Filters
total: 2185
filtered: 1857
-
Catalog
- Publications 1857 available results
- Journals 21 available results
- Conferences 1 available results
- People 15 available results
- Projects 1 available results
- Laboratories 2 available results
- Research Equipment 1 available results
- e-Learning Courses 18 available results
- Open Research Data 269 available results
Chosen catalog filters
displaying 1000 best results Help
Search results for: transmission electron microscopy
-
Grain type and size of particulate matter from diesel vehicle exhausts analysed in transmission electron microscopy
PublicationThe aim of this research was to apply a simple and quick method of size and shape characterization by TEM to diesel exhaust particles from large-capacity, high-performance trucks. Particulate matter (PM) samples were collected while the engines were idling. It was found that PM from vehicle exhaust emissions can be divided into three groups: soot, irregular-shaped particles and circular particles. Irregular-shaped particles and...
-
Comparison of PM10 concentration in Gdansk and London using electron microscopy
PublicationParticulate matter (PM) has been considered as one of the most dangerous elements of air pollution. Multiply analytical methods are employed to identify the composition of particles present in the air. The theoretical part of this work is a description of different research centres all over the world where particulate matter is being analyzed using various techniques. The purpose of this project is to analyze and compare particles...
-
The Progress in Electron Microscopy Studies of Particulate Matters to Be Used as a Standard Monitoring Method for Air Dust Pollution
PublicationThe present article reviews studies on air solid particles carried out with the use of electron microscopy. Particle analysis combining scanning and transmission electron microscopy (SEM and TEM) can be used to derive size-resolved information of the composition, mixing state, morphology, and complex refractive index of atmospheric aerosol particles. It seems that electron microscopy is more widely used in atmospheric particulate...
-
Microstructure–Property Relationship of Polyurethane Foams Modified with Baltic Sea Biomass: Microcomputed Tomography vs. Scanning Electron Microscopy
PublicationIn this paper, novel rigid polyurethane foams modified with Baltic Sea biomass were compared with traditional petro-based polyurethane foam as reference sample. A special attention was focused on complex studies of microstructure, which was visualized and measured in 3D with high-resolution microcomputed tomography (microCT) and, as commonly applied for this purpose, scanning electron microscopy (SEM). The impact of pore volume,...
-
Microstructure–Property Relationship of Polyurethane Foams Modified with Baltic Sea Biomass: Microcomputed Tomography vs. Scanning Electron Microscopy
Publication -
Comparative study of donor-induced quantum dots in Si nano-channels by single-electron transport characterization and Kelvin probe force microscopy
Publication -
Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions
PublicationAg-based plasmonic nanostructures were manufactured by thermal annealing of thin metallic films. Structure and morphology were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). SEM images show that the formation of nanostructures is influenced by the initial layer thickness as well as the...
-
Structural change of carbon supported Pt nanocatalyst subjected to a step-like potential cycling in PEM FC
PublicationIn this paper we present detailed X-ray absorption fine structure (XAFS), X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations of the changes in the local geometric and electronic structure of Pt nanoparticles used as a cathode catalyst in proton exchange membrane fuel cell (PEMFC), working under controlled potential cycling conditions.
-
Tin oxide nanoparticles from laser ablation encapsulated in a carbonaceous matrix – a negative electrode in lithium-ion battery applications
PublicationThis report concerns carbonaceous electrodes doped with tin(II) oxide nanoparticles. Tin nanoparticles are obtained by pulsed laser ablation in water. Crystalline nanoparticles have been encapsulated in a carbonaceous matrix formed after pyrolysis of a mixture consisting of tin/tin(IV) oxide nanoparticles and gelatine. The obtained material is characterized by means of X-ray diffraction, selected area diffraction, scanning electron...
-
Self-organized multilayered graphene-boron doped diamond hybrid nanowalls for high performance electron emission devices
PublicationCarbon nanomaterials like nanotubes, nanoflakes/nanowalls and graphene have been used as electron sources due to their superior field electron emission (FEE) characteristics. Nevertheless, these materials show poor stability and a short lifetime, preventing them from being used in practical device applications. The intention of this study was to find an innovative nanomaterial, possessing both high robustness and reliable FEE behavior....
