Filters
total: 443
Search results for: NUMERICAL PREDICTION
-
CORPORATE BANKRUPTCY PREDICTION IN POLAND AGAINST THE BACKGROUND OF FOREIGN EXPERIENCE
PublicationIn highly developed countries, research in the field of bankruptcy risk prediction has been conducted for many years. For example, in the United States, which can be considered a pioneering country, the first publications appeared in the early twentieth century. In Poland, due to political and economic reasons, the interest in this issue dates back to the early 1990s. For this reason, this publication attempts to answer the following...
-
Prediction of Processor Utilization for Real-Time Multimedia Stream Processing Tasks
PublicationUtilization of MPUs in a computing cluster node for multimedia stream processing is considered. Non-linear increase of processor utilization is described and a related class of algorithms for multimedia real-time processing tasks is defined. For such conditions, experiments measuring the processor utilization and output data loss were proposed and their results presented. A new formula for prediction of utilization was proposed...
-
Predicting Ice Phenomena in a River Using the Artificial Neural Network and Extreme Gradient Boosting
PublicationForecasting ice phenomena in river systems is of great importance because these phenomena are a fundamental part of the hydrological regime. Due to the stochasticity of ice phenomena, their prediction is a difficult process, especially when data sets are sparse or incomplete. In this study, two machine learning models—Multilayer Perceptron Neural Network (MLPNN) and Extreme Gradient Boosting (XGBoost)—were developed to predict...
-
ANALYSIS OF POSSIBILITIES FOR THE USE OF VOLUME-DELAY FUNCTIONS IN THE PLANNING MODULE OF THE TRISTAR SYSTEM
PublicationTravel time is a measure commonly used for traffic flow modelling and traffic control. It also helps to evaluate the quality of traffic control systems in urban areas. Traffic control systems that use traffic models to predict changes and disruptions in vehicle flows have to use vehicle speed-prediction models. Travel time estimation studies the effects of traffic volumes on a street section at an average speed. The TRISTAR Integrated...
-
Age Prediction from Low Resolution, Dual-Energy X-ray Images Using Convolutional Neural Networks
PublicationAge prediction from X-rays is an interesting research topic important for clinical applications such as biological maturity assessment. It is also useful in many other practical applications, including sports or forensic investigations for age verification purposes. Research on these issues is usually carried out using high-resolution X-ray scans of parts of the body, such as images of the hands or images of the chest. In this...
-
A new quantum-inspired approach to reduce the blocking probability of demands in resource-constrained path computation scenarios
PublicationThis article presents a new approach related with end-to-end routing, which, owing to quantum-inspired mecha-nisms of prediction of availability of network resources, results in improved blocking probability of incoming requests to establish transmission paths. The proposed scheme has been analyzed for three network topologies and several scenarios of network load. Obtained results show a significant (even twofold) reduction of...
-
Optimized Deep Learning Model for Flood Detection Using Satellite Images
PublicationThe increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...
-
A CNN based coronavirus disease prediction system for chest X-rays
PublicationCoronavirus disease (COVID-19) proliferated globally in early 2020, causing existential dread in the whole world. Radiography is crucial in the clinical staging and diagnosis of COVID-19 and offers high potential to improve healthcare plans for tackling the pandemic. However high variations in infection characteristics and low contrast between normal and infected regions pose great challenges in preparing radiological reports....
-
A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine
PublicationRNA protein interactions (RPI) play a pivotal role in the regulation of various biological processes. Experimental validation of RPI has been time-consuming, paving the way for computational prediction methods. The major limiting factor of these methods has been the accuracy and confidence of the predictions, and our in-house experiments show that they fail to accurately predict RPI involving short RNA sequences such as TERRA RNA....
-
Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various Machine learning techniques
PublicationMachine Learning (ML) method is widely used in engineering applications such as fracture mechanics. In this study, twenty different ML algorithms were employed and compared for the prediction of the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) of various materials, including fibre-reinforced concrete, cement mortar, sandstone, white travertine, marble, and granite. A set of 401 specimens of “Brazilian...
