Search results for: NEURAL NETWORK
-
Exploring the influence of personal factors on physiological responses to mental imagery in sport
PublicationImagery is a well-known technique in mental training which improves performance efficiency and influences physiological arousal. One of the biomarkers indicating the amount of physiological arousal is skin conductance level (SCL). The aim of our study is to understand how individual differences in personality (e.g. neuroticism), general imagery and situational sport anxiety are linked to arousal measuring with SCL in situational...
-
Investigating Feature Spaces for Isolated Word Recognition
PublicationMuch attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...
-
Perceptual and Motor Effects of Muscle Co-activation in a Force Production Task
PublicationWe tested several predictions of the theory of motor control with spatial referent coordinates related to effects of muscle coactivation on force production and perception. In particular, we predicted that subjects would produce unintentional force increase by finger flexors and be unaware of this force increase. Healthy subjects performed steady force production task in isometric conditions with visual feedback on the force level....
-
University Students’ Research on Artificial Intelligence and Knowledge Management. A Review and Report of Multi-case Studies
PublicationLeading technologies are very attractive for students preparing their theses as the completion of their studies. Such an orientation of students connected with professional experiences seems to be a crucial motivator in the research in the management and business areas where these technologies condition the development of professional activities. The goal of the paper is the analysis of students’ thesis topics defended in the last...
-
Neural Oscillation During Mental Imagery in Sport: An Olympic Sailor Case Study
PublicationThe purpose of the current study was to examine the cortical correlates of imagery depending on instructional modality (guided vs. self-produced) using various sports-related scripts. According to the expert-performance approach, we took an idiosyncratic perspective analyzing the mental imagery of an experienced two-time Olympic athlete to verify whether different instructional modalities of imagery (i.e., guided vs. self-produced)...
-
Modelling of wastewater treatment plant for monitoring and control purposes by state - space wavelet networks
PublicationMost of industrial processes are nonlinear, not stationary, and dynamical with at least few different time scales in their internal dynamics and hardly measured states. A biological wastewater treatment plant falls into this category. The paper considers modelling such processes for monitorning and control purposes by using State - Space Wavelet Neural Networks (SSWN). The modelling method is illustrated based on bioreactors of...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublicationAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublicationAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublicationThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Online sound restoration system for digital library applications.
PublicationAudio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...
-
Bibliometric analysis of artificial intelligence in wastewater treatment: Current status, research progress, and future prospects
PublicationWastewater treatment is an important topic for improving water quality and environmental protection, and artificial intelligence has become a powerful tool for wastewater treatment. This work provides research progress and a literature review of artificial intelligence applied to wastewater treatment based on the visualization of bibliometric tools. A total of 3460 publications from 2000 to 2023 were obtained from the Web of Science...
-
Rating by detection: an artifact detection protocol for rating EEG quality with average event duration
PublicationQuantitative evaluation protocols are critical for the development of algorithms that remove artifacts from real EEG optimally. However, visually inspecting the real EEG to select the top-performing artifact removal pipeline is infeasible while hand-crafted EEG data allow assessing artifact removal configurations only in a simulated environment. This study proposes a novel, principled approach for quantitatively evaluating algorithmically...
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublicationResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
Electronic nose algorithm design using classical system identification for odour intensity detection
PublicationThe two elements considered crucial for constructing an efficient environmental odour intensity monitoring systems are sensors and algorithms typically addressed to as electronic nose sensor (e-nose). Due to operational complexity of biochemical sensors developed in human bodies algorithms based on computational methods of artificial intelligence are typically considered superior to classical model based approaches in development...
-
Technical State Assessment of Charge Exchange System of Self-Ignition Engine, Based On the Exhaust Gas Composition Testing
PublicationThis paper presents possible use of results of exhaust gas composition testing of self - ignition engine for technical state assessment of its charge exchange system under assumption that there is strong correlation between considered structure parameters and output signals in the form of concentration of toxic compounds (ZT) as well as unambiguous character of their changes. Concentration of the analyzed ZT may be hence considered...
