Filters
total: 905
Search results for: DEEP NEURAL NETWORKS, EXPLAINABLE ARTIFICIAL INTELLIGENCE, ADVER-SARIAL ATTACKS
-
Deep neural networks for human pose estimation from a very low resolution depth image
PublicationThe work presented in the paper is dedicated to determining and evaluating the most efficient neural network architecture applied as a multiple regression network localizing human body joints in 3D space based on a single low resolution depth image. The main challenge was to deal with a noisy and coarse representation of the human body, as observed by a depth sensor from a large distance, and to achieve high localization precision....
-
Is Artificial Intelligence Ready to Assess an Enterprise’s Financial Security?
PublicationThis study contributes to the literature on financial security by highlighting the relevance of the perceptions and resulting professional judgment of stakeholders. Assessing a company’s financial security using only economic indicators—as suggested in the existing literature—would be inaccurate when undertaking a comprehensive study of financial security. Specifically, indices and indicators based on financial or managerial reporting...
-
Min-max optimization of node‐targeted attacks in service networks
PublicationThis article considers resilience of service networks that are composed of service and control nodes to node-targeted attacks. Two complementary problems of selecting attacked nodes and placing control nodes reflect the interaction between the network operator and the network attacker. This interaction can be analyzed within the framework of game theory. Considering the limited performance of the previously introduced iterative...
-
Methods of Artificial Intelligence for Prediction and Prevention Crisis Situations in Banking Systems
PublicationIn this paper, a support vector machine has been studied due to prediction of bank crisis. To prevent outcomes of crisis situations, artificial neural networks have been characterized as applied to stock market investments, as well as to test the credibility of the bank's customers. Finally, some numerical experiments have been presented.
-
PRINCIPLES OF ARTIFICIAL INTELLIGENCE APPLICATION IN CONTROL OF THE ENTERPRISE
PublicationThe implementation of the tasks of evaluating historical financial information, the control or audit of business activities are based primarily on professional judgments about the object of study of a professional accountant or auditor. Their findings are drawn on the basis of the study of documents, the use of audit evidence, risk assessment, etc. There is always a probability (and rather high) that professional judgment will...
-
The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process
PublicationThis paper presents the application of artificial neural networks and decision trees for the prediction of odor properties of post-fermentation sludge from a biological-mechanical wastewater treatment plant. The input parameters were concentrations of popular compounds present in the sludge, such as toluene, p-xylene, and p-cresol, and process parameters including the concentration of volatile fatty acids, pH, and alkalinity in...
-
Artificial Neural Networks in Microwave Components and Circuits Modeling
PublicationArtykuł dotyczy wykorzystania sztucznych sieci neuronowych (SNN) w projektowaniu i optymalizacji układów mikrofalowych.Zaprezentowano podstawowe zasady i założenia modelowania z użyciem SNN. Możliwości opisywanej metody opisano wykorzystując przykładowyprojekt anteny łatowej. Przedstawiono różne strategie modelowania układów, które wykorzystują możliwości opisywanej metody w połączeniu zwiedzą mikrofalową. Porównano również dokładność...
-
How IT Professionals Perceive Artificial Intelligence Myths
PublicationArtificial Intelligence (AI) has been recently attracting a lot of attention despite its long history. A good part of its presence in media and non-technical conversations is linked to existing myths and fears about its effects on humans and society. Literature has already analyzed how this type of information influences the general public and non-technical professionals but not how IT professionals react to AI myths. This article...
-
Field Calibration of Low-Cost Particulate Matter Sensors Using Artificial Neural Networks and Affine Response Correction
PublicationDue to detrimental effects of atmospheric particulate matter (PM), its accurate monitoring is of paramount importance, especially in densely populated urban areas. However, precise measurement of PM levels requires expensive and sophisticated equipment. Although low-cost alternatives are gaining popularity, their reliability is questionable, attributed to sensitivity to environmental conditions, inherent instability, and manufacturing...
-
Mutual Coupling Reduction in Antenna Arrays Using Artificial Intelligence Approach and Inverse Neural Network Surrogates
PublicationThis paper presents a novel approach to reduce undesirable coupling in antenna arrays using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two stand-ard patch antenna cells with 0.07λ edge-to-edge distance are designed and fabricated to operate at 2.45 GHz. A stepped-impedance resonator is applied between the antennas to suppress their mutual coupling. For the first time, the optimum values...
