Search results for: ELECTRON MICROSCOPY
-
The geometry of free-standing titania nanotubes as a critical factor controlling their optical and photoelectrochemical performance
PublicationTitanium dioxide nanotubes are regarded as one of the most important functional materials and due to their unique electronic properties, chemical stability and photocorrosion resistance, they find applications in, for example, highly efficient photocatalysis or perovskite solar cells. Nevertheless, modification of TiO2 nanotubes is required to overcome their main drawback, i.e. large energy bandgap (>3.2 eV) limiting their ability...
-
Mono- and bimetallic (Pt/Cu) titanium(IV) oxide core–shell photocatalysts with UV/Vis light activity and magnetic separability
PublicationTitanium(IV) oxide is one of the most widely investigated photocatalysts. However, separation of nano-sized particulate titania might result in profitless technologies for commercial applications. Additionally, bare titania is almost inactive under the Vis range of solar spectrum due to its wide bandgap. Therefore, the present study aims to prepare novel coreinterlayer- shell TiO2 magnetic photocatalysts modified with metal nanoparticles...
-
Noble metal modified TiO2 microspheres: Surface properties and photocatalytic activity under UV-vis and visible light
PublicationComposite photocatalysts that consist of TiO2and noble metal nanostructures have been considered tobe the promising and pivotal material for accessible enhancement of the efficiency in the photocatalyticprocess carried out in the aqueous and gas phases. In this work we fabricated porous TiO2microspheresthrough a hydrothermal process followed by photochemical reduction of noble metal nanoparticles atthe TiO2surface. The morphology...
-
Preparation, characterization and photocatalytic activity of TiO2 microspheres decorated by bimetallic nanoparticles
PublicationComposite photocatalysts that consist of TiO2and noble metal nanostructures have been considered tobe the promising and pivotal material for accessible enhancement of the efficiency in the photocatalyticprocess carried out in the aqueous and gas phases. In this work we fabricated porous TiO2microspheresthrough a hydrothermal process followed by photochemical reduction of noble metal nanoparticles atthe TiO2surface. The morphology...
-
Magnetic photocatalysts for water treatment
PublicationThe concept of magnetic photocatalysts with separation function requires ferromagnetic material with high magnetic susceptibility to an external magnetic field to enable recycling of composite nanoparticles. Currently, much attention is devoted to functionalization of photocatalyst using MFe2O3, where M =Fe, Zn, Co, Mn. However direct contact between photocatalyst and magnetic iron oxide particles leads to photodissolution of iron...
-
Comparing the permeability of human and porcine small intestinal mucus for particle transport studies
PublicationThe gastrointestinal mucus layer represents the last barrier between ingested food or orally administered pharmaceuticals and the mucosal epithelium. This complex gel structure plays an important role in the process of small intestinal absorption. It provides protection against hazardous particles such as bacteria but allows the passage of nutrients and drug molecules towards the intestinal epithelium. In scientific research, mucus...
-
A new simple approach to prepare rare-earth metals-modified TiO2 nanotube arrays photoactive under visible light: Surface properties and mechanism investigation
PublicationApplication of Ti90RE10 alloys (RE = Ho, Er, Nd, Y, Ce, Tm) as a working electrode, instead of Ti pure foil in anodic oxidation in a fluoride-based electrolyte, resulted in formation of well-ordered nanotubes made of TiO2 and RE2O3 mixture, which could be efficiently used for pollutant removal from water and air phase upon UV and visible irradiation and easily separable from the reaction mixture to recycle. The as-prepared NTs...
-
Results after grinding C45 steel
Open Research DataThe database contains results from nanoindenter, scanning microscope and also X-ray diffractometer. To determine the residual stresses and the size of the crystallites in the ferrite grains in the grinded surface layer, the Williamson Hall analysis of the X-ray diffraction patterns was performed. XRD diffraction patterns were also used to perform a...
