displaying 1000 best results Help
Search results for: UNDRAINED SHEAR STRENGTH
-
Problems of Strength and Plasticity
Journals -
STRENGTH AND CONDITIONING JOURNAL
Journals -
Flexomagneticity in buckled shear deformable hard-magnetic soft structures
PublicationThis research work performs the first time exploring and addressing the flexomagnetic property in a shear deformable piezomagnetic structure. The strain gradient reveals flexomagneticity in a magnetization phenomenon of structures regardless of their atomic lattice is symmetrical or asymmetrical. It is assumed that a synchronous converse magnetization couples both piezomagnetic and flexomagnetic features into the material structure....
-
The Use of Direct Shear Test for Optimization of Interlayer Bonding Under a Poroelastic Layer
PublicationPoroelastic Road Surfaces (PERS) are characterised by porous structure with air void content of 20% or higher and stiffness almost 10 times lower than that of a standard asphalt course. Such properties enable noise reduction by up to 12 dB in comparison to SMA 11 mixture. However, the disadvantage of a poroelastic pavement is its low durability, which partially results from delamination from the lower layer. The paper aims to investigate...
-
Effects of Xanthan Gum Biopolymer on the Permeability, Odometer, Unconfined Compressive and Triaxial Shear Behavior of a Sand
PublicationBiopolymers, which are microbially induced polymers, can be used as an alternative material to improve engineering performance of soils. In this paper, a laboratory study of 0.075-1.0 mm size sand and biopolymer (i.e., xanthan gum) mixtures with various mix ratios (0%, 0.5%, 1.0%, and 1.5%) was performed. The materials, specimen preparation, and test methods are described, as are the results of a suite of permeability, odometer, unconfined...
-
Assessment of Tensile Strength Reserve of Asphalt Mixtures at Low Temperatures
PublicationDuring winter conditions, low-temperature cracks develop at the surface of the asphalt pavement when tensile thermal stress induced in the asphalt layer during cooling equals and exceeds the tensile strength of the material. The paper presents the results of tensile strength reserve assessment of asphalt mixtures with neat and SBS-polymer modified bitumen application. The tensile strength reservewas calculated as difference between...
-
Determination of changes in viscosity of hydrogel depending on shear rate (6.6 to 330 s-1).
Open Research DataThe rheological characteristics of hydrogel were made on the basis of a viscosity measurement using a Brookfield viscometer, using LV SC4 - 18 spindle and shear rates from 6.6 to 330 s-1.
-
Direct shear stress vs strain relation for fiber reinforced composites
PublicationThe majority of fiber reinforced composites exhibit strong non-linear behavior in in-plane shear state. The effect is attributed to the micro-cracks appearing in the matrix and can be modeled on the micro and macro level. In this work the author proposes constitutive laws describing the non-linear in-plane shear response, which can be alternative for the relations commonly considered in the literature. The proposed equations are...
-
Maturity curve for estimating the in-place strength of high performance concrete
PublicationThe paper presents the maturity curve for estimating the in-place early-age compressive strength of concrete. The development of appropriate maturity curve is a complex process. It is important to correctly determine the datum temperature and activation energy, which can be obtained in mortar tests. This paper describes an investigation of the accuracy of the maturity method to estimate the strength when different way to rate constant...
-
The influence of core material on strength properties of hybrid sandwich panels
PublicationAlong with high prices of fuels and more restrictive safety and environmental regulations (including environment protection) increased interest in sandwich structures is being observed. One of the solution having growing application potential is steel sandwich panel. The construction consist of very thin steel plates (about 2mm) and stiffeners between them. The main advantage of using such solution is very high strength to weight...
-
In-plane shear nonlinearity in failure behavior of angle-ply laminated shells
PublicationThe paper concerns the progressive failure analysis of laminates with the in-plane shear nonlinearity accounted for.The nonlinear shear response of the layer is described by the constitutive relation treating the stresses as a function of strains. Thus it can be easily incorporated into the displacement-based FEM codes. The brittle failure mechanisms of the fibers and the matrix of the layer are recognized with the use of the Hashin...