-
Stable Field Electron Emission and Plasma Illumination from Boron and Nitrogen Co‐Doped Edge‐Rich Diamond‐Enhanced Carbon Nanowalls
PublicationSuperior field electron emission (FEE) characteristics are achieved in edge-rich diamond-enhanced carbon nanowalls (D-ECNWs) grown in a single-step chemical vapor deposition process co-doped with boron and nitrogen. The structure consists of sharp, highly conductive graphene edges supplied by a solid, diamond-rich bottom. The Raman and transmission electron microscopy studies reveal a hybrid nature of sp3-diamond and sp2-graphene...
-
Solar light driven degradation of norfloxacin using as-synthesized Bi 3+ and Fe 2+ co-doped ZnO with the addition of HSO 5 – : Toxicities and degradation pathways investigation
PublicationIn this study, solar light responsive Bi3+ and Fe2+ doped ZnO were synthesized and used for photocatalytic degradation of norfloxacin (NOR), an emerging water pollutant. Analysis with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron...
-
Effect of austempering temperature on microstructure and cyclic deformation behaviour of multiphase low-carbon steel
PublicationThis paper examined the cyclic deformation behaviour of multiphase low-carbon steel that was subjected to austempering heat treatments at four temperatures (190 °C, 230 °C, 275 °C, and 315 °C) below the martensite start temperature (Ms = 353 °C). The tests were conducted at room temperature, under fully reversed strain-controlled conditions, with strain amplitudes in the range 0.5–1.0%. The microstructure was observed by transmission...
-
Super tough interpenetrating polymeric network of styrene butadiene rubber‐poly (methyl methacrylate) incorporated with general purpose carbon black ( N660 )
PublicationA classic set of polymeric interpenetrating polymeric network (IPN) microcomposites has been fabricated using an elastomer—styrene butadiene rubber [SBR], a thermoplastic poly(methyl methacrylate)-PMMA and with carbon black (CB)-N660 as a filler and reinforcing agent. This synthesized IPN composite can be promisingly employed as a toughened plastic and vibrational damper in a wide service range with excellent thermal stability,...
-
Exhaled breath gas sensing using pristine and functionalized WO3 nanowire sensors enhanced by UV-light irradiation
PublicationThe development of advanced metal-oxide-semiconductor sensing technologies for the detection of Volatile Organic Compounds (VOCs) present in exhaled breath is of great importance for non-invasive, cheap and fast medical diagnostics. Our experimental studies investigate the effects of operating temperature selection and UV-light irradiation on improving the response of WO3 nanowire sensors towards exhaled breath exposure. Herein,...
-
Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application
PublicationUtilizing the electrical properties of polymer nanocomposites is an important strategy to develop high performance solvent sensors. Here we report the synergistic effect of multi walled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) in regulating the sensitivity of the naturally occurring elastomer, natural rubber (NR). Composites were fabricated by dispersing CNTs alone and together with exfoliated RGO sheets (thermally...
-
The influence of nanostructures size on V2O5 electrochemical properties as cathode materials for lithium ion battery
PublicationIn this paper, V2O5 nanostructures with a size depending on the annealing temperature are successfully synthesized by a sol-gel method. The crystal structure and morphology of samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), selected area electron diffraction (SEAD) and scanning electron microscopy (SEM), respectively. Electrochemical testing such...
-
Facile synthesis and characterization of graphene and N-doped graphene by CVD method from liquid precursors for promising electrode materials
PublicationIn this study, high-quality and few-layered graphene was synthesized using the chemical vapor deposition (CVD) method from liquid sources. Two different liquid carbon sources, pyridine, and benzene, were used and deposited on nickel foam under heat conditions using a bubbler in a quartz tube. X-ray diffraction (XRD) and Raman analysis confirmed the crystalline properties of graphene and N-doped graphene, demonstrating the high...
