studied. The rate of pitting corrosion was evaluated using cyclic polarization measurements. Chronoamperometry was applied to assess the passive layer growth kinetics and breakdown. Microstructure influence on the uniform corrosion rate of these alloys...
-
Mechanical Properties and Residual Stress Measurements of Grade IV Titanium and Ti-6Al-4V and Ti-13Nb-13Zr Titanium Alloys after Laser Treatment
PublicationNowadays, surface engineering focuses on research into materials for medical applications. Titanium and its alloys are prominent, especially Ti-6Al-4V and Ti-13Nb-13Zr. Samples made of pure grade IV titanium and the titanium alloys Ti-6Al-4V and Ti-13Nb-13Zr were modified via laser treatment with laser beam frequency f = 25 Hz and laser beam power P = 1000 W during a laser pulse with duration t = 1 ms. Subsequently, to analyze...
-
Corrosion Resistance and Surface Bioactivity of Ti6Al4V Alloy after Finish Turning under Ecological Cutting Conditions
PublicationThe influence of cooling conditions and surface topography after finish turning of Ti6Al4V titanium alloy on corrosion resistance and surface bioactivity was analyzed. The samples were machined under dry and minimum quantity lubrication (MQL) conditions to obtain different surface roughness. The surface topographies of the processed samples were assessed and measured using an optical profilometer. The produced samples were subjected...
-
Microwave-Induced Processing of Free-Standing 3D Printouts: An Effortless Route to High-Redox Kinetics in Electroanalysis
Publication3D-printable composites have become an attractive option used for the design and manufacture of electrochemical sensors. However, to ensure proper charge-transfer kinetics at the electrode/electrolyte interface, activation is often required, with this step consisting of polymer removal to reveal the conductive nanofiller. In this work, we present a novel effective method for the activation of composites consisting of poly(lactic...
-
Micro- and nano-Illite to improve strength of untreated-soil as a nano soil-improvement (NSI) technique
PublicationSoil stabilization is a technique of improving the geotechnical properties of soils for various engineering applications. However, conventional stabilizers such as cement and lime have some limitations, such as high cost, environmental impact, and durability issues. Therefore, there is a need for alternative and innovative stabilizers that can overcome these challenges. This study introduces nano-Illite, a type of clay mineral,...
-
Towards sustainable catalyst-free biomass-based polyurethane-wood composites (PU-WC): From valorization and liquefaction to future generation of biocomposites
PublicationA substantial aspect of materials engineering lies in the responsible process of designing polymer-based materials. Due to environmental pollution, excessive consumption of natural resources, and increasing environmental awareness of society, there is a massive need for polyurethane (PU) materials with reduced environmental impact. To date, research on catalyst-free polyurethane-wood composites (PU-WC) has demonstrated a huge potential...
-
Photocatalytic activity of zinc oxide nanorods incorporated graphitic carbon nitride catalyst
PublicationBackground Photocatalysts are user-friendly and serve as compatible materials for degrading industrial dye pollutants. This study utilizes zinc oxide/graphitic carbon nitride (ZnO/g-C3N4) nanocomposites against degrading methylene blue (MB). Methods The hydrothermal method assisted sonication technique was used to fabricate the ZnO/g-C3N4 composite with varying ratios of ZnO/g-C3N4 (1:0.25, 1:0.50, 1:1). The synthesized materials...
-
CO2 capture enhancement by metal oxides impregnated coal fly ash: a breakthrough adsorption study
PublicationCoal fired power plants are significant contributors to CO2 emissions and produce solid waste in the form of coal fly ash, posing severe environmental challenges. This study explores the application of dry-impregnated coal fly ash for CO2 capture from gas stream. The modification of coal fly ash was achieved using alkaline earth metal oxides, specifically CaO and MgO, to alter its physical and chemical properties. Characterization...
-
Waste tire rubber with low and high devulcanization level prepared in the planetary extruder
PublicationWaste tires management is serious and global environmental problem. Therefore, searching for new andindustrially applicable solutions to convert waste tire rubber into high-value added products is gaining more andmore attention. Rubber devulcanization is step forward for further developing rubber recycling and upcyclingtechnologies. Thermo-mechanical treatment of ground tire rubber (GTR) performed in twin screw extruders iscurrently...