-
Adsorption behavior and corrosion inhibitive characteristics of newly synthesized cyano-benzylidene xanthenes on copper/sodium hydroxide interface: Electrochemical, X-ray photoelectron spectroscopy and theoretical studies
PublicationElegant process for synthesis of 3-(7H-dibenzo[c,h]xanthen-7-yl)benzaldehyde (3), as new starting material to create a set of novel xanthene analogues, 2-(3-(7H-dibenzo[c,h]xanthen-7-yl)benzylidene)malononitrile (4), 3-(3-(7H-dibenzo[c,h]xanthen-7-yl)phenyl)-2-cyanoacrylic acid (5), and Ethyl-3-(3-(7H-dibenzo[c,h]xanthen-7-yl)phenyl)-2-cyanoacrylate (6), was achieved starting with available materials under mild conditions. Various...
-
Study on polymer modified road asphalt mixture
PublicationThe formulation of ternary asphalt-additives blend composed of crumb rubber : low-density polyethylene (CR : LDPE) and crumb rubber : textile fiber (CR : TF) couples, and quaternary asphalt additives-blend composed of (CR : LDPE : TF) triplets on the virgin asphalt to optimize the asphalt basic and rheological properties and to use the extrusion process of two or three additives to obtain composite materials of them, as well as...
-
Degradation of cefadroxil drug by newly designed solar light responsive alcoholic template-based lanthanum ferrite nanoparticles
PublicationIn this work, lanthanum ferrite nanoparticles were synthesized via a simple co-precipitation method. Two different templates, namely sorbitol and mannitol, were used in this synthesis to tune the optical, structural, morphological, and photocatalytic properties of lanthanum ferrite. The synthesized lanthanum ferrite-sorbitol (LFOCo-So) and lanthanum ferrite-mannitol (LFOCo-Mo) were investigated through Ultraviolet–Visible (UV–Vis),...
-
Rare earth ions doped K 2 Ta 2 O 6 photocatalysts with enhanced UV–vis light activity
PublicationNew rare earth-doped K2Ta2O6 photocatalysts were successfully synthesized by hydrothermal method. The effect of dopant type (Y,Yb,Ho,Pr,Er) and amount of rare earth precursor (2,4,8 and 10 mol%) on the physicochemical and photocatalytic properties of RE-K2Ta2O6 have been investigated. All as-prepared materials were characterized by UV–vis diffuse reflectance spectroscopy, Brunauer-Emmett-Teller specific surface area measurement,...
-
Application of different modes of nanoscale impedance microscopy in materials research
PublicationIn recent years, there is noticeable interest in application of various types of scanning probe microscopy in material science research. One of them is contact atomic force microscopy combined with local impedance measurements, known as nanoscale impedance microscopy. Literature references present its application in investigations of new materials, microelectronics diagnostics, or research of protective coatings performance. In...
-
DIFFRACTION PHASE MICROSCOPY FOR OBSERVATION ON RED BLOOD CELLS FLUCTUATION
PublicationNowadays there is quite huge need for more and more precise and effective fast diagnostics methods in hematology diseases. One of the most important blood components are erythrocytes – RBCs (Red Blood Cells). Due to their size they are easy to observe using microscopy. It is commonly known that the shape and lifetime of RBCs allows for early disease identification. Authors present special measurement system for RBCs fluctuations observation...
-
Application of multisine nanoscale impedance microscopy to heterogeneous alloy surface investigations
PublicationIn the recent years atomic force microscopy is recognized as valuable tool for investigation of surficial features of construction materials. It concerns, among other things, studies of changes caused by such phenomena as galvanic corrosion, passivation associated with the growth of oxide layers, or sensitization of austenitic steels with the formation of carbide phases. In addition, atomic forcemicroscopy allows easy coupling...
-
Observation on red blood cells fluctuations by diffraction phase microscopy
PublicationNowadays there is quite huge need for more and more precise and effective fast diagnostics methods in hematology diseases. One of the most important blood components are erythrocytes – Red Blood Cells (RBCs). Due to their size they are easy to observe using microscopy. It is commonly known that the shape and lifetime of RBCs allows for early disease identification. Authors present special measurement system for RBCs fluctuations...