-
Artificial Intelligence Aided Architectural Design
PublicationTools and methods used by architects always had an impact on the way building were designed. With the change in design methods and new approaches towards creation process, they became more than ever before crucial elements of the creation process. The automation of architects work has started with computational functions that were introduced to traditional computer-aided design tools. Nowadays architects tend to use specified tools...
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublicationResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
A New Approach to Assess Quality of Motion in Functional Task of Upper Limb in Duchenne Muscular Dystrophy
Publication(1) Background: This study presents a new method for the motion quantitative analysis of Duchenne muscular dystrophy patients (DMD) performing functional tasks in clinical conditions. (2) Methods: An experimental study was designed to define how different levels of external mass (light and heavy) influence the performance of the upper limbs of a tested DMD and reference subject (RS) during horizontal movements (level of the waist)...
-
Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
PublicationOne of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was...
-
Perfectly Wetting Mixtures of Surfactants from Renewable Resources: The Interaction and Synergistic Effects on Adsorption and Micellization
PublicationThis paper presents a study of the surface properties of mixtures of surfactants originating from renewable sources, i.e., alkylpolyglucoside (APG), ethoxylated fatty alcohol (AE), and sodium soap (Na soap). The main objective was to optimize the surfactant ratio which produces the highest wetting properties during the analysis of the solution of the individual surfactants, twoand three-component mixtures, and at different pH values....
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublicationFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Platelet RNA Sequencing Data Through the Lens of Machine Learning
PublicationLiquid biopsies offer minimally invasive diagnosis and monitoring of cancer disease. This biosource is often analyzed using sequencing, which generates highly complex data that can be used using machine learning tools. Nevertheless, validating the clinical applications of such methods is challenging. It requires: (a) using data from many patients; (b) verifying potential bias concerning sample collection; and (c) adding interpretability...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublicationMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Social media for e-learning of citizens in smart city
PublicationThe rapid development of social media can be applied for citizens’ e-learning in a smart city. Big cities have to cope with several open issues like a growing population or a traffic congestion. Especially, a home and public space is supposed to be used in more efficient way. Sustainable homes and buildings can be planned with using some modern techniques. Even currently, there is a huge problem with a lack of key resources like...
-
Comparative study on the effectiveness of various types of road traffic intensity detectors
PublicationVehicle detection and speed measurements are crucial tasks in traffic monitoring systems. In this work, we focus on several types of electronic sensors, operating on different physical principles in order to compare their effectiveness in real traffic conditions. Commercial solutions are based on road tubes, microwave sensors, LiDARs, and video cameras. Distributed traffic monitoring systems require a high number of monitoring...
-
MACHINE LEARNING–BASED ANALYSIS OF ENGLISH LATERAL ALLOPHONES
PublicationAutomatic classification methods, such as artificial neural networks (ANNs), the k-nearest neighbor (kNN) and selforganizing maps (SOMs), are applied to allophone analysis based on recorded speech. A list of 650 words was created for that purpose, containing positionally and/or contextually conditioned allophones. For each word, a group of 16 native and non-native speakers were audio-video recorded, from which seven native speakers’...
-
Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach
PublicationTreatment of municipal wastewater to meet the stringent effluent quality standards is an energy-intensive process and the main contributor to the costs of wastewater treatment plants (WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, and climate-based parameters on the daily consumption of EC by...
-
Exergy and Energy Analyses of Microwave Dryer for Cantaloupe Slice and Prediction of Thermodynamic Parameters Using ANN and ANFIS Algorithms
PublicationThe study targeted towards drying of cantaloupe slices with various thicknesses in a microwave dryer. The experiments were carried out at three microwave powers of 180, 360, and 540 W and three thicknesses of 2, 4, and 6 mm for cantaloupe drying, and the weight variations were determined. Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) were exploited to investigate energy and exergy indices of...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublicationA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
PTD4 Peptide Increases Neural Viability in an In Vitro Model of Acute Ischemic Stroke
PublicationIschemic stroke is a disturbance in cerebral blood flow caused by brain tissue ischemia and hypoxia. We optimized a multifactorial in vitro model of acute ischemic stroke using rat primary neural cultures. This model was exploited to investigate the pro-viable activity of cell-penetrating peptides: arginine-rich Tat(49–57)-NH2 (R49KKRRQRRR57-amide) and its less basic analogue, PTD4 (Y47ARAAARQARA57-amide). Our model included glucose...