-
Synthesis of Cyano-Benzylidene Xanthene Synthons Using a Diprotic Brønsted Acid Catalyst, and Their Application as Efficient Inhibitors of Aluminum Corrosion in Alkaline Solutions
PublicationNovel cyano-benzylidene xanthene derivatives were synthesized using one-pot and condensation reactions. A diprotic Brønsted acid (i.e., oxalic acid) was used as an effective catalyst for the promotion of the synthesis process of the new starting xanthene–aldehyde compound. Different xanthene concentrations (ca. 0.1–2.0 mM) were applied as corrosion inhibitors to control the alkaline uniform corrosion of aluminum. Measurements were...
-
Multi-Analytical Techniques for the Study of Burial Clothes of Polish King Sigismund III Vasa (1566–1633) and His Wife Constance Habsburg (1588–1631)
PublicationThe subjects of this research are the burial clothes of Polish King Sigismund III Vasa and his wife Constance, which were woven and embroidered with silk and metal threads. Fragments of the textiles underwent spectroscopic, spectrometric, and thermogravimetric analyses. The hydrofluoric acid extraction method was improved to isolate various classes of dyes from the textile samples that had direct contact with human remains. High-performance...
-
Microstructure degradation and creep failure study of the dissimilar metal welded joint of heat-resistant steel and Inconel 617 alloy tested at 650 °C and applied stress range of 100–150 MPa
PublicationThe advanced ultra-supercritical (A-USC) power plant system is anticipated to become India's next-generation base-load power station. To adopt AUSC technology, dissimilar welded joints (DWJs) between heat-resistant steels and the nickel-based alloys, using the nickel-based fillers, will need to be implemented. However, failure of dissimilar welded joints from P92 steel base metal or the heat affected zone (HAZ) has been commonly...
-
Microstructure and mechanical properties of a dissimilar metal welded joint of Inconel 617 and P92 steel with Inconel 82 buttering layer for AUSC boiler application
PublicationThe application of the novel dissimilar metal welded (DMW) joint, utilizing Inconel 617 and P92 steel, was showcased in the advanced ultra-supercritical (AUSC) boiler. The work has been performed to investigate the effect of Inconel 82 (ERNiCr-3) buttering layer on microstructure and mechanical properties (high-temperature tensile strength, impact strength and microhardness) of gas tungsten arc welded (GTAW) dissimilar joint between...
-
Aluminum-TiO2 NPs Composites as Non-precious Catalysts for Efficient Electrochemical Generation of Hydrogen
PublicationIn this paper, we demonstrated, for the first time, aluminum titania nanoparticle (Al-TiO2 NP) composites with variable amounts of TiO2 NPs as nonprecious active catalysts for the electrochemical generation of H2. These materials were synthesized by mixing desired amounts of hydrogen titanate nanotubes (TNTs), fabricated here by a cost-effective approach at moderate hydrothermal conditions, with aluminum powder (purity 99.7%; size...
-
Low temperature growth of diamond films on optical fibers using Linear Antenna CVD system
PublicationIt is not trivial to achieve a good quality diamond-coated fibre interface due to a large difference in the properties and composition of the diamond films (or use coating even) and the optical fibre material, i.e. fused silica. One of the biggest problems is the high temperature during the deposition which influences the optical fibre or optical fibre sensor structure (e.g. long-period gratings (LPG)). The greatest advantage of...
-
Improved surface coverage of an optical fibre with nanocrystalline diamond by the application of dip-coating seeding
PublicationGrowth processes of diamond thin films on the fused silica optical fibres (10 cm in length) were investigated at various temperatures. Fused silica pre-treatment by dip-coating in a dispersion consisting of detonation nanodiamond (DND) in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) was applied. Nanocrystalline diamond (NCD) films were deposited on the fibres using the microwave plasma assisted chemical vapour deposition...
-
Development of nanoscale morphology and role of viscoelastic phase separation on the properties of epoxy/recycled polyurethane blends
PublicationA novel and cost-effective approach towards the modification of epoxy matrix has been developed using recycled polyurethane for the first time without sacrificing any of the intrinsic properties of the resin. Polyurethane, recycled from waste foam by glycolysis process (RPU), was found to be very effective in improving the properties of the thermosetting resin based on Diglycidyl ether of bisphenol-A (DGEBA). The effect of the...