-
Impedance evaluation of coatings from biobased material
PublicationThe authors propose a modification of sodium caseinate edible coating for foodstuff protection. The aim was to improve the film’s barrier properties. It was achieved by the addition of propolis, which is a natural, environmentally friendly product known from its intrinsic sealing action. In the next step, propolis-admixed sodium caseinate films were exposed to elevated temperature for 10 min. This approach was meant to improve...
-
Performance of organic coatings upon cyclic mechanical load
PublicationA number of engineering structures fail due to the fatigue damage resulting from cyclic mechanical stress. However, as far as organic coatings are concerned this degradation factor remains underestimated. In the paper the authors propose a methodology combining global electrochemical impedance spectroscopy and local atomic force microscopy measurements for evaluation of coating resistance to an impact of repetitive mechanical stress. Typical...
-
Nonlinear and linear impedance of bismuth vanadate ceramics and its relation to structural properties
PublicationThe nonlinear and linear electrical properties, topography, and microstructure of bismuth-vanadate ceramics, were studied. The structurewas observed with the use of X-ray diffraction (XRD), scanning electronmicroscopy (SEM), atomic force microscopy (AFM) and confocal microscopy methods. The obtained results showed that ceramic is porous. Two phase transitionswere determinedwith the use of DSC measurements. The linear and nonlinear ac...
-
Fibrillar aggregates in powdered milk
PublicationThis research paper addresses the hypothesis that powdered milk may contain amyloid fibrils. Amyloids are fibrillar aggregates of proteins. Up to this time, research on the presence of amyloids in food products are scarce. To check the hypothesis we performed thioflavin T fluorescence assay, X-ray powder diffraction, atomic force microscopy and fluorescence microscopy imaging. Our preliminary results show that commercially available...
-
Electronic conductivity in the SiO2-PbO-Fe2O3 glass containing magnetic nanostructures
PublicationThe linear impedance spectra of iron–silicate–lead glass samples were measured in the frequency range from 1 MHz to 1 MHz and in the temperature range from 153 K to 423 K. The structure was investigated by means of XRD and atomic force microscopy. Local electrical and magnetic properties of the samples were tested with the aid of electrostatic force microscopy (EFM) and magnetic force microscopy (MFM). The obtained results show...
-
Particulate Material Analysis in Air
PublicationThe chapter presents the methods and techniques used to asses the PM10 in air and different instruments typically used in analysis of PM, including sampling of particle by using filters and other systems. Besides the methods recommended by different national standards the other methods, especially electronic microscopy are also described.
-
Anisotropic optical properties of few-layer black phosphorus coatings: from fundamental insights to opto-electrochemical sensor design
PublicationFew-layer black phosphorus (FLBP) is characterised by a tuneable bandgap, high carrier mobility and anisotropic optical properties. It therefore has the potential to find applications in electronics and photonics. FLBP oxidizes upon exposure to air, limiting its utility in devices and components. To address this issue, the thesis introduces methods and tools developed for studying FLBP's optical parameters, with a particular emphasis...
-
Quantitative Analysis of Biofilm Formed on Vascular Prostheses by Staphylococcus Epidermidis with Different ica and aap Genetic Status
PublicationOBJECTIVES: This study aims to examine biofilm formed on vascular prostheses by Staphylococcus epidermidis with different ica and aap genetic status, and to evaluate the effect of antibiotic-modified prostheses on bacterial colonization. METHODS: Biofilm formation was determined using fluorescence microscopy imaging. Quantitative analysis was conducted using the biofilm coverage ratio (BCR) calculations. RESULTS: Our investigations...
-
Tip-Based Nanofabrication as a Rapid Prototyping Tool for Quantum Science and Technology
PublicationTip-Based Nanofabication as a Rapid Prototyping Tool for Quantum Science and Technology discusses the development of cantilevered nanotips techniques of quantum devices prototyping and how they evolved from scanning probe microscopy. Also covered are the advantages and future prospects of atomic resolution capability and how to use this enabling technology as a rapid prototyping tool for quantum science and technology.