-
Strength of materials II, Tutorials and Laboratory, DaPE, sem. 04, summer 22/23, (PG_00050281)
e-Learning CoursesTutorials and Laboratory on Strength of materials II.
-
Influence of sheet/purlin fasteners spacing on shear flexibility of the diaphragm
PublicationThe paper presents the influence of sheet/purlin fasteners location (in reference to trapezoidal profile cross section) on shear flexibility of the cladding acting as a diaphragm. Analytical procedures were presented and their limitations were discussed. Next, selected schemes of fasteners location, known from engineering practice, but not included in European codes and recommendations, were analysed numerically in order to observe...
-
Simulations of Shear Zones and Cracks in Engineering Materials Using eXtended Finite Element Method
PublicationNumerical simulations of cracks and shear zones in quasi-brittle materials are presented. Extended Finite Element Method is used to describe both cracks and shear zones. In a description of tensile cracks, a Rankine criterion is assumed. A discrete Mohr-Coulomb law is adopted for simulations of shear zones. Results of simple numerical tests: unixial tension, bending and biaxial compression are demonstrated.
-
Fatigue strength determination of ship structural joints. Part I - Analytical methods for determining fatigue strength of ship tructures
PublicationSpectacular accidents at sea which have happened for a few last years show that hull structures of contemporary sea-going ships are not perfect and must be systematically improved. Fatigue strength is one of the groups of strength problems which affect design of contemporary ship's structures and greatly contribute in their improvement process. In this paper several approaches to estimation of fatigue life of hull structural...
-
Numerical assessment of ultimate strength of severe corroded stiffened plates
PublicationThe objective of this work is to investigate numerically (using the non-linear FEM and the approach stipulated by the Common Structural Rules) the severe nonuniform corrosion degradation effect on the ultimate strength of stiffened plates and compare the results to the already published experimental works. Different factors governing structural behavior of corroded stiffened plates are investigated, such as corrosion degradation level,...
-
Discrete Modelling of Micro-structural Phenomena in Granular Shear Zones
PublicationThe micro-structure evolution in shear zones in cohesionless sand for quasi-static problems was analyzed with a discrete element method (DEM). The passive sand failure for a very rought retaining wall undergoing horizontal translation towards the sand backfill was discussed. To simulate the behaviour of sand, the spherical discrete element model was used with elements in the form of rigid spheres with contacts moments.
-
Strength of Materials II, Tutorial and Laboratory, DaPE, sem. 04, summer 21/22, (PG_00050281)
e-Learning CoursesThe aim of the course is to present the strength calculations of systems in a complex state load.
-
Determination of changes in viscosity of chitosan solutions depending on shear rate.
Open Research DataThe rheological characteristics of chitosan solutions were based on viscosity measurements using a Brookfield viscometer, using LV SC4 - 25 spindles and shear rates from 4 to 53 s-1 (Fig. 1). Chitosan solutions with different molecular weights (low, medium and high) were prepared in concentrations from 1.5 to 3.0% in 0.5M acetic acid. The data allowed...
-
Compressive strength data of cementitous material with biochar and recycled fines
Open Research DataCompressive strength data of cementitous material with biochar and recycled fines using Controls UTM250.
-
Comparative modeling of shear localization in granular bodies with FEM and DEM
PublicationThe intention of the paper is to compare the calculations of shear zones in granular bodies using two different approaches: a continuum and a discrete one. In the first case, the FEM based on a micro-polar hypoplastic constitutive law was used. In the second case, the DEM was taken advantage of, where contact moments were taken into account to model grain roughness. The comparative calculations were performed for a passive case...
-
Optimized Computational Intelligence Model for Estimating the Flexural Behavior of Composite Shear Walls
PublicationThis article presents a novel approach to estimate the flexural capacity of reinforced concrete-filled composite plate shear walls using an optimized computational intelligence model. The proposed model was developed and validated based on 47 laboratory data points and the Transit Search (TS) optimization algorithm. Using 80% of the experimental dataset, the optimized model was selected by determining the unknown coefficients of...