-
An Aqueous Exfoliation of WO3 as a Route for Counterions Fabrication—Improved Photocatalytic and Capacitive Properties of Polyaniline/WO3Composite
PublicationIn this paper, we demonstrate a novel, electrochemical route of polyaniline/tungsten oxide (PANI)/WO3) film preparation. Polyaniline composite film was electrodeposited on the FTO (fluorine-doped tin oxide) substrate from the aqueous electrolyte that contained aniline (monomer) and exfoliated WO3 as a source of counter ions. The chemical nature of WO3 incorporated in the polyaniline matrix was investigated using X-ray photoelectron...
-
Solvothermal synthesis and structural characterization of three polyoxotitanium-organic acid clusters
PublicationThree new titanium oxo-clusters Ti4O2(OiPr)10(OOCPhMe)2 (I), Ti6O4(OEt)8(OOCPhMe)8 (II) and Ti6O6(OEt)6(OOCCHPh2)6 (III) were obtained by easy one-step solvothermal reactions of titanium(IV) isopropoxide, alcohols and carboxylic acids. The three compounds were characterized by single-crystal and powder X-ray diffraction, TGA/DSC, optical and electron microscopy, and FTIR and NMR spectroscopy. X-ray powder diffraction and spectroscopy...
-
Corrosion Inhibition Mechanism and Efficiency Differentiation of Dihydroxybenzene Isomers Towards Aluminum Alloy 5754 in Alkaline Media
PublicationThe selection of efficient corrosion inhibitors requires detailed knowledge regarding the interaction mechanism, which depends on the type and amount of functional groups within the inhibitor molecule. The position of functional groups between different isomers is often overlooked, but is no less important, since factors like steric hinderance may significantly affect the adsorption mechanism. In this study, we have presented how...
-
The Influence of Calcium Glycerophosphate (GPCa) Modifier on Physicochemical, Mechanical, and Biological Performance of Polyurethanes Applicable as Biomaterials for Bone Tissue Scaffolds Fabrication
PublicationIn this paper we describe the synthesis of poly(ester ether urethane)s (PEEURs) by using selected raw materials to reach a biocompatible polyurethane (PU) for biomedical applications. PEEURs were synthesized by using aliphatic 1,6-hexamethylene diisocyanate (HDI), poly(ethylene glycol) (PEG), α,ω-dihydroxy(ethylene-butylene adipate) (Polios), 1,4-butanediol (BDO) as a chain extender and calcium glycerolphosphate salt (GPCa) as...
-
Synthesis, characteristics, and photocatalytic activity of zinc oxide nanoparticles stabilized on the stone surface for degradation of metronidazole from aqueous solution
PublicationAbstract Background: The presence of antibiotics such as metronidazole in wastewater even at low concentrations requires searching for a suitable process such as advanced oxidation process (AOP) to reduce the level of pollutants to a standard level in water. Methods: In this study, zinc oxide (ZnO) nanoparticles were synthesized by thermal method using zinc sulfate (ZnSO4) as a precursor, then, stabilized on stone and was used...
-
Superhydrophobic sponges based on green deep eutectic solvents for spill oil removal from water
PublicationThe paper described a new method for crude oil-water separation by means of superhydrophobic melamine sponges impregnated by deep eutectic solvents (MS-DES). Due to the numerous potential of two-component DES formation, simple and quick screening of 156 non-ionic deep eutectic solvents using COSMO-RS (Conductor-like Screening Model for Real Solvents) computational model was used. DES which were characterized by high solubility...
-
Layer-by-layer polymer deposited fabrics with superior flame retardancy and electrical conductivity
PublicationSmart and multifunctional textiles and fabrics are progressively developing, such that multifunctional fabrics are becoming more widespread. We elaborated herein multi-layered flax fabrics with superior flame retardancy and conductivity, which revealed fireproof feature while keeping conductivity during burning. The flax fabric was reinforced by layer-by-layer (LbL) deposition of sodium polyacrylate (SPA), polyethylenimine (PEI),...
-
Polyurethane/Silane-Functionalized ZrO2 Nanocomposite Powder Coatings: Thermal Degradation Kinetics
PublicationA polyurethane (PU)-based powder coating reinforced with vinyltrimethoxysilane (VTMS)-functionalized ZrO2 nanoparticles (V-ZrO2) for thermal stability was developed. Chemical structure, microstructure and thermal degradation kinetics of the prepared coatings were investigated. The peak of aliphatic C–H vibrating bond in the Fourier transform infrared (FTIR) spectrum of V-ZrO2 was a signature of VTMS attachment. Scanning electron...
