Search results for: otec (ocean thermal energy conversion)
-
Electrophoretic co-deposition of Mn1.5Co1.5O4, Fe2O3 and CuO: Unravelling the effect of simultaneous addition of Cu and Fe on the microstructural, thermo-mechanical and corrosion properties of in-situ modified spinel coatings for solid oxide cell interconnects
PublicationA systematic microstructural, thermo-mechanical and electrical characterization of simultaneous Fe–Cu doped Mn–Co spinel coatings processed by electrophoretic co-deposition on Crofer 22 APU is here reported and discussed. An innovative approach for the simultaneous electrophoretic deposition of three spinel precursors is designed, conceived and optimised, with the aim of outlining time- and energy-saving spinel modification routes....
-
Degradation of 1,4-dioxane by sono-activated persulfates for water and wastewater treatment applications
PublicationThis paper presents a hybrid advanced oxidation process (AOP) based on sonocavitational activation of persulfate (PS) for degradation of 1,4-dioxane during wastewater treatment. Application of sono-cavitation effectively convert PS to radical species demonstrating synergistic effect by increasing the reaction rate and reducing the required energy for activation. It is economically feasible and deployed alternative to the direct...
-
Technological solutions to landfill management: Towards recovery of biomethane and carbon neutrality
PublicationInadequate landfill management poses risks to the environment and human health, necessitating action. Poorly designed and operated landfills release harmful gases, contaminate water, and deplete resources. Aligning landfill management with the Sustainable Development Goals (SDGs) reveals its crucial role in achieving various targets. Urgent transformation of landfill practices is necessary to address challenges like climate change,...
-
From Janus nanoparticles to multi-headed structure - photocatalytic H2 evolution
PublicationThe generation of stable, high-performance photocatalysts with appropriate charge distribution for solar energy conversion is currently one of the urgent missions of photocatalytic science. Recent studies have shown that the Janus NPs with characteristic varied, asymmetric structure may boost overall efficiency of photocatalys. However, there is still a lack of systematic studies in which Janus-type particles are used in the hydrogen...
-
Exergetic Analysis of the nCO2PP Cycle with Particular Reference to the Exergy Destruction of Sewage Sludge Due to Gasification
PublicationAn exergy analysis is carried out on the negative CO2 emission gas power plant (nCO2PP), which integrates the process sections of fuel preparation, power generation and carbon capture. Processes of exergy destruction are studied with particular focus on the process in the gasification unit of the fuel preparation section, where a large amount of exergy is destroyed in various chemical reactions from sewage sludge to producer gas...
-
Ionic liquids for nano- and microstructures preparation. Part 1: Properties and multifunctional role
PublicationIonic liquids (ILs) are a broad group of organic salts of varying structure and properties, used in energy conversion and storage, chemical analysis, separation processes, as well as in the preparation of particles in nano- and microscale. In material engineering, ionic liquids are applied to synthesize mainly metal nanoparticles and 3D semiconductor microparticles. They could generally serve as a structuring agent or as a reaction...
-
The Analysis of Working Parameters Decrease in Photovoltaic Modules as a Result of Dust Deposition
PublicationThe aspect of dust accumulation on the surface of photovoltaic (PV) modules should be thoroughly understood in order to minimize possible obstacles affecting energy generation. Several elements affect the amount of pollutant gathered on the surface of a solar device, mainly its localization, which is irreversibly linked to factors such as annual rainfall, occasional snow coverage, or, in a dry climate, increased blow of dust during...
-
Light‐Driven Multi‐Charge Separation in a Push‐Pull Ruthenium‐Based Photosensitizer – Assessed by RASSCF and TDDFT Simulations
PublicationThe performance of photosensitizers in the field of, for example, solar energy conversion, relies on their light-harvesting efficiency in the visible region, population of long-lived charge separated intermediates, as well as their charge-accumulation capacity amongst other properties. In this computational study, we investigate the photophysical properties of a bis(bipyridyl)ruthenium(II)-based black dye (Ru) incorporating a chromophoric...