-
Piezoresponse force microscopy and dielectric spectroscopy study of Ba0.6Sr0.4TiO3 thin films
PublicationResearch on synthesis, characterization and determination of processing – structure – property relationships of commercially important ferroelectric thin films has been performed. The sol-gel-type solution deposition technique was applied to produce good quality thin films of Ba0.6Sr0.4TiO3 (BST60/40) chemical composition on the stainless steel substrates. The thin films were characterized in terms of their microstructure, crystal...
-
Ferromagnetic nanocrystallites in the SiO2 - PbO - Fe2O3 glass system
PublicationThe structure of 50% SiO2 - 35% PbO - 15% Fe2O3, 50% SiO2 - 30% PbO - 20% Fe2O3 and 50% SiO2 - 25% PbO - 25% Fe2O3 (in mol%) glass was investigated by the means of AFM microscopy and X-ray diffraction. Observation by the atomic force microscopy shows that each of prepared iron oxide glass doesn't have homogeneous structure and some nanocrystallites were detected. Next, test with neodymium magnet found out strong magnetic properties...
-
Methods and Instruments | Scanning Electrochemical Microscopy
PublicationScanning electrochemical microscopy is based on the recording of electrolysis currents (Faradaic currents) at a microelectrode (ME) probe that is scanned over the sample. Different working modes are available to couple the electrolysis at the ME to reactions at the sample. The article explains their principles and provides examples of their application. The feedback mode, the sample-generation/tip collection mode, the redox-competition...
-
Optimised five-hour multiplex PCR test for the detection of Tinea ungium: performance in a routine PCR laboratory
PublicationWe recently published the development of a 5-hour multiplex PCR test for the detection of dermatophyte nail infection. We have optimized this test by inclusion of an inhibition control and evaluated the test in a routine laboratory when compared to the conventional microscopy and culture. A total of 109 clinical samples received at the mycology reference lab at Statens Serum Institute were included. The samples were divided equally...
-
Microscopic and Spectroscopic Imaging and Thermal Analysis of Acrylates, Silicones and Active Pharmaceutical Ingredients in Adhesive Transdermal Patches
PublicationDermal or transdermal patches are increasingly becoming a noteworthy alternative ascarriers for active pharmaceutical ingredients (APIs), which makes their detailed physicochemical evaluation essential for pharmaceutical development. This paper demonstrates mid-infrared (FTIR) and Raman spectroscopy with complementary microscopic methods (SEM, optical and confocal Raman microscopy) and differential scanning calorimetry...
-
Multifrequency Nanoscale Impedance Microscopy (m-NIM): A novel approach towards detection of selective and subtle modifications on the surface of polycrystalline boron-doped diamond electrodes
PublicationIn this paper, we describe the modification of Nanoscale Impedance Microscopy (NIM), namely, a combination of contact-mode atomic force microscopy with local impedance measurements. The postulated approach is based on the application of multifrequency voltage perturbation instead of standard frequency-by-frequency analysis, which among others offers more time-efficient and accurate determination of the resultant impedance spectra...
-
The silver layers in fiber-optic sensors
PublicationIn this paper a method of application of the silver layers on the surface of an optical fiber was proposed. The optical properties and surface quality of the silver layer was examined by optical microscopy. The reflection and transmission of the sample were investigated. To evaluate the silver mirror it was placed in a fiber optic Fabry-Perot interferometer and the quality of the spectra was analyzed. The commercial mirror was...
-
Application of dynamic impedance spectroscopy to scanning probe microscopy.
PublicationDynamic impedance spectroscopy, designed for measuring nonstationary systems, was used in combination with scanning probe microscopy. Using this approach, impedance mapping could be carried-out simultaneously with topography scanning. Therefore, correlation of electrical properties with particular phases of an examined sample was possible. The sample used in this study was spheroidal graphite cast iron with clearly defined phases...
-
Measurement system for nonlinear surface spectroscopy by atomic force microscopy for corrosion processes monitoring
PublicationIn addition to traditional imaging the surface, atomic force microscopy (AFM) enables wide variety of additional measurements. One of them is higher harmonic imaging. In tapping mode the nonlinear contact between tip and specimen results in higher frequency vibrations. More information available from the higher harmonics analysis proves to be helpful for more detailed imaging. Such visualization is especially useful for heterogeneous...