-
New Peptide Based Fluconazole Conjugates with Expanded Molecular Targets
PublicationInfections of Candida spp. etiology are frequently treated with azole drugs. Among azoles, the most widely used in the clinical scenario remains fluconazole (FLC). Promising results in treatment of dangerous, systemic Candida infections demonstrate the advantages of combined therapies carried out with combinations of at least two different antifungal agents. Here, we report five conjugates composed of covalently linked FLC and...
-
Conversion of waste biomass into activated carbon and evaluation of environmental consequences using life cycle assessment
PublicationIn this article, activated carbon was produced from Lantana camara and olive trees by H3PO4 chemical activation. The prepared activated carbons were analyzed by characterizations such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller, X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared spectroscopy. H3PO4 is used as an activator agent to create an abundant pore...
-
SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF NIOBIUM-DOPED HYDROXYAPATITE CERAMICS
PublicationHydroxyapatite (HAp) ceramic materials are considered as one of the most promising implant materials in bone surgery and in dentistry. They exhibit unique biocompatibility, bioactivity, and osteoconductivity, which are the most desirable biomaterial features. However, HAp itself is brittle, has low strength, high degree of crystallinity and low solubility at physiological pH. Doping synthetic HAp with metal ions plays an important...
-
Enhanced cellulose extraction from agave plant (Agave americana Species) for synthesis of magnetic/cellulose nanocomposite for defluoridation of water
PublicationResearch on fluoride removal from water is currently focusing on the development of innovative materials for defluoridation water. The current study extracted and used enhanced cellulose from Agave americana species to synthesize a magnetic/cellulose nanocomposite for water defluoridation. Strong and light binary acids (H2SO4 and CH3COOH) were utilized to pretreat raw material to enhance cellulose extraction. Central composite...
-
Lignocellulosic waste biosorbents infused with deep eutectic solvents for biogas desulfurization
PublicationThis paper introduces an innovative method for treating biogas streams, employing lignocellulosic biosorbents infused with environmentally friendly solvents known as deep eutectic solvents (DES). The primary focus of this study was the elimination of volatile organosulfur compounds (VSCs) from model biogas. Biosorbents, including energetic poplar wood, antipka tree, corncobs, and beech wood, were used, each with varying levels...
-
Facilitated water transport in composite reduced graphene oxide pervaporation membranes for ethanol upgrading
PublicationHigh purity ethanol is one of the most sought-after renewable energy sources. However, standard production methods yield ethanol of insufficient quality. Membrane processes such as pervaporation are recognized as a viable method for upgrading ethanol. Their performance and selectivity depend solely on membrane employed. Hydrophilic polyvinyl alcohol (PVA) membranes are used industrially for this purpose, but there is a trade-off...
-
Optical and structural properties of polycrystalline CVD diamond films grown on fused silica optical fibres pre-treated by high-power sonication seeding
PublicationIn this paper, the growth of polycrystalline chemical vapour deposition (CVD) diamond thin films on fused silica optical fibres has been investigated. The research results show that the effective substrate seeding process can lower defect nucleation, and it simultaneously increases surface encapsulation. However, the growth process on glass requires high seeding density. The effects of suspension type and ultrasonic power were...
-
Effects of Ca2+, Mg2+, Na+, and K+ substitutions on the microstructure and electrical properties of GdCoO3 ceramics
PublicationGdCoO3-δ, Gd0.975Na0.025CoO3-δ, Gd0.98K0.02CoO3-δ, Gd0.98Ca0.02CoO3-δ, and GdCo0.99Mg0.01O3-δ ceramics were prepared via a solid-state reaction route. Among the dopants studied, substitution with Ca2+ slightly enhanced the densfication of GdCoO3 ceramics. All the lattice parameters of the doped ceramics were larger than those of pure GdCoO3-δ ceramic (a = 5.223 Å, b = 5.389 Å and c = 7.451 Å), and their cell volumes increased by...
-
Uptake, accumulation, and translocation of Zn, Cu, Pb, Cd, Ni, and Cr by P. australis seedlings in an urban dredged sediment mesocosm: impact of seedling origin and initial trace metal content
PublicationThe study presents results from 6 months of phytoremediation of sediments dredged from three urban retention tanks carried out in a mesocosm setup with the use of P. australis. Two kinds of P. australis seedlings were considered: seedlings originating from natural (uncontaminated - Suncont) and anthropogenically changed environments (contaminated – Scont); this distinction was reflected in the baseline concentrations of trace metals...