-
INTENSYFIKACJA WYMIANY CIEPŁA W WYMIENNIKU WĘŻOWNICOWYM Z WYKORZYSTANIEM PRZEGRÓD O RÓŻNEJ GEOMETRII
PublicationW pracy zaprezentowano możliwości wykorzystania pasywnej intensyfikacji wymiany ciepła w postaci przegród dla podniesienia efektywności energetycznej wymiennika wężownicowego. Badania zostały przeprowadzone z wykorzystaniem modułowego wymiennika z wężownicą w postaci grzałki elektrycznej. Medium odbierającym ciepło była woda o stałych parametrach cieplnoprzepływowych na wlocie do modułu. Pomiary przeprowadzono dla szerokiego zakresu...
-
Impact of the type of heat exchanger on the characteristics of low-temperature thermoacoustic heat engines
PublicationThermoacoustic technologies are considered an effective solution for harnessing low-temperature heat, whether from waste or renewable sources. However, in practice, developing and implementing high-performance ther- moacoustic systems is a complex challenge. In real waste heat recovery systems, heat exchange between ther- moacoustic engines (TAEs) and external heat sources is facilitated by auxiliary systems, such as circulation...
-
Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 1/2
PublicationWind power plants are considered as ecologically-clean source of energy. However, manufacturing processes cannot be treated that way. Manufacturing processes consume huge amount of electrical and thermal energy and significant amount of materials, e.g. steel, polymers, oils and lubricants. All of the above could be potentially harmful for environment. There are not many works and publications regarding life-cycle analysis of wind...
-
Wastes from Agricultural Silage Film Recycling Line as a Potential Polymer Materials
PublicationThe recycling of plastics is currently one of the most significant industrial challenges. Due to the enormous amounts of plastic wastes generated by various industry branches, it is essential to look for potential methods for their utilization. In the presented work, we investigated the recycling potential of wastes originated from the agricultural films recycling line. Their structure and properties were analyzed, and they were...
-
Atmospheric opacity estimation based on IWV derived from GNSS observations for VLBI applications
PublicationThermal emission of atmospheric water vapor has a great influence on the calibration of radio astronomical observations at millimeter wavelengths. The phenomenon of an atmospheric water vapor emits noise signal and attenuates astronomical emission. At 22 GHz, integrated water vapor (IWV) obtained from global navigation satellite systems (GNSS) is strictly related to atmospheric opacity (τ0), which is a crucial parameter for data...
-
Understanding the Electronic Structure and Optical Properties of Vacancy-Ordered Double Perovskite A2BX6 for Optoelectronic Applications
PublicationOver the past few years, metal halide perovskite solar cells have made significant advances. Currently, the single-junction perovskite solar cells reach a conversion efficiency of 25.7%. Perovskite solar cells with a wide band gap can also be used as top absorber layers in multi-junction tandem solar cells. We examined the dynamical and thermal stability, electronic structure, and optical features of In2PtX 6 (X = Cl, Br, and I)...
-
Thermodynamic study of binary mixtures of toluene with ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-butylpyridinium bis(trifluoromethylsulfonyl)imide
PublicationDensities, refractive indices and viscosities at 293.15, 298.15, 303.15, 308.15 and 313.15 K of binary mixtures of toluene with 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-butylpyridinium bis(trifluoromethylsulfonyl)imide have been measured over the miscible region at p = 0.1 MPa. From the experimental data, values of excess molar volume,...
-
Chemical, thermal and laser processes in recycling of photovoltaic silicon solar cells and modules
PublicationIn recent years, photovoltaic power generation systems have been gaining unprecedented attention as an environmentally beneficial method to solve the energy problem. From the economic point of view the pure silicon, which can be recapture from the used cells, is the most important material due to its cost and shortage. In the paper selected methods of used or damaged module and cells recycling and experimental results are presented....