-
PHASE OBJECT OBSERVATION SYSTEM BASED ON DIFFRACTION PHASE MICROSCOPY
PublicationIn the paper authors present a special measurement system for observing phase objects. The diffraction phas microscopy makes it possible to measure the dimensions of a tested object with a nanometre resolution. To meet this requirement, it is proposed to apply a spatial transform. The proposed setup can be based either on a two lenses system (called 4 f ) or a Wollaston prism. Both solutions with all construction aspects are described...
-
Heterogeneous oxidation of highly boron-doped diamond electrodes and its influence on the surface distribution of electrochemical activity
PublicationThe electrochemical active surface area (EASA) of polycrystalline boron-doped diamond (BDD) electrodes is heterogeneous and can be affected by numerous factors. There is a strong need for proper consideration of BDD heterogeneity in order to improve this material's range of application in electrochemistry. Localized changes in surface termination due to the influence of oxidation agent result in increased surface resistance. The...
-
A measurement system for nonlinear surface spectroscopy with an atomic force microscope during corrosion process monitoring
PublicationIn addition to traditional imaging the surface, atomic force microscopy (AFM) enables wide variety of additional measurements. One of them is higher harmonic imaging. In tapping mode the nonlinear contact between tip and specimen results in higher frequency vibrations. More information available from the higher harmonics analysis proves to be helpful for more detailed imaging. Such visualization is espe-cially useful for heterogeneous...
-
Phase Separation and Electrical Properties of Manganese Borosilicate Glasses
PublicationThe structure and electrical properties of manganese borosilicate glasses of a composition of xMnO-(0.8-x)SiO2-(0.2)B2O3 (x=0.4, 0.5 and 0.6 in mol) were investigated by impedance spectroscopy, SEM, XRD and confocal microscopy methods. The influence of composition on the glass structure and electrical properties was discussed. A separation of two amorphous phases was observed and it was concluded that one phase is SiO2-rich and...
-
Assessment of copper surface coverage with corrosion inhibitor using AFM-based local electrical measurements
PublicationThe paper presents a new method of assessment of metal surface coverage with corrosion inhibitor and thus of inhibitor protective performance. It is based on the atomic force microscopy measurement performed in a contact mode. Apart from topography images the proposed approach allows acquisition of local DC maps and local electrical impedance spectra via application of DC bias voltage or AC perturbation signal between the conductive...
-
Heterogeneous distribution of surface electrochemical activity in polycrystalline highly boron-doped diamond electrodes under deep anodic polarization
PublicationThe surface homogeneity of boron-doped diamond electrodes is variable and depends on anodic polarization conditions. The differentiation factor is the gradual and localized change in surface termination. A series of measurements under different polarization conditions was performed in order to investigate the scale of this effect. Nanoscale impedance microscopy (NIM) revealed large variation of surface resistance in individual...
-
High temperature corrosion evaluation and lifetime prediction of porous Fe22Cr stainless steel in air in temperature range 700–900 °C
PublicationThis work describes a high temperature corrosion kinetics study of ~30% porous Fe22Cr alloys. The surface area of the alloy (~0.02 m2 g-1) has been determined by tomographic microscopy. The weight gain of the alloys was studied by isothermal thermogravimetry in the air for 100 hours at 700 - 900 °C. Breakaway oxidation was observed after oxidation at 850 °C (~100 hours) and 900 °C (~30 hours). The lifetime prediction shows the...
-
NANOCRYSTALLINE CATHODES FOR SOLID OXIDE FUEL CELLS MADE OF NOBLE METALS
PublicationCathodes for solid oxide fuel cells prepared by the infiltration method at 600 °C are presented. The infiltration method allows to produce stable, nanostructured electrodes. Cathodes were prepared using gold, platinum, La2NiO4+δ (L2N) and La0.6Sr0.4Co0.2Fe0.8O3 δ (LSCF). Symmetrical cathode/electrolyte/cathode samples were prepared and examined with SEM microscopy and electrochemical impedance spectroscopy. Despite successful deposition...