-
Feature Importance of Stabilised Rammed Earth Components Affecting the Compressive Strength Calculated with Explainable Artificial Intelligence Tools
Publication -
The impact of the AC922 Architecture on Performance of Deep Neural Network Training
PublicationPractical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...
-
The application of neural networks in forecasting the influence of traffic-induced vibrations on residential buildings
PublicationTraffic-induced vibrations may cause the cracking of plaster, damage to structural elements and, in extreme cases, may even lead to the structural collapse of residential buildings. The aim of this article is to analyse the effectiveness of a method of forecasting the impact of vibrations on residential buildings using the concept of artificial intelligence. The article presents several alternative forecasting systems for which...
-
Application of artificial intelligence into/for control of flexible manufacturing cell
PublicationThe application of artificial intelligence in technological processes control is usually limited. One problem is how to respond to changes in the environment of manufacturing system. A way to overcome the above shortcoming is to use fuzzy logic for representation of the inexact information. In this paper fundamentals of artificial intelligence and fuzzy logic are introduced from a theoretical point of view. Still more the fuzzy...
-
L23_24 Artificial Intelligence in Healthcare
e-Learning Courses -
Selfish Attacks in Two-Hop IEEE 802.11 Relay Networks: Impact and Countermeasures
PublicationIn IEEE 802.11 networks, selfish stations can pursue a better quality of service through selfish MAC-layer attacks. Such attacks are easy to perform, secure routing protocols do not prevent them, and their detection may be complex. Two-hop relay topologies allow a new angle of attack: a selfish relay can tamper with either source traffic, transit traffic, or both. We consider the applicability of selfish attacks and their variants...
-
Electromagnetic Modeling of Microstrip Elements Aided with Artificial Neural Network
PublicationThe electromagnetic modeling principle aided withartificial neural network to designing the microwave widebandelements/networks prepared in microstrip technology is proposedin the paper. It is assumed that the complete information is knownfor the prototype design which is prepared on certain substratewith certain thickness and electric permittivity. The longitudinaland transversal dimensions of new design...
-
Enhancing Renal Tumor Detection: Leveraging Artificial Neural Networks in Computed Tomography Analysis
PublicationRenal cell carcinoma is one of the most common cancers in Europe, with a total incidence rate of 18.4 cases per 100 000 population. There is currently significant overdiagnosis (11% to 30.9%) at times of planned surgery based on radiological studies. The purpose of this study was to create an artificial neural network (ANN) solution based on computed tomography (CT) images as an additional tool to improve the differentiation of...
-
Application of Artificial Intelligence by Poland’s Public Administration
PublicationThis chapter presents an overview and analysis of artificial intelligence-driven solutions created and implemented by or with the support of Poland’s central public administration (PA). After discussing governance of AI-related issues, we analyze a set of examples of AI innovation to map the actors and their relations within the ecosystem, describe the field where innovation in AI for PA occurs, and highlight the potentialities...
-
Integration of natural and artificial intelligence in production systems
PublicationIntegration processes play an increasingly important role in modern economy, and seriously co-decide about the effectiveness of the company. Integration phase occurs in the system life cycle by preceding the final stages of its implementation and activation. In turn, used in software engineering (SE) iteration-evolutionary models, such as spiral model make that the integration activities can occur in varying degrees in all phases...
-
Determination of Odour Interactions in Gaseous Mixtures Using Electronic Nose Methods with Artificial Neural Networks
PublicationThis paper presents application of an electronic nose prototype comprised of eight sensors, five TGS-type sensors, two electrochemical sensors and one PID-type sensor, to identify odour interaction phenomenon in two-, three-, four- and five-component odorous mixtures. Typical chemical compounds, such as toluene, acetone, triethylamine, α-pinene and n-butanol, present near municipal landfills and sewage treatment plants were subjected...
-
Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks
PublicationLightweight concrete (LWC) is a group of cement composites of the defined physical, mechanical, and chemical performance. The methods of designing the composition of LWC with the assumed density and compressive strength are used most commonly. The purpose of using LWC is the reduction of the structure’s weight, as well as the reduction of thermal conductivity index. The highest possible strength, durability and low thermal conductivity...