-
Tuning of eg electron occupancy of MnCo2O4 spinel for oxygen evolution reaction by partial substitution of Co by Fe at octahedral sites
PublicationTo study the effect of partial Co substitution by Fe in the B site of MnCo2O4 spinel on its physicochemical and electrochemical properties, a series of MnCo2-xFexO4 powders (x=0.125; 0.250; 0.500; 0.750; 1.000) were synthesized by means of the sol-gel method. The produced powders were characterized by powder X ray diffraction (pXRD), scanning and transmission electron microscopy (SEM & TEM) coupled with energy dispersive spectroscopy...
-
Preparation of Well-Compatibilized PP/PC Blends and Foams Thereof
PublicationThe performance of polypropylene-poly(ethylene brassylate) block and graft copolymers and a polypropylene-polycaprolactone graft copolymer as compatibilizers for polypropylene-rich polypropylene/bisphenol A polycarbonate (PP/PC, 80/20 wt/wt) blends was elucidated. The copolymers were synthesized either by metal-catalyzed ring-opening polymerization or transesterification of a presynthesized polyester, initiated by hydroxyl-functionalized...
-
SnO2 nanoparticles embedded onto MoS2 nanoflakes - An efficient catalyst for photodegradation of methylene blue and photoreduction of hexavalent chromium
PublicationIn this work, a molybdenum disulfide/tin oxide (MoS2/SnO2) composite was successfully prepared via a hydrothermal method. The MoS2/SnO2 composite was used as a photocatalyst for photoreduction of hexavalent chromium and photodecomposition of methylene blue. It exhibited higher photocatalytic performance under simulated solar light irradiation than MoS2 itself. The obtained material was characterized by several spectroscopic and...
-
Nano Tin/Tin Oxide Attached onto Graphene Oxide Skeleton as a Fluorine Free Anode Material for Lithium-Ion Batteries
PublicationHerein, we show a composite formation method of tin/tin oxide nanoparticles with graphene oxide and CMC based on laser ablation technique as an electrode material for energy storage devices. The material exhibited a three-dimensional conducting graphene oxide network decorated with tin or tin oxide nanoparticles. The structure, homogeneous distribution of nanoparticles, and direct contact between inorganic and organic parts were...
-
Cellulose Nanofibers Isolated from the Cuscuta Reflexa Plant as a Green Reinforcement of Natural Rubber
PublicationIn the present work, we used the steam explosion method for the isolation of cellulose nanofiber (CNF) from Cuscuta reflexa, a parasitic plant commonly seen in Kerala and we evaluated its reinforcing efficiency in natural rubber (NR). Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Thermogravimetric analysis (TGA) techniques...
-
The effects of bifunctional linker and reflux time on the surface properties and photocatalytic activity of CdTe quantum dots decorated KTaO3 composite photocatalysts
PublicationNovel CdTe-KTaO3composite photocatalysts were successfully synthesized by using thioglycolic acid(TGA) or 3-mercaptopropionic acid (MPA) as linker molecules which facilitated attachment of CdTequantum dots to the surface of KTaO3nanocubes. The as-prepared photocatalysts were characterizedby UV–vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy...
-
Thermal dewetting as a method of surface modification of the gold thin films for surface plasmon resonance based sensor applications
PublicationHere, we report a quick and simple approach with low, optimized production costs to obtain surface plasmon resonance (SPR) based sensors fabricated through a time- and resource-effective method based on thermal dewetting of thin Au films. From the applicative point of view, the method of detection presented here should be easier to implement, since light transmission measurements seem to be much less challenging than light refractive...
-
Experimental tuning of AuAg nanoalloy plasmon resonances assisted by machine learning method
PublicationPlasmonic nanostructures based on AuAg nanoalloys were fabricated by thermal annealing of metallic films in an argon atmosphere. The nanoalloys were chosen because they can extend the wavelength range in which plasmon resonance occurs and thus allow the design of plasmonic platforms with the desired parameters. The influence of initial fabrication parameters and experimental conditions on the formation of nanostructures was investigated....
-
Enhanced electrochemical capacitance of TiO2 nanotubes/MoSe2 composite obtained by hydrothermal route
PublicationThis study presents the hydrothermal synthesis of a novel TiO2 nanotubes/MoSe2 nanocomposite and investigates its enhanced electrochemical capacitance properties. The composite material was fabricated through a hydrothermal method, embedding MoSe2 onto TiO2 nanotubes. The resulting composite, termed Ti/TiO2/MoSe2, exhibited significantly improved electrochemical capacitance compared to TiO2 nanotubes alone. The synthesized composite...