-
Effect of coarse grain aggregate on strength parameters of two-stage concrete
Publication. Two-stage concrete (TSC) is a special type of concrete that the method of its construction and implementation is different from conventional one. In TSC, coarse aggregate particles are first placed in the formwork and voids between them are subsequently injected with a special cementations mixture. TSC has been successfully used in many applications, such as underwater construction, casting concrete sections congested with reinforcement...
-
Shear Cap Size Selection Method Based on Parametric Analysis of ACI-318 Code and Eurocode 2 Standard
PublicationThe scope of the paper is to propose a method for determining the size of shear caps in a slab–column-connections-reinforced concrete structure. Usually, shear heads are used to enhance slab–column connection, especially when the transverse reinforcement does not give the required punching shear load capacity. The dimensions of the shear head should provide the punching shear resistance of the connection inside and outside the...
-
A shear stress micromodel of urinary tract infection by the Escherichia coli producing Dr adhesin
PublicationIn this study, we established a dynamic micromodel of urinary tract infection to analyze the impact of UT-segment-specific urinary outflow on the persistence of E. coli colonization. We found that the adherence of Dr+ E. coli to bladder T24 transitional cells and type IV collagen is maximal at lowest shear stress and is reduced by any increase in flow velocity. The analyzed adherence was effective in the whole spectrum of physiological...
-
Strength analysis of container ship subjected to torsional loading
PublicationThe objective of this work is to investigate the torsional response of a container ship, with particular consideration of the warping effect. Two different models are investigated. In the first case, the full length model of a ship is analyzed and a distributed load is applied with the use of a novel approach. The model is supported in the torsional centre of the cross-section, which is derived analytically. In the second case,...
-
Weldability of high strength steels in wet welding conditions
PublicationIn this paper are characterized problems of high strength steel weldability in underwater wet welding conditions. Water as a welding environment intensifies action of unfavourable factors which influence susceptibility to cold cracking of welded steel joints. The susceptibility to cold cracking of S355J2G3 steel and S500M steel in wet conditions was experimentally estimated (by using Tekken test). It was concluded that the steels...
-
Numerical Modelling of Shear Localization in Granular Bodies using MPM and Non-local Hypoplasticity
PublicationThe paper deals with modelling of shear localization in granular bodies by means of an enhanced hypoplastic constitutive model and material point method (MPM). The calculations were carried out for plane strain compression of non-cohesive sand. In order to properly capture the width and inclination of shear zones, the constitutive model was enriched by a characteristic length of micro-structure by means of a non-local theory....
-
Mechanical strength of stems in aquatic macrophytes
PublicationSummary: In populations of submerged macrophytes, individuals are selected in terms of resistance to the effect of hydrodynamic forces. The aim of this study was to check whether individuals growing in river water are more tensile and bending resistant than plants occurring in places not exposed to flow stress. We determined the ultimate tensile strength of stems in four macrophyte species, Potamogeton natans, P. pectinatus, Batrachium...
-
Determination of changes in viscosity of chitosan cosmetic preparations depending on shear rate.
Open Research DataThe rheological characteristics of chitosan were made on the basis of a viscosity measurement using a Brookfield viscometer, using LV SC4 - 25 spindles and shear rates from 0.3 to 32 s-1 (Fig. 1). Chitosan solutions at 1% concentrations in acetic acid were prepared. The samples were subjected to storage tests.
-
Determination of viscosity changes of protein hydrolyzate solutions depending on shear rate
Open Research DataRheological characteristics of connective tissue protein solutions were made on the basis of viscosity measurement using a Brookfield viscometer using LV SC4 - 27 spindles and shear rate of 85 s-1 (Fig. 1). Solutions of protein hydrolysates with a concentration of 2% in 0.5M acetic acid were prepared.
-
Shaft friction from the DMT and direct shear interface tests
PublicationThe article presents preliminary attempt to create tri-linear transfer curves for describing pile behaviour under axial loading. Transfer curves would use the parameter measured in dilatometer test, particularly a constrained modulus MDMT. The proposed method is based on concrete rough and smooth interface tests performed in a direct shear apparatus. Based on the obtained mobilization curves, relationships were created between...