-
Determination of the refractive index and wavelength‐dependent optical properties of few‐layer CrCl3 within the Fresnel formalism
PublicationBased on previous reports on the optical microscopy contrast of mechanically exfoliated few layer CrCl3 transferred on 285 nmand 270 nmSiO2 on Si(100), we focus on the experimental determination of an effective mean complex refractive index via a fitting analysis based on the Fresnel equations formalism. Accordingly, the layer and wavelength-dependent absorbance and reflectance are calculated. Layer and wavelength-dependent optical...
-
Spatially variant PSF modeling in confocal macroscopy
PublicationThe point spread function (PSF) of imaging systems plays an essential role in image reconstruction. In the context of confocal microscopy, optical performance degrades towards the edge of the field of view. In confocal macroscopy, the related artifacts are even stronger, as the field of view is much larger. Because the related PSFs are strongly spatially variant, it is essential to be able to model them with few parameters. The...
-
Surface and Corrosion Properties of AA6063-T5 Aluminium Alloy in Molybdate-containing Sodium Chloride Solutions
PublicationCorrosion properties of aluminium alloy AA6063-T5 were investigated in molybdate-containing NaCl solutions. Electrochemical, microscopic, and spectroscopic experiments were utilized to examine the mechanism of corrosion inhibition by molybdates. SEM-EDX, magnetic force, and intermodulation electrostatic force microscopy data suggested that the inhibition initiation preferentially occurred over Fe-rich cathodic IMPs. Spectroscopic...
-
Effect of Variation of Hard Segment Content and Graphene-Based Nanofiller Concentration on Morphological, Thermal, and Mechanical Properties of Polyurethane Nanocomposites
PublicationThis study describes the development of a new class of high-performance polyurethane elastomer nanocomposites containing reduced graphene oxide (RGO) or graphene nanoplatelets (GNP). Two types of polyurethane elastomers with different contents of hard segments (HS) were used as a polymer matrix. The developed nanocomposites were characterized by thermal analysis (DSC, TG), dynamic mechanical testing (DMA), hardness testing, mechanical...
-
Studies on the influence of β-cyclodextrin derivatives on the physical stability of famotidine
PublicationThe usage of Fourier transform infrared spectroscopy, near infrared spectroscopy, differential scanning calorimetry and microscopy is presented in this work focused on the exploration of the effect of CD on the physical stability of famotidine (FAM). The most significant information was achieved by analysis of the second derivatives ofnear infrared (NIR) spectra recorded. Changes in the shape of spectra derivatives allow...
-
RAMAN DIAGNOSTICS OF CVD DIAMOND GROWTH
PublicationDevelopment of Raman spectroscopic system for diagnostics of growth of diamond and BDD (Boron- Doped-Diamond) thin films during μPA CVD (Microwave Plasma Assisted Chemical Vapour Deposition) process is described. Raman studies of such films were carried out as in-situ monitoring of film deposition as ex-situ measurements conducted for a sample outside the reaction vessel after manufacturing process. Modular system for the in-situ...
-
Thickness and structure change of titanium (IV) oxide thin films synthesized by the sol–gel spin coating method
PublicationTitanium dioxide is a well-known material in nanotechnology, while it provides new opportunities due to its interesting properties, for example, as a semiconductor with a quite significant forbidden band gap energy of 3.2 eV. In this study, thin films of titanium dioxide (TiO2) were synthesized in amorphous and crystallographic systems using the sol–gel process. Atomic Force Microscopy (AFM), Raman spectroscopy and X-ray diffraction...
-
Determination of pseudocapacitance chan ges of nickel oxide NiO electrode with use of dynamic electrochemical impedancje spectroscopy
PublicationThe electrochemical capacitors (ECs) are attractive energy storage devices which can be applied in many electronic products (e.g., cameras, laptops, cell phones) or hybrid electric vehicles (HEV). The energy storage in ECs is based on capacitive (the electrical double layer charging/discharging) and pseudocapacitive (additional charge provided by faradic reaction) phenomena. Considering the electrodes exhibiting pseudocapacitance,...