-
PtCo cathode electrocatalyst behaviour viewed by in-situ XAFS fuel cell measurements
PublicationW pracy zostały przedstawione wstępne wyniki analizy XAS (X-ray absorption spectroscopy), TEM (transmission electron microscopy) i XRD (X-ray diffraction) nanostruktur PtCo 1:1 (20% fazy metalicznej osadzonej na węglu, Vulcan XC-72) używanych jako elektrokatalizatory w polimerowych ogniwach paliwowych (PEM FC). Pomiary realizowane były również w warunkach pracy ogniwa paliwowego za pomocą specjalnie zoptymalizowanej do pomiarów...
-
Study of the atomic structure and morphology of the Pt3Co nanocatalyst
PublicationThe local structure and chemical disorder of a commercially available Pt3Co nanocatalyst supported on high surface area carbon were investigated. High-quality XAFS spectra were collected at the ELETTRA synchrotron XAFS 11.1 beamline. XAFS spectra analysis have been performed accounting for the reduction of the coordination number and degeneracy of three-body configurations, resulting from transmission electron microscopy (TEM)...
-
Synthesis and Characterization of Monometallic (Ag, Cu) and Bimetallic Ag-Cu Particles for Antibacterial and Antifungal Applications
PublicationIn this paper, the experimental studies are concerned with the effect of the synthesis parameters on the formation of monometallic Ag and Cu nanoparticles (NPs). We consider the synthesis strategies verification for the bimetallic core-shell and alloy particles preparation. It was successfully obtained by chemical reduction method. The obtained colloidal solution is characterized by the transmission electron microscopy (TEM) with...
-
Enhanced photocatalytic activity of accordion-like layered Ti3C2 (MXene) coupled with Fe-modified decahedral anatase particles exposing {1 0 1} and {0 0 1} facets
PublicationNew composites consisting of decahedral anatase particles exposing {001} and {101} facets coupled with accordion-like layered Ti3C2 with boosted photocatalytic activity towards phenol and carbamazepine degradation were investigated. The photocatalysts were characterized with X-ray diffraction (XRD), diffuse reflectance spectroscopy (DR/UV–Vis), Brunauer-Emmett-Teller (BET) specific surface area, Raman spectroscopy, scanning electron...
-
The Influence of the Electrodeposition Parameters on the Properties of Mn-Co-Based Nanofilms as Anode Materials for Alkaline Electrolysers
PublicationIn this work, the influence of the synthesis conditions on the structure, morphology, and electrocatalytic performance for the oxygen evolution reaction (OER) of Mn-Co-based films is studied. For this purpose, Mn-Co nanofilm is electrochemically synthesised in a one-step process on nickel foam in the presence of metal nitrates without any additives. The possible mechanism of the synthesis is proposed. The morphology and structure...
-
Various types of semiconductor photocatalysts modified by CdTe QDs and Pt NPs for toluene photooxidation in the gas phase under visible light
PublicationA novel synthesis process was used to prepare TiO2 microspheres, TiO2 P-25, SrTiO3 and KTaO3 decorated by CdTe QDs and/or Pt NPs. The effect of semiconductor matrix, presence of CdTe QDs and/or Pt NPs on the semiconductor surface as well as deposition technique of Pt NPs (photodeposition or radiolysis) on the photocatalytic activity were investigated. The as-prepared samples were characterized by X-ray powder diffractometry (XRD),...
-
Perovskite-type KTaO3–reduced graphene oxide hybrid with improved visible light photocatalytic activity
PublicationNovel rGO–KTaO3 composites with various graphene content were successfully synthesized using a facile solvothermal method which allowed both the reduction of graphene oxide and loading of KTaO3 nanocubes on the graphene sheets. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), Fourier...
-
Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum)
PublicationThis study aims to extract cellulose nanofibers (CNFs) from a sustainable source, i.e. millet husk, which is an agro-waste worthy of consideration. Pre-treatments such as mercerisation, steam explosion, and peroxide bleaching (chlorine-free) were applied for the removal of non-cellulosic components. The bleached millet husk pulp was subjected to acid hydrolysis (5% oxalic acid) followed by homogenization to extract CNFs. The extracted...