-
Ultimate compressive strength assessment of uncleaned and cleaned corroded plates with locked crack
PublicationThe work presented here investigates the structural response of cleaned corroded plates, subjected to compressive load in the presence of a locked crack, where the change of mechanical properties as a result of corrosion development and the cleaning process is also accounted for. A Finite Element model for assessing the compressive strength, considering geometric and material nonlinearities, is developed, and the analysed plates...
-
INFLUENCE OF PRESERVATIVE ON THE TENSILE STRENGTH OF THE TISSUE OF PORCINE CIRCULATORY SYSTEM
PublicationCurrently one of the leading causes of death worldwide is heart diseases which include calcification of heart valves and vascular aneurysm. There are many biomaterials that can substitute pathologically altered tissue, however, none of them is as perfect as native tissue. Currently, scientists are looking for new biomaterials that can be successfully implanted without exposing the patient to reoperation. Each material introduced...
-
Determination of changes in viscosity of hydrogel depending on shear rate (1.1 to 55 s-1).
Open Research DataThe rheological characteristics of hydrogel were made on the basis of a viscosity measurement using a Brookfield viscometer, using LV SC4 - 25 spindle and shear rates from 1.1 to 55 s-1.
-
Determination of changes in viscosity of hydrogel depending on shear rate (1.7 to 34 s-1).
Open Research DataThe rheological characteristics of hydrogel were made on the basis of a viscosity measurement using a Brookfield viscometer, using LV SC4 - 27 spindle and shear rates from 1.7 to 34 s-1.
-
Problems with modelling the strength properties of sailing vessels rigging ropes
PublicationThis article presents the basic parameters of soft ropes: natural fibre ropes, soft wire ropes and synthetic fibre ropes used for running rigging. There are only several materials still used for the production of natural fibre ropes, including cotton, jute, hemp, sisal and manila hemp. The most commonly used soft wire ropes are twisted pair ropes; for smaller diameters there is a 6x19M - FC rope and for larger diameters – 6x37M...
-
Underwater wet welding of S1300 ultra-high strength steel
PublicationMarine Structures Volume 81, January 2022, 103120 Underwater wet welding of S1300 ultra-high strength steel Author links open overlay panelJacekTomkówGrzegorzRogalski https://doi.org/10.1016/j.marstruc.2021.103120 Get rights and content Under a Creative Commons licenseopen access Highlights • Technological method of S1300 steel underwater weldability improving was proposed. • Number of cracks and hardness of welded joints was...
-
Effect of Chitosan Solution on Low-Cohesive Soil’s Shear Modulus G Determined through Resonant Column and Torsional Shearing Tests
PublicationIn this study the effect of using a biopolymer soil stabilizer on soil stiffness characteristics was investigated. Chitosan is a bio-waste material that is obtained by chemical treatment of chitin (a chemical component of fungi or crustaceans’ shells). Using chitosan solution as a soil stabilizer is based on the assumption that the biopolymer forms temporary bonds with soil particles. What is important is that these bonds are biodegradable,...
-
The influence of feed rate and shear forces on the devulcanization process of ground tire rubber (GTR) conducted in a co-rotating twin screw extruder
PublicationThe search for new ways to recycling of rubber waste has been the aim of many studies conducted by research centers and companiesworldwide. The results of our investigations on the process of continuous thermomechanical devulcanization of ground tire rubber using a twin screw extruder are presented.We used a co-rotating twin screw extruder with a special configuration of plasticizing unit, enabling generation of considerable shear...
-
A Proposed Soft Computing Model for Ultimate Strength Estimation of FRP-Confined Concrete Cylinders
PublicationIn this paper, the feed-forward backpropagation neural network (FFBPNN) is used to propose a new formulation for predicting the compressive strength of fiber-reinforced polymer (FRP)-confined concrete cylinders. A set of experimental data has been considered in the analysis. The data include information about the dimensions of the concrete cylinders (diameter, length) and the total thickness of FRP layers, unconfined ultimate concrete...