-
Cost assessment of computer security activities
PublicationComprehensive cost-benefit analysis plays a crucial role in the decision-making process when it comes to investments in information security solutions. The cost of breaches needs to be analysed in the context of spending on protection measures. However, no methods exist that facilitate the quick and rough prediction of true expenditures on security protection systems. Rafal Leszczyna of Gdansk University of Technology presents...
-
New type T-Source inverter
PublicationThis paper presents different topologies of voltage inverters with alternative input LC networks. The basic topology is known in the literature as a Z-source inverter (ZSI). Alternative passive networks were named by the authors as T-sources. T-source inverter has fewer reactive components in comparison to conventional Z-source inverter. The most significant advantage of the T-source inverter (TSI) is its use of a common voltage...
-
The Analysis of Patients' Airflow with Respect to Early Detection of Sleep Apnea
PublicationThe paper discusses the analysis of the respiratory events of sleep apnea patients. The analysis was carried out on the basis of the patient's airflow. As a result of the conducted analysis we proposed an algorithm which establishes an individual respiratory pattern for each subject. The algorithm could be implemented in the measurement - control system which manages the prosthetic device applying positive airway pressure. Its...
-
New approach to railway noise modeling employing Genetic Algorithms
PublicationMain goal of this paper was to describe an innovative method of noise prediction based on Genetic Algorithms. First part of the paper addresses the problem of growing noise, mainly in the context of a unified method for measuring noise. Further, Genetic Algorithms are described with regards to their fundamental features. Further a description is provided as to how Genetic Algorithms were used in the area of noise modeling. Next...
-
The Concept of Geodetic Analyses of the Measurement Results Obtained by Hydrostatic Leveling
PublicationThe article discusses the issue of hydrostatic leveling. Its application is presented in structural health monitoring systems in order to determine vertical displacements of controlled points. Moreover, the article includes a complete computation scheme that utilizes the estimation from observation differences, allowing the elimination of the influence of individual sensors’ systematic errors. The authors suggest two concepts of...
-
Application of Majority Voting Protocols to Supporting Trading Decisions
PublicationA broad spectrum of analysis and prediction indicators and methods exists to support trading decisions, but no hard knowledge exist to tell in advance which of them will fit best in a given timeframe. To support trading decisions, a multi-agent self-organizing system has been proposed. The system is based on history based dynamic weight voting and selects the right indicators based on their past performance. The formal analysis...
-
APPLICATION OF MAJORITY VOTING PROTOCOLS TO SUPPORTING TRADING DECISIONS
PublicationA broad spectrum of analysis and prediction indicators and methods exists to support trading decisions, but no hard knowledge exist to tell in advance which of them will fit best in a given timeframe. To support trading decisions, a multi-agent self-organizing system has been proposed. The system is based on history based dynamic weight voting and selects the right indicators based on their past performance. The formal analysis...
-
Dynamic fracture of brittle shells in a space-time adaptive isogeometric phase field framework
PublicationPhase field models for fracture prediction gained popularity as the formulation does not require the specification of ad-hoc criteria and no discontinuities are inserted in the body. This work focuses on dynamic crack evolution of brittle shell structures considering large deformations. The energy contributions from in-plane and out-of-plane deformations are separately split into tensile and compressive components and the resulting...
-
Non-Contact Temperature Measurements Dataset
PublicationThe dataset titled The influence of the distance of the pyrometer from the surface of the radiating object on the accuracy of measurements contains temperature measurements using a selection of four commercially available pyrometers (CHY 314P, TM-F03B, TFA 31.1125 and AB-8855) as a function of the measuring distance. The dataset allows a comparison of the accuracy and measuring precision of the devices, which are very important...
-
Verification of the new viscoelastic method of thermal stress calculation in asphalt layers of pavements
PublicationThe new viscoelastic method of thermal stress calculations in asphalt layers has been developed and published recently by the author. This paper presents verification of this method. The verification is based on the comparison of the results of calculations with results of testing of thermal stresses in Thermal Stress Restrained Specimen Test. The calculations of thermal stresses according to the new method were based on rheological...
-
Explainable machine learning for diffraction patterns
PublicationSerial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...