-
Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes
PublicationWe introduce highly antifouling Polymer-Nanoparticle-Nanoparticle/Polymer (PNNP) hybrid membranes as multi-functional materials for versatile purification of wastewater. Nitrogen-rich polyethylenimine (PEI)-functionalized halloysite nanotube (HNT-SiO2-PEI) nanoparticles were developed and embedded in polyvinyl chloride (PVC) membranes for protein and dye filtration. Bulk and surface characteristics of the resulting HNT-SiO2-PEI...
-
Oil refinery dusts: morphological and size analysis by TEM
PublicationThe objectives of this work were to develop a means of sampling atmospheric dusts on the premises of an oil refinery for electron microscopic study to carry out preliminary morphological analyses and to compare these dusts with those collected at sites beyond the refinery limits. Carbon and collodion membranes were used as asupport for collection of dust particles straight on transmission electron microscopy (TEM) grids. Micrographs...
-
The Effect of AgInS2, SnS, CuS2, Bi2S3 Quantum Dots on the Surface Properties and Photocatalytic Activity of QDs-Sensitized TiO2 Composite
PublicationThe eect of type (AgInS2, SnS, CuS2, Bi2S3) and amount (5, 10, 15 wt%) of quantum dots (QDs) on the surface properties and photocatalytic activity of QDs-sensitized TiO2 composite, was investigated. AgInS2, SnS, CuS2, Bi2S3 QDs were obtained by hot-injection, sonochemical, microwave, and hot-injection method, respectively. To characterize of as-prepared samples high-resolution transmission electron microscopy (HRTEM), scanning...
-
Photoactivity of decahedral TiO2 loaded with bimetallic nanoparticles: Degradation pathway of phenol-1- 13 C and hydroxyl radical formation
PublicationDecahedral TiO2decorated with bimetallic nanoparticles were synthesized via radiolysis and photode-position method. The effect of bimetallic surface composition (Ag Pt, Ag Au, Au Pd, Au Pt) as well asdeposition technique (simultaneous or sequential) on the photocatalytic activity in phenol degradationand efficiency of hydroxyl radicals generation under UV–vis light irradiation were investigated. Modifiedand pristine decahedral...
-
Electrochemically Obtained TiO2/CuxOy Nanotube Arrays Presenting a Photocatalytic Response in Processes of Pollutants Degradation and Bacteria Inactivation in Aqueous Phase
PublicationTiO2/CuxOy nanotube (NT) arrays were synthesized using the anodization method in the presence of ethylene glycol and different parameters applied. The presence, morphology, and chemical character of the obtained structures was characterized using a variety of methods—SEM (scanning electron microscopy), XPS (X-ray photoelectron spectroscopy), XRD (X-ray crystallography), PL (photoluminescence), and EDX (energy-dispersive X-ray spectroscopy)....
-
Hydrogen Production Mechanism in Low-Temperature Methanol Decomposition Catalyzed by Ni3Sn4 Intermetallic Compound: A Combined Operando and Density Functional Theory Investigation
PublicationHydrogen production from methanol decomposition to syngas (H2 + CO) is a promising alternative route for clean energy transition. One major challenge is related to the quest for stable, cost-effective, and selective catalysts operating below 400 °C. We illustrate an investigation of the surface reactivity of a Ni3Sn4 catalyst working at 250 °C, by combining density functional theory, operando X-ray absorption spectroscopy, and high-resolution...
-
Photocatalytic and Antimicrobial Properties of Ag2O/TiO2 Heterojunction
PublicationAg2O/TiO2 heterojunctions were prepared by a simple method, i.e., the grinding of argentous oxide with six different titania photocatalysts. The physicochemical properties of the obtained photocatalysts were characterized by diffuse-reflectance spectroscopy (DRS), X-ray powder diffraction (XRD) and scanning transmission electron microscopy (STEM) with an energy dispersive X-ray spectroscopy (EDS). The photocatalytic activity was...