-
Artificial Intelligence for Wireless Avionics Intra-Communications
PublicationThis chapter presents a summary of the description and preliminary results of the use case related to the implementation of artificial intelligence tools in the emerging technology called wireless avionics intra-communications (WAICs). WAICs aims to replace some of the cable buses of modern aircraft. This replacement of infrastructure leads to: (1) complexity reduction of future airplanes, (2) creation of innovative services where...
-
Prediction of antimicrobial activity of imidazole derivatives by artificial neural networks
Publication -
Application of Artificial Neural Networks in Investigations of Steam Turbine Cascades
PublicationZaprezentowano wyniki badań numerycznych zastosowania sieci neuronowych przy obliczeniach przepływów w palisadach turbin parowych. Na podstawie uzyskanych wyników wykazano, że sieci neuronowe mogą być używane do szacowania przestrzennego rozkładu parametrów przepływu, takich jak entalpia, entropia, ciśnienie czy prędkość czynnika w kanale przepływowym. Omówiono również zastosowania tego typu metod przy projektowaniu palisad, stopni...
-
Forecasting of currency exchange rates using artificial neural networks
PublicationW rozdziale tym autor przedstawił wyniki swoich badań nad wykorzystaniem sztucznych sieci neuronowych do prognozowania kursu walut (na przykładzie pary walutowej PLN-USD).Głównym celem badań było porównanie skuteczności przewidywania kursu złotówki w latach 1997 - 2005 przy pomocy różnych rodzajów sieci neuronowych.
-
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
Journals -
Deep neural network architecture search using network morphism
PublicationThe paper presents the results of the research on neural architecture search (NAS) algorithm. We utilized the hill climbing algorithm to search for well-performing structures of deep convolutional neural network. Moreover, we used the function preserving transformations which enabled the effective operation of the algorithm in a short period of time. The network obtained with the advantage of NAS was validated on skin lesion classification...
-
NEURAL NETWORKS
Journals -
Artificial Intelligence in the Diagnosis of Onychomycosis—Literature Review
PublicationOnychomycosis is a common fungal nail infection that is difficult to diagnose due to its similarity to other nail conditions. Accurate identification is essential for effective treatment. The current gold standard methods include microscopic examination with potassium hydroxide, fungal cultures, and Periodic acid-Schiff biopsy staining. These conventional techniques, however, suffer from high turnover times, variable sensitivity,...
-
Artificial Intelligence Technologies in Education: Benefits, Challenges and Strategies of Implementation
PublicationSince the education sector is associated with highly dynamic business environments which are controlled and maintained by information systems, recent technological advancements and the increasing pace of adopting artificial intelligence (AI) technologies constitute a need to identify and analyze the issues regarding their implementation in education sector. However, a study of the contemporary literature reveled that relatively...
-
Discouraging Traffic Remapping Attacks in Local Ad Hoc Networks
PublicationQuality of Service (QoS) is usually provided in ad hoc networks using a class-based approach which, without dedicated security measures in place, paves the way to various abuses by selfish stations. Such actions include traffic remapping attacks (TRAs), which consist in claiming a higher traffic priority, i.e., false designation of the intrinsic traffic class so that it can be mapped onto a higher-priority class. In practice, TRAs...
-
TOXIC GASES IDENTIFICATION USING SINGLE ELECTROCATALYTIC SENSOR RESPONSES AND ARTIFICIAL NEURAL NETWORK
PublicationThe need for precise detection of toxic gases drives development of new gas sensors structures and methods of processing the output signals from the sensors. In literature, artificial neural networks are considered as one of the most effective tool for the analysis of gas sensors or sensors arrays responses. In this paper a method of toxic gas components identification using a electrocatalytic gas sensor as a detector and an artificial...
-
GPU Power Capping for Energy-Performance Trade-Offs in Training of Deep Convolutional Neural Networks for Image Recognition
PublicationIn the paper we present performance-energy trade-off investigation of training Deep Convolutional Neural Networks for image recognition. Several representative and widely adopted network models, such as Alexnet, VGG-19, Inception V3, Inception V4, Resnet50 and Resnet152 were tested using systems with Nvidia Quadro RTX 6000 as well as Nvidia V100 GPUs. Using GPU power capping we found other than default configurations minimizing...