-
Experimental Determination of Limit Adhesive Shear Strtess between Solid Wall and Liquid
PublicationTheoretically slip of a fluid with respect to the solid wall should occur even at a very low velocity of motion. However theoretical analysisand some empirical data suggest that there must be a limit value of shear stress, below which the slip does not appear. A simple metyhod of this stress determination was proposed in the paper.
-
Performance Evaluation of Asphalt Binder Modified with Shear Thickening Fluid
PublicationThis paper aims at using a dilatant or shear thickening fluid (STF) [a non-Newtonian fluid consisting of particles of nano-silica suspended in a liquid medium, i.e., ethylene glycol (EG), which acts as a carrier fluid; proportion 40:60] as additive or modifier of bitumen in order to enhance its viscoelastic properties. A commonly-used performance grading (PG) system, storage stability test, and different conventional and rheological...
-
M-integral for finite anti-plane shear of a nonlinear elastic matrix with rigid inclusions
PublicationThe path-independent M-integral plays an important role in analysis of solids with inhomogeneities. However, the available applications are almost limited to linear-elastic or physically non-linear power law type materials under the assumption of infinitesimal strains. In this paper we formulate the M-integral for a class of hyperelastic solids undergoing finite anti-plane shear deformation. As an application we consider the problem...
-
Determination of changes in viscosity of poly(acrylic acid) PAA solutions depending on shear rate.
Open Research DataThe rheological characteristics of poly(acrylic acid) PAA solutions were based on viscosity measurements using a Brookfield viscometer, using LV SC4 - 27 spindles and shear rates from 1,7 to 39 s-1 (Fig. 1). PAA solutions with were prepared in water. The data allowed to characterize the used PAA and assess their functional parameters as rheology modifying...
-
Sawing Processes as a Way of Determining Fracture Toughness and Shear Yield Stresses of Wood
PublicationA new computational model, based on fracture mechanics, was used to determine cutting forces. Unlike traditional computing methods, which depend on many coefficients reflecting the machining of solid wood, the new model uses two main parameters: fracture toughness and shear yield stresses. The aim of this study was to apply this new method to determine these parameters for the tooth cutting edge principal positions and longitudinal...
-
Study on some of the strength properties of soft clay stabilized with plastic waste strips
PublicationIt is well known that if plastic wastes are not well managed, it has a negative impact on the environment as well as on human health. In this study, recycling plastic waste in form of strips for stabilizing weak subgrade soil is proposed. For this purpose, a weak clay soil sample was mixed with 0.2%, 0.3%, and 0.4% of plastic strips by weight of soil, and the experimental results were compared to the control soil sample with 0%...
-
Design of experiments approach for ultimate strength assessment of corroded stiffened plates
PublicationThe impact of corrosion degradation on the ultimate strength of stiffened plates subjected to compressive loading is investigated. The DoE technique is used considering different plate and column slenderness ratios and corrosion severity. The FE method, considering geometrical and material nonlinearities, is employed. A two-stage corrosion degradation model is adopted. Firstly, a uniform thickness loss is adopted to reflect the...
-
Concrete Compressive Strength Under Changing Environmental Conditions During Placement Processes
PublicationThe technological process of concrete production consists of several parts, including concrete mix design, concrete mix production, transportation of fresh concrete mix to a construction site, placement in concrete framework, and curing. Proper execution of these steps provides good quality concrete. Some factors can disturb the technological process, mainly temperature and excessive precipitation. Changing daily temperature and...
-
Advances in Modelling and Analysis of Strength of Corroded Ship Structures
PublicationThe present study reviews the recent advances in modelling and analyses the strength of corroded ship structures. Firstly, the time-variant methodologies that consider only the mean structural element thickness loss due to corrosion degradation are identified. Corrosion degradation is regarded as the phenomenon that causes uneven thinning of specimens. This has been captured by various researchers as the loss of mechanical properties...