-
LDRAW based positional renders of LEGO bricks
Open Research Data243 different LEGO bricks renders of size 250x250 in 5 colors in 120 viewing angles stored as JPEG images. The renders are used to train neural networks for bricks recognition. All images were generated using L3P (http://www.hassings.dk/l3/l3p.html) and POV-Ray (http://www.povray.org/) tools and were based on the 3D models from LDraw (https://www.ldraw.org/)...
-
Solvent Screening for Solubility Enhancement of Theophylline in Neat, Binary and Ternary NADES Solvents: New Measurements and Ensemble Machine Learning
PublicationTheophylline, a typical representative of active pharmaceutical ingredients, was selected to study the characteristics of experimental and theoretical solubility measured at 25 °C in a broad range of solvents, including neat, binary mixtures and ternary natural deep eutectics (NADES) prepared with choline chloride, polyols and water. There was a strong synergistic effect of organic solvents mixed with water, and among the experimentally...
-
Intermolecular Interactions as a Measure of Dapsone Solubility in Neat Solvents and Binary Solvent Mixtures
PublicationDapsone is an effective antibacterial drug used to treat a variety of conditions. However, the aqueous solubility of this drug is limited, as is its permeability. This study expands the available solubility data pool for dapsone by measuring its solubility in several pure organic solvents: N-methyl-2-pyrrolidone (CAS: 872-50-4), dimethyl sulfoxide (CAS: 67-68-5), 4-formylmorpholine (CAS: 4394-85-8), tetraethylene pentamine (CAS:...
-
Topological-numerical analysis of a two-dimensional discrete neuron model
PublicationWe conduct computer-assisted analysis of a two-dimensional model of a neuron introduced by Chialvo in 1995 [Chaos, Solitons Fractals 5, 461–479]. We apply the method of rigorous analysis of global dynamics based on a set-oriented topological approach, introduced by Arai et al. in 2009 [SIAM J. Appl. Dyn. Syst. 8, 757–789] and improved and expanded afterward. Additionally, we introduce a new algorithm to analyze the return times...
-
Robust and Efficient Machine Learning Algorithms for Visual Recognition
PublicationIn visual recognition, the task is to identify and localize all objects of interest in the input image. With the ubiquitous presence of visual data in modern days, the role of object recognition algorithms is becoming more significant than ever and ranges from autonomous driving to computer-aided diagnosis in medicine. Current models for visual recognition are dominated by models based on Convolutional Neural Networks (CNNs), which...
-
Autonomous pick-and-place system based on multiple 3Dsensors and deep learning
PublicationGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Autonomous Perception and Grasp Generation Based on Multiple 3D Sensors and Deep Learning
PublicationGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublicationDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...
-
Numerical Modelling for Prediction of Compression Index from Soil Index Properties in Jimma town, Ethiopia
PublicationIn this study, correlations are developed to predict compression index (Cc) from index parameters so that one can be able to model Jimma soils with compression index using simple laboratory tests. Undisturbed and disturbed soil samples from twelve different locations in Jimma town were collected. Laboratory tests like specific gravity, grain size analysis, Atterberg limit, and one-dimensional consolidation test for a total of twenty-four...
-
Experimental and Theoretical Screening for Green Solvents Improving Sulfamethizole Solubility
PublicationSolubility enhancement of poorly soluble active pharmaceutical ingredients is of crucial importance for drug development and processing. Extensive experimental screening is limited due to the vast number of potential solvent combinations. Hence, theoretical models can offer valuable hints for guiding experiments aimed at providing solubility data. In this paper, we explore the possibility of applying quantum-chemistry-derived...