-
The effect of convective heating and microwave heating on antioxidant enzymes in pooled mature human milk
PublicationThe effects of convective and microwave heating at constant temperature (62.5, 66 and 70 °C) on the activity of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx) in pooled mature human milk were compared. Activities of the enzymes were determined using spectrophotometric kits. Activity of GPx decreased significantly in the first stage of heating when milk samples were warmed to pasteurisation...
-
Photovoltaic module temperature stabilization with the use of phase change materials
PublicationThe worldwide growth of photovoltaics (PVs) has formed an exponential curve for more than four decades. During this period of time, PVs have evolved from a pure niche market of small-scale applications towards becoming a mainstream electricity source. The influence of temperature on the electrical parameters of crystalline silicon solar cells and solar modules is well described in the literature. In order to diminish these effects,...
-
Synergism of floated paperboard sludge cake /sewage sludge for maximizing biomethane yield and biochar recovery from digestate: A step towards circular economy
PublicationAnaerobic digestion of floated paperboard sludge (PS) cake suffers from volatile fatty acids (VFAs) accumulation, nutrient unbalanced condition, and generation of digestate with a risk of secondary pollution. To overcome these drawbacks, sewage sludge (SS) was added to PS cake for biogas recovery improvement under a co-digestion process followed by the thermal treatment of solid fraction of digestate for biochar production. Batch...
-
A Review on Metal–Organic Framework as a Promising Catalyst for Biodiesel Production ENERGY & FUELS
PublicationThe rapid depletion of fossil-derived fuels along with rising environmental pollution have motivated academics and manufacturers to pursue more environmentally friendly and sustainable energy options in today’s globe. Biodiesel has developed as an ecologically favorable alternative. However, the mass manufacturing of biodiesel on an industrial scale confronts substantial cost and pricing challenges. To address this issue, high-efficiency...
-
Review on robust laser light interaction with titania – Patterning, crystallisation and ablation processes
PublicationTitanium dioxide is regarded as a very promising semiconducting material that is widely applied in many everyday-use products, devices, and processes. In general, those applications can be divided into energy or environmental categories, where a high conversion rate, and energy and power density are of particular interest. Therefore, many efforts are being put towards the elaboration of novel production routes, and improving the...
-
Crack propoagation in MgO-PSZ ceramic materials
PublicationThe properties of ceramic materials such as elevated hardness, high temperature capability, low coefficient of thermal expansion are of interest for rolling element materials. Widely used ceramic materials in engineering applications are silicon nitride, zirconia and alumina. The paper presents an experimental study of the fatigue life of MgO-PSZ ceramic material in lubricated contact with defined types of cracks. A ceramic angular...
-
Photoinduced K+ Intercalation into MoO3/FTO Photoanode—the Impact on the Photoelectrochemical Performance
PublicationIn this work, thin layers of MoO3 were tested as potential photoanodes for water splitting. The influence of photointercalation of alkali metal cation (K+) into the MoO3 structure on the photoelectrochemical properties of the molybdenum trioxide films was investigated for the first time. MoO3 thin films were synthesized via thermal annealing of thin, metallic Mo films deposited onto the FTO substrate using a magnetron sputtering...
-
Waste Tyres Pyrolysis for Obtaining Limonene
PublicationThis review deals with the technologies of limonene production from waste tyre pyrolysis. Thermal decomposition is attractive for tackling the waste tyre disposal problem, as it enables both: energy to be recovered and limonene to be obtained. This material management recycling of tyres is environmentally more beneficial than the burning of all valuable products, including limonene. Given this recoverability of materials from waste...
-
MHD Casson flow across a stretched surface in a porous material: a numerical study
PublicationIn this study, we examine the nature of magnetohydrodynamic (MHD) Casson flow of fluid across a stretched surface in a porous material. It studies how the behaviour of Casson fluids is affected by a number of variables, including thermal radiation, chemical processes, Joule heating, and viscosity dissipation. The Keller box strategy, based on the finite difference method (FDM), is used to tackle the complex numerical problem. Graphical...