-
Personalized prediction of the secondary oocytes number after ovarian stimulation: A machine learning model based on clinical and genetic data
PublicationControlled ovarian stimulation is tailored to the patient based on clinical parameters but estimating the number of retrieved metaphase II (MII) oocytes is a challenge. Here, we have developed a model that takes advantage of the patient’s genetic and clinical characteristics simultaneously for predicting the stimulation outcome. Sequence variants in reproduction-related genes identified by next-generation sequencing were matched...
-
Sensorless predictive control of three-phase parallel active filter
PublicationThe paper presents the control system of parallel active power filter (APF) with predictive reference current calculation and model based predictive current control. The novel estimator and predictor of grid emf is proposed for AC voltage sensorless operation of APF, regardless of distortion of this voltage. Proposed control system provides control of APF current with high precision and dynamics limited only by filter circuit parameters....
-
Ship Dynamic Positioning Based on Nonlinear Model Predictive Control
PublicationThe presented work explores the simulation test results of using nonlinear model predictive control algorithm for ship dynamic positioning. In the optimization task, a goal function with a penalty was proposed with a variable prediction step. The results of the proposed control algorithm were compared with backstepping and PID. The effect of estimation accuracy on the control quality with the implemented algorithms was investigated....
-
Full scale measurements of pressure field induced on the quay wall by bow thrusters – indirect method for seabed velocities monitoring
PublicationThe paper presents the results of full-scale experimental investigation of loads generated on the quay wall by bow thrusters during unberthing of a self-manoeuvring vessel. The presented research allowed for the comparison of the measurements results with generally accepted empirical prediction methods and confirmed the utility of the developed measuring setup for the on-line monitoring of jet induced loads. The conclusions from the...
-
A predictive estimation based control strategy for a quasi-resonant dc-link inverter
PublicationIn this paper the predictive estimation based control strategy for a quasi-resonant dc link inverter (PQRDCLI) is developed. Instead of direct measurement of dc link input inverter current – its estimation with one step prediction is applied. The PQRDCLI fed induction motor, controlled with a predictive current estimation stabilized inverter output voltage slopes independently of load. Moreover, reduction of overvoltage spikes...
-
Systematic Literature Review on Click Through Rate Prediction
PublicationThe ability to anticipate whether a user will click on an item is one of the most crucial aspects of operating an e-commerce business, and clickthrough rate prediction is an attempt to provide an answer to this question. Beginning with the simplest multilayer perceptrons and progressing to the most sophisticated attention networks, researchers employ a variety of methods to solve this issue. In this paper, we present the findings...
-
Fatigue life prediction of notched components under size effect using strain energy reformulated critical distance theory
PublicationNotch and size effects show significant impact on the fatigue performance of engineering components, which deserves special attention. In this work, a strain energy reformulated critical distance theory was developed for fatigue life prediction of notched components under size effect. Experimental data of different notched specimens manufactured from GH4169, TC4, TC11 alloys and low carbon steel En3B were used for model validation...
-
New results on estimation bandwidth adaptation
PublicationThe problem of identification of a nonstationary autoregressive signal using non-causal estimation schemes is considered. Noncausal estimators can be used in applications that are not time-critical, i.e., do not require real-time processing. A new adaptive estimation bandwidth selection rule based on evaluation of pseudoprediction errors is proposed, allowing one to adjust tracking characteristics of noncausal estimators to unknown...
-
Machine learning-based prediction of preplaced aggregate concrete characteristics
PublicationPreplaced-Aggregate Concrete (PAC) is a type of preplaced concrete where coarse aggregate is placed in the mold and a Portland cement-sand grout with admixtures is injected to fill the voids. Due to the complex nature of PAC, many studies were conducted to determine the effects of admixtures and the compressive and tensile strengths of PAC. Considering that a prediction tool is needed to estimate the compressive and tensile...
-
News that Moves the Market: DSEX-News Dataset for Forecasting DSE Using BERT
PublicationStock market is a complex and dynamic industry that has always presented challenges for stakeholders and investors due to its unpredictable nature. This unpredictability motivates the need for more accurate prediction models. Traditional prediction models have limitations in handling the dynamic nature of the stock market. Additionally, previous methods have used less relevant data, leading to suboptimal performance. This study...