-
Mono- and bimetallic (Pt/Cu) titanium(IV) oxide core–shell photocatalysts with UV/Vis light activity and magnetic separability
PublicationTitanium(IV) oxide is one of the most widely investigated photocatalysts. However, separation of nano-sized particulate titania might result in profitless technologies for commercial applications. Additionally, bare titania is almost inactive under the Vis range of solar spectrum due to its wide bandgap. Therefore, the present study aims to prepare novel coreinterlayer- shell TiO2 magnetic photocatalysts modified with metal nanoparticles...
-
From structure to luminescence investigation of oxyfluoride transparent glasses and glass-ceramics doped with Eu3+/Dy3+ ions
PublicationGlasses and glass-ceramics with nominal composition 73 TeO2– 4BaO– 3Bi2O3–18SrF2-2RE2O3 (where RE = Eu, Dy) have been synthesized by conventional melt-quenching technique and subsequent heat treatment at 370 °C for 24 h in air atmosphere. Various Eu3+ to Dy3+ molar ratio have been applied to investigate luminescence properties in both glass and glass-ceramic matrices. Especially, white light emission through simultaneous excitation...
-
Chromatographic and Spectroscopic Identification and Recognition of Natural Dyes, Uncommon Dyestuff Components, and Mordants: Case Study of a 16th Century Carpet with Chintamani Motifs
PublicationA multi-tool analytical practice was used for the characterisation of a 16th century carpet manufactured in Cairo. A mild extraction method with hydrofluoric acid has been evaluated in order to isolate intact flavonoids and their glycosides, anthraquinones, tannins, and indigoids from fibre samples. High-performance liquid chromatography coupled to spectroscopic and mass spectrometric detectors was used for the identification of...
-
Non-toxic fluorine-doped TiO2 nanocrystals from TiOF2 for facet-dependent naproxen degradation
PublicationIn the present study, the photocatalytic degradation of naproxen (NPX), which is a nonsteroidal anti-inflammatory drug (NSAID), frequently detected in drinking water, was investigated. The F-doped TiO2 with defined morphology was successfully obtained from TiOF2 and applied for photocatalytic degradation under UV-vis and visible light. All samples were characterised by X-ray diffraction, scanning electron microscopy, X-ray photoelectron...
-
The geometry of free-standing titania nanotubes as a critical factor controlling their optical and photoelectrochemical performance
PublicationTitanium dioxide nanotubes are regarded as one of the most important functional materials and due to their unique electronic properties, chemical stability and photocorrosion resistance, they find applications in, for example, highly efficient photocatalysis or perovskite solar cells. Nevertheless, modification of TiO2 nanotubes is required to overcome their main drawback, i.e. large energy bandgap (>3.2 eV) limiting their ability...
-
Effect of bio-polyol molecular weight on the structure and properties of polyurethane-polyisocyanurate (PUR-PIR) foams
PublicationThe increasing interest in polyurethane materials has raised the question of the environmental impact of these materials. For this reason, the scientists aim to find an extremely difficult balance between new material technologies and sustainable development. This work attempts to validate the possibility of replacing petrochemical polyols with previously synthesized bio-polyols and their impact on the structure and properties...
-
A novel approach in wood waste utilization for manufacturing of catalyst-free polyurethane-wood composites (PU-WC)
PublicationIn recent decades, due to the increase in environmental awareness and noticeable environmental degradation, the area of wood waste management has attracted increasing attention. The purpose of this study is to develop a new type of highly filled polyurethane wood-composite (PU-WC) by the utilization of large amount of wood wastes without addition of a catalyst. Although wood-plastic composites (WPCs) are widely known, there is...
-
Micro‑ and nano‑ bentonite to improve the strength of clayey sand as a nano soil‑improvement technique
PublicationNano-additives results in the formation of nano-cementation (NC). This process is recently used to improve the durability of various building materials. NC used to improve the strength of untreated soil materials, also known as nano soil-improvement (NSI). In few years, the role of nano-additives in various types of soils were developed. In this research, the role of micro- and nano- size of bentonite as soil stabilizer was evaluated...