-
A Residential Building Extension Prototype to face Post-Pandemic Needs: Foreseen Challenges and Impacts
PublicationThe COVID-19 pandemic highlighted the importance of outdoor spaces for maintaining physical and mental well-being. However, many urban residents lack private outdoor areas, which led to harmful health consequences during lockdowns. The research project aims to address and solve this issue by developing a physical/digital prototype called “X-TEND” that extends living space outdoors by attaching it to existing multi-story residential...
-
Beyond the helium buffer: 12C−2 rotational cooling in cold traps with H2 as a partner gas: interaction forces and quantum dynamics
Publicationabstract = { The scattering cross-sections and corresponding rate coefficients for rotationally inelastic collisions of $^{12}$C$_2$^-$ ($^2 \Sigma_g^+$) with H$_2$ ($^1 \Sigma_g^+$) are presented over a broad range of cold-trap temperatures. They have been calculated using quantum scattering theory that employs a new ab initio potential energy surface. The rate coefficients for the inelastic processes in the anionic partner are...
-
Comparison of heat transfer characteristics in surface cooling with boiling microjets of water, ethanol and HFE7100
PublicationThe basis of microjet technology is to produce jets which impinge the surface at the stagnation point with a very high kinetic energy. Main objective of this paper was to investigate the physical phenomena occurring on solid surfaces upon impingement of the single microjet in case of three fluids, namely water, ethanol and HFE7100. Intense heat transfer in the impact zone of microjet has been examined and described with precise...
-
Heat transfer characteristics of hybrid microjet – Microchannel cooling module
PublicationThe paper presents experimental investigation of heat transfer intensification in a microjet–microchannel cooling module. Applied technology takes benefits from two very attractive heat removal techniques. When jets are impinging on the surface, they have a very high kinetic energy at the stagnation point, also in microchannels boundary layer is very thin allowing to obtain very high heat fluxes. Main objective of this paper was...
-
Computational analysis of power-law fluids for convective heat transfer in permeable enclosures using Darcy effects
PublicationNatural convection is a complex environmental phenomenon that typically occurs in engineering settings in porous structures. Shear thinning or shear thickening fuids are characteristics of power-law fuids, which are non-Newtonian in nature and fnd wide-ranging uses in various industrial processes. Non-Newtonian fuid fow in porous media is a difcult problem with important consequences for energy systems and heat transfer. In this...
-
Structure and properties comparison of poly(ether-urethane)s based on nonpetrochemical and petrochemical polyols obtained by solvent free two-step method
PublicationThe application of thermoplastic polyurethanes (TPU) is becoming more and more extensive, and the decreasing of used petrochemical monomers and reduction of energy for the polymerization and processing processes is getting increasingly important. In this paper, we confirmed the positive influence of high bio-based monomers contents (by replacing petrochemical polyol and glycol by bio-based counterparts) on processing and properties...
-
Cavitation-Based Processes for Water and Wastewater Treatment
PublicationCavitation based on advanced oxidation processes (Cav-AOPs) is interesting alternatives for already implemented wastewater treatment technologies. Destructive and strongly undesirable phenomena in the industry, i.e., cavitation, revealed to be useful in a positive manner as a source of energy for chemical reactions. During the implosion of cavitation bubbles, focused energy and resulting high temperature and pressure allows to...
-
Three-dimensional numerical investigation of hybrid nanofluids in chain microchannel under electrohydrodynamic actuator
PublicationEnergy efficiency enhancement methods have received considerable attentionwithin the industry and scientific community, owing to the rising concern ofglobal energy sustainability. The present article attempts to scrutinize the effectsof electrohydrodynamics and nanofluids on the rate of heat transfer and fluidflow in the 3-D chain microchannels. Improved heat exchangers (e.g., chainmicrochannel) would have a key role in increasing...
-
The resistance of S235JR steel to cavitation erosion
PublicationThe erosion resistance of S235JR steel to flow cavitation was investigated. In order to understand an influence of steel properties and cavitation intensities on the degradation mechanisms, low-carbon S235JR steel was tested in the as-received state and after thermal treatment (annealing) under four different flow velocities. Annealing decreased steel hardness, which made S235JR steel less resistant to cavitation erosion. The performed...