-
Implementing artificial intelligence in forecasting the risk of personal bankruptcies in Poland and Taiwan
PublicationResearch background: The global financial crisis from 2007 to 2012, the COVID-19 pandemic, and the current war in Ukraine have dramatically increased the risk of consumer bankruptcies worldwide. All three crises negatively impact the financial situation of households due to increased interest rates, inflation rates, volatile exchange rates, and other significant macroeconomic factors. Financial difficulties may arise when the...
-
Artificial Intelligence - Summer 2023/24
e-Learning Courses -
University Students’ Research on Artificial Intelligence and Knowledge Management. A Review and Report of Multi-case Studies
PublicationLeading technologies are very attractive for students preparing their theses as the completion of their studies. Such an orientation of students connected with professional experiences seems to be a crucial motivator in the research in the management and business areas where these technologies condition the development of professional activities. The goal of the paper is the analysis of students’ thesis topics defended in the last...
-
The use of fast molecular descriptors and artificial neural networks approach in organochlorine compounds electron ionization mass spectra classification
PublicationDeveloping of theoretical tools can be very helpful for supporting new pollutant detection. Nowadays, a combination of mass spectrometry and chromatographic techniques are the most basic environmental monitoring methods. In this paper, two organochlorine compound mass spectra classification systems were proposed. The classification models were developed within the framework of artificial neural networks (ANNs) and fast 1D and...
-
Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support
PublicationIn this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...
-
Analysis of electrical patterns activity in artificial multi-stable neural networks
Publication -
Artificial Neural Networks for Prediction of Antibacterial Activity in Series of Imidazole Derivatives
Publication -
The concept of application of artificial neural networks for cultivation controlof cartilages in bioreactors.
PublicationNowym elementem niniejszej pracy jest omówienie problemów związanych z możliwością sterowania parametrami hydrodynamicznymi hodowanej w bioreaktorze chrząstki stawowej przy wykorzystaniu sztucznych sieci neuronowych. Przedstawiona została architektura strategii sterowania hodowlą tkanki z zastosowaniem tych sieci.
-
Processing of musical data employing rough sets and artificial neural networks
PublicationArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Processing of musical data employing rough sets and artificial neural networks
PublicationArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Karol Flisikowski dr inż.
PeopleKarol Flisikowski works as Associate Professor at the Department of Statistics and Econometrics, Faculty of Management and Economics, Gdansk University of Technology. He is responsible for teaching descriptive and mathematical statistics (in Polish and English), as well as scientific research in the field of social statistics. He has been a participant in many national and international conferences, where he has presented the results...
-
Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio
PublicationThe purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...
-
Solving the Problem of Dynamic Adaptability of Artificial Intelligence Systems that Control Dynamic Technical Objects
PublicationThis paper investigates the increase in the response speed and stability of artificial intelligence systems that control dynamic technical objects. The problem of calculating the optimal time of switching an artificial intelligence system between software classes by the criterion of the rigidity degree of the model of a control object is considered. The solution of this problem is proposed for the general case of the control object...
-
Heavy Duty Vehicle Fuel Consumption Modelling Based on Exploitation Data by Using Artificial Neural Networks
PublicationOne of the ways to improve the fuel economy of heavy duty trucks is to operate the combustion engine in its most efficient operating points. To do that, a mathematical model of the engine is required, which shows the relations between engine speed, torque and fuel consumption in transient states. In this paper, easy accessible exploitation data collected via CAN bus of the heavy duty truck were used to obtain a model of a diesel...
-
Human System Interaction in Review: Advancing the Artificial Intelligence Transformation
PublicationThe industrial advancement of human society has been fundamentally driven by diverse ‘systems’ that facilitate ‘human interaction’ within physical, digital, virtual, social and artificial environments, and upon the hyper-connected layers of system-system interactions across these environments. The research and practice of Human System Interaction (HSI) has undergone exponential development due to the enhanced capabilities, increased...
-
Face with Mask Detection in Thermal Images Using Deep Neural Networks
PublicationAs the interest in facial detection grows, especially during a pandemic, solutions are sought that will be effective and bring more benefits. This is the case with the use of thermal imaging, which is resistant to environmental factors and makes it possible, for example, to determine the temperature based on the detected face, which brings new perspectives and opportunities to use such an approach for health control purposes. The...