-
Local structural and chemical ordering of nanosized Pt(3±δ)Co probed by multiple-scattering x-ray absorption spectroscopy
PublicationThis work reports a detailed investigation of the local structure and chemical disorder of a Pt(3±δ)Co thin film and Pt(3±δ)Co nanoparticles. We have used a combination of techniques including x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), and high-resolution transmission electron microscopy (TEM). The important effect of chemical ordering on pair and three-atom configurations has been studied using computer simulations...
-
Isolation of Citrus lemon extracellular vesicles: Development and process control using capillary electrophoresis
PublicationA new and scalable method for the isolation of extracellular vesicles (EV) from Citrus lemon juice samples was developed. The methodology included preliminary preconcentration of the sample using ultrafiltration (UF) followed by size-exclusion chromatography (SEC) purification and final preconcentration of the eluates. Transmission electron microscopy and proteomic analysis showed that isolates contained exosome-like vesicles, exocyst-positive...
-
Encapsulation of Cs3Bi2Br9 perovskite photocatalyst with polythiophene for prolonged activity in oxidizing and humid environment
PublicationDespite their growing popularity in modern technology, halide perovskites suffer from susceptibility to oxidation, limiting their applications. Our aim was to enhance Cs3Bi2Br9 perovskite's performance in humid environments through polythiophene encapsulation. This extended its lifespan while preserving photocatalytic abilities, as demonstrated in toluene decomposition experiments. We confirmed the stability of Cs3Bi2Br9 encapsulated...
-
Defective TiO2 Core-Shell Magnetic Photocatalyst Modified with Plasmonic Nanoparticles for Visible Light-Induced Photocatalytic Activity
PublicationIn the presented work, for the first time, the metal-modified defective titanium(IV) oxide nanoparticles with well-defined titanium vacancies, was successfully obtained. Introducing platinum and copper nanoparticles (NPs) as surface modifiers of defective d-TiO2 significantly increased the photocatalytic activity in both UV-Vis and Vis light ranges. Moreover, metal NPs deposition on the magnetic core allowed for the effective separation...
-
Mono- and bimetallic (Pt/Cu) titanium(IV) oxide photocatalysts. Physicochemical and photocatalytic data of magnetic nanocomposites’ shell
PublicationSurface modification of titania with noble and semi-noble metals resulted in significant enhancement of photocatalytic activity. Presented data, showing the photocatalytic properties of TiO2-M (where M is Pt and/or Cu) photocatalysts were further used as Fe3O4@SiO2/TiO2-M magnetic nanocomposites shells in "Mono- and bimetallic (Pt/Cu) titanium(IV) oxide core-shell photocatalysts with Vis light activity and magnetic separability"...
-
Phase separation in poly(butylene terephthalate)-based materials prepared by solid-state modification
PublicationThe morphology of a series of poly(butylene terephthalate) (PBT)/fatty acid dimer diol (FADD)-based copolyesters prepared by solid-state modi fi cation (SSM) was studied. It was shown that in copolyesters containing less than 10 wt% FADD two different phases, i.e. a PBT crystalline phase and a PBT-rich amorphous phase, are present. The FADD residues were more or less homogeneously distributed throughout the interlamellar regions....
-
The ILs-assisted solvothermal synthesis of TiO2 spheres: the effect of ionic liquids on morphology and photoactivity of TiO2
PublicationEffect of the ionic liquid (IL) structure (chain length in the imidazolium cation) on morphology and photoactivity of TiO2 particles has been systematically investigated. The TiO2 microspheres have been successfully synthesized via facile solvothermal method assisted by ionic liquids, such as 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-decyl-3-methylimidazolium chloride [DMIM][Cl] using tetra-tert-butyl orthotitanate...
-
ZnO-decorated green-synthesized multi-doped carbon dots from Chlorella pyrenoidosa for sustainable photocatalytic carbamazepine degradation
PublicationThe promising green synthesis of carbon dots (CDs) from microalga Chlorella pyrenoidosa was achieved using simple hydrothermal and microwave-assisted methods. Doping of nanomaterials by nonmetals (N, S, and P) was confirmed by X-ray photoelectron spectroscopy (XPS), while the existence of metals in the CDs was confirmed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and transmission electron microscopy (TEM),...