-
High-efficiency mini and micro heat exchangers for dispersed power generation
PublicationTaking into account the dispersed systems technologies and their development, the ORC systems seem to be promising technology amongst various micro-CHP domestic units (electrical power production below 10 kWe), however practical realization of the ORC cycle in a micro-scale is technically challenging. The system consists in devices such as the vapour generation unit (boiler), expansion device and heat exchangers. Each of them should...
-
Processing, Performance Properties, and Storage Stability of Ground Tire Rubber Modified by Dicumyl Peroxide and Ethylene-Vinyl Acetate Copolymers
PublicationIn this paper, ground tire rubber was modified with dicumyl peroxide and a variable content (in the range of 0–15 phr) of ethylene-vinyl acetate copolymers characterized by different vinyl acetate contents (in the range of 18–39 wt.%). Modification of ground tire rubber was performed via an auto-thermal extrusion process in which heat was generated during internal shearing of the material inside the extruder barrel. The processing,...
-
Heat transfer characteristics of hybrid microjet -microchannel cooling module
PublicationThe paper presents the experimental investigation of heat transfer intensification in a microjet- microchannel cooling module. Applied technology takes benefits from two very attractive heat removal techniques. When jets are impinging on the surface, they have a very high kinetic energy at the stagnation point, also in microchannels boundary layer is very thin allowing to obtain very high heat fluxes. Main objective of this paper...
-
The Effect of Titanium Oxyfluoride Morphology on Photocatalytic Activity of Fluorine-Doped Titanium(IV) Oxide
PublicationTitanium oxyfluoride (TiOF2) is a metastable product that can be obtained in a fluorine-rich environment. This material can also be a valuable precursor in the synthesis of titanium(IV) oxide (TiO2). However, the effect of TiOF2 morphology on the physicochemical properties of TiO2 has not been studied so far. In this work, single-phase TiOF2 was prepared by a solvothermal method. The as-synthesized samples exhibited a variety of...
-
The influence of microjet array area ratio on heat transfer in the compact heat exchanger
PublicationThe paper describes the comprehensive study on the effect of microjet array geometrical parameters on the heat transfer enhancement in the modular heat exchanger. The conducted experimental study provides an experimental database on single phase submerged microjet heat transfer. The Wilson plot method was applied to determine the heat transfer coefficients in the laminar and transition flow regimes of a liquid-to-liquid heat exchanger....
-
Determination of metal content in sewage sludge and sewage sludge ash to find opportunities to use them in the construction industry
PublicationSewage sludge management is becoming an increasing problem in developed and developing countries. Due to their physicochemical properties (mainly high content of heavy metals) a safe method of utilization is sought. Considering environmental protection, energy recycling, reduction in use of the raw materials and the possibility of immobilization hazardous substances, the use of ashes in building materials becomes a very good way...
-
Ionic conductivity behavior by activated hopping conductivity (AHC) of barium aluminoborosilicate glass–ceramic system designed for SOFC sealing
PublicationNon-conducting BaO-B2O3-Al2O3-SiO2 parent glasses designed for solid oxide fuel cell (SOFC) sealing applications were prepared using the melt-quenching technique. The glass formation region was determined according to phase equilibrium relations and was found to be in the composition range 70BaO-(x)Al2O3-(10−x)B2O3-20SiO2 where 3.0 < x < 6.0 wt%. The conductivity values obtained conductivity ranged from 10−5 to 10−10 S/cm at temperatures...
-
Thermal, electrical, and magnetic properties of Fe2O3–PbO–SiO2 glass prepared by traditional melt-quenching and twin roller fast-cooling methods
PublicationIn this study, Fe–Pb–Si oxide glasses containing between 12.5 and 17.5 mol% Fe2O3 were prepared using two different methods comprising traditional melt-quenching and twin roller fast-cooling techniques. The topography and structure of the materials obtained were characterized by X-ray powder diffraction and scanning electron microscopy. All of the materials were found to be amorphous. The topography of most of the glasses comprised...