-
System for automatic singing voice recognition
PublicationW artykule przedstawiono system automatycznego rozpoznawania jakości i typu głosu śpiewaczego. Przedstawiono bazę danych oraz zaimplementowane parametry. Algorytmem decyzyjnym jest algorytm sztucznych sieci neuronowych. Wytrenowany system decyzyjny osiąga skuteczność ok. 90% w obydwu kategoriach rozpoznawania. Dodatkowo wykazano przy pomocy metod statystycznych, że wyniki działania systemu automatycznej oceny jakości technicznej...
-
On Memory-Based Precise Calibration of Cost-Efficient NO2 Sensor Using Artificial Intelligence and Global Response Correction
PublicationNitrogen dioxide (NO2) is a prevalent air pollutant, particularly abundant in densely populated urban regions. Given its harmful impact on health and the environment, precise real-time monitoring of NO2 concentration is crucial, particularly for devising and executing risk mitigation strategies. However, achieving precise measurements of NO2 is challenging due to the need for expensive and cumbersome equipment. This has spurred...
-
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublicationComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
Accurate Modeling of Frequency Selective Surfaces Using Fully-Connected Regression Model with Automated Architecture Determination and Parameter Selection Based on Bayesian Optimization
PublicationSurrogate modeling has become an important tool in the design of high-frequency structures. Although full-wave electromagnetic (EM) simulation tools provide an accurate account for the circuit characteristics and performance, they entail considerable computational expenditures. Replacing EM analysis by fast surrogates provides a way to accelerate the design procedures. Unfortunately, modeling of microwave passives is a challenging...
-
Faults and Fault Detection Methods in Electric Drives
PublicationThe chapter presents a review of faults and fault detection methods in electric drives. Typical faults are presented that arises for the induction motor, which is valued in the industry for its robust construction and cost-effective production. Moreover, a summary is presented of detectable faults in conjunction with the required physical information that allow a detection of specific faults. In order to address faults of a complete...
-
Dynamic GPU power capping with online performance tracing for energy efficient GPU computing using DEPO tool
PublicationGPU accelerators have become essential to the recent advance in computational power of high- performance computing (HPC) systems. Current HPC systems’ reaching an approximately 20–30 mega-watt power demand has resulted in increasing CO2 emissions, energy costs and necessitate increasingly complex cooling systems. This is a very real challenge. To address this, new mechanisms of software power control could be employed. In this...
-
Study of various machine learning approaches for Sentinel-2 derived bathymetry
PublicationIn recent years precise and up-to-date information regarding seabed depth has become more and more important for companies and institutions that operate on coastlines. While direct, in-situ measurements are performed regularly, they are expensive, time-consuming and impractical to be performed in short time intervals. At the same time, an ever-increasing amount of satellite imaging data becomes available. With these images, it...
-
The gaseous messenger carbon monoxide is released from the eye into the ophthalmic venous blood depending on the intensity of sunlight
PublicationCircadian and seasonal rhythms in daylight affect many physiological processes. In the eye, energy of intense visible light not only initiates a well-studied neural reaction in the retina that modulates the secretory function of the hypothalamus and pineal gland, but also activates the heme oxygenase (HO) to produce carbon monoxide (CO). This study was designed to determine whether the concentration of carbon monoxide (CO) in the...
-
Daytime Acute Non-Visual Alerting Response in Brain Activity Occurs as a Result of Short- and Long-Wavelengths of Light
PublicationVery recent preliminary findings concerning the alerting capacities of light stimulus with long-wavelengths suggest the existence of neural pathways other than melatonin suppression that trigger the nonvisual response. Though the nonvisual effects of light during the daytime have not been investigated thoroughly, they are definitely worth investigating. The purpose of the present study is to enrich existing evidence by describing...
-
Marine and Cosmic Inspirations for AI Algorithms
PublicationArtificial Intelligence (AI) is a scientific area that currently sees an enormous growth. Various new algorithms and methods are developed and many of them meets practical, successful applications. Authors of new algorithms draw different inspirations. Probably the most common one is the nature. For example, Artificial Neural Networks were inspired by the structure of human brain and nervous system while the classic Genetic Algorithm...