-
Elementary analysis and energetic potential of the municipal sewage sludges from the Gdańsk and Kościerzyna WWTPs
PublicationThis paper aims to present municipal sewage sludge (MSS) elementary analysis and energetic potential based on measurement of heat of combustion (higher heating value HHV) and calculation of calorific values (lower heating value LHV). The analysis takes into the consideration water content in sewage sludge, at different utilization stages, in wastewater treatment plants in Gdańsk Wschód and Kościerzyna – Pomeranian Voivodeship....
-
Highly crystalline colloidal nickel oxide hole transport layer for low-temperature processable perovskite solar cell
PublicationHighly crystalline NiOX usually requires high annealing temperature (>300 °C) which is incompatible with flexible substrate and might consume high amount of energy. Herein, we demonstrate a facile emulsion process to synthesize highly crystalline, low temperature deposition (<150 °C) and solution processable NiOx nanoparticles (NPs) as a hole transport layer for the perovskite solar cells (PVSCs)....
-
Synthesis of bimetallic Co–Pt/cellulose nanocomposites for catalytic reduction of p-nitrophenol
PublicationIn this study, bimetallic nanoparticles (NPs) of Co–Pt anchored on cellulose nanofibers (CNFs) for catalytic applications were synthesized via a sonochemical approach. The electro-spinning technique was employed for the synthesis of CNFs from cellulose acetate. The thorough characterization of synthesised Co–Pt/CNF nanocomposites was performed with the help of scanning electron microscopy (SEM), Fourier transform infra-red (FT-IR)...
-
SILICA AEROGEL TOWARDS ANODES FOR LITHIUM-ION BATTERIES
PublicationAn increasing demand for electrochemical energy storage and conversion devices stimulates progress in research on electrode and electrolyte materials. In the field of electrodes materials, silicon is the one of the most promising anode materials for Li-ion batteries. However silicon has the drastic volume variation (around 3 times lower on extraction) during insertion and extraction of lithium ions. As an alternative, nanocomposites...
-
Microwave radiation in the synthesis of urethane prepolymers
PublicationThis paper describes the use of microwave radiation in the synthesis of urethane prepolymers in bulk (without solvent). The prepolymers were synthesized using 1,6-hexamethylene diisocyanate (HDI) and poly (ε-caprolactone) diol (PCL) at a molar ratio of 4:1. The reaction was carried out without a catalyst in the reactor with a conventional heating system (oil bath) or in the microwave reactor (MW Reactor NOVA 09) at temperatures...
-
Performance and emission characteristics of diesel engines running on gaseous fuels in dual-fuel mode
PublicationConventional fossil fuels are being substituted with alternative green fuels because of their greenhouse gas emissions and pollution problems, which pose a severe threat to the environment. Several studies have reported the usage of biodiesel and gaseous fuels in both single and dual-fuel modes. Gaseous fuels such as producer gas, biogas, syngas, and hydrogen produced from renewable biomass could potentially be used along with...
-
Maximizing Bio-Hydrogen and Energy Yields Obtained in a Self-Fermented Anaerobic Bioreactor by Screening of Different Sewage Sludge Pretreatment Methods
PublicationEgypt faces significant challenges in managing its sewage sludge generated in large quantities from wastewater treatment plants. This study investigates the feasibility of utilizing sewage sludge as a renewable resource for hydrogen production through anaerobic digestion at the 100 L bioreactor level. Hydrogen is considered a promising alternative energy source due to its high energy content and environmental benefits. To optimize...
-
Conversion of waste biomass into activated carbon and evaluation of environmental consequences using life cycle assessment
PublicationIn this article, activated carbon was produced from Lantana camara and olive trees by H3PO4 chemical activation. The prepared activated carbons were analyzed by characterizations such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller, X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared spectroscopy. H3PO4 is used as an activator agent to create an abundant pore...