-
Machine learning-based prediction of preplaced aggregate concrete characteristics
PublicationPreplaced-Aggregate Concrete (PAC) is a type of preplaced concrete where coarse aggregate is placed in the mold and a Portland cement-sand grout with admixtures is injected to fill the voids. Due to the complex nature of PAC, many studies were conducted to determine the effects of admixtures and the compressive and tensile strengths of PAC. Considering that a prediction tool is needed to estimate the compressive and tensile strengths...
-
Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
PublicationRegarding the unpredictable and complex nature of seismic excitations, there is a need for vulnerability assessment of newly constructed or existing structures. Predicting the seismic limit-state capacity of steel Moment-Resisting Frames (MRFs) can help designers to have a preliminary estimation and improve their views about the seismic performance of the designed structure. This study improved data-driven decision techniques in...
-
Modeling of Performance, Reliability and Energy Efficiency in Large-Scale Computational Environment
PublicationLarge scale of complexity of distributed computational systems imposes special challanges for prediction of quality in such systems.Existing quality models for lower-scale systems include functionality,performance,reliability,flexibility and usability.Among these attributes,performance and reliability have a particular significance to the large-scale systems computing quality modeling due to their strong dependence on the system...
-
Tool Wear Prediction in Single-Sided Lapping Process
PublicationSingle-sided lapping is one of the most effective planarization technologies. The process has relatively complex kinematics and it is determined by a number of inputs parameters. It has been noted that prediction of the tool wear during the process is critical for product quality control. To determine the profile wear of the lapping plate, a computer model which simulates abrasive grains trajectories was developed in MATLAB. Moreover,...
-
On autoregressive spectrum estimation using the model averaging technique
PublicationThe problem of estimating spectral density of a nonstationary process satisfying local stationarity conditions is considered. The proposed solution is a two step procedure based on local autoregressive (AR) modeling. In the first step Bayesian-like averaging of AR models, differing in order, is performed. The main contribution of the paper is development of a new final-prediction-error-like statistic, which can be used to select...
-
Simplified AutoDock force field for hydrated binding sites
Publicationhas been extracted from the Protein Data Bank and used to test and recalibrate AutoDock force field. Since for some binding sites water molecules are crucial for bridging the receptor-ligand interactions, they have to be included in the analysis. To simplify the process of incorporating water molecules into the binding sites and make it less ambiguous, new simple water model was created. After recalibration of the force field on...
-
Lattice filter based autoregressive spectrum estimation with joint model order and estimation bandwidth adaptation
PublicationThe problem of parametric, autoregressive model based estimation of a time-varying spectral density function of a nonstationary process is considered. It is shown that estimation results can be considerably improved if identification of the autoregressive model is carried out using the two-sided doubly exponentially weighted lattice algorithm which combines results yielded by two one-sided lattice algorithms running forward in...
-
Recovering Sound Produced by Wind Turbine Structures Employing Video Motion Magnification
PublicationThe recordings were made with a fast video camera and with a microphone. Using fast cameras allowed for observation of the micro vibrations of the object structure. Motion-magnified video recordings of wind turbines on a wind farm were made for the purpose of building a damage prediction system. An idea was to use video to recover sound & vibrations in order to obtain a contactless diagnostic method for wind turbines. The recovered signals...
-
Residence time distribution in rapid multiphase reactors
PublicationResidence time distribution (RTD) provides information about average hydraulic residence time and the distribution of material in the reactor. A method for determining RTD for reactors with very short hydraulic residence times is deconvolution based on extraction of real RTD by the analysis of a non-ideal input signal. The mean residence time and dispersion were determined for the spinning fluids reactor (SFR). For the first time...
-
Wideband Modeling of DC-DC Buck Converter with GaN Transistors
PublicationThe general wideband modeling method of the power converter is presented on the example of DC-DC buck converter with GaN High Electron Mobility Transistors (HEMT). The models of all basic and parasitic components are briefly described. The two methods of Printed Circuit Board (PCB) layout parameter extraction are presented. The results of simulation in Saber@Sketch simulation software and measurements are compared. Next, the model...
-
High temperature corrosion evaluation and lifetime prediction of porous Fe22Cr stainless steel in air in temperature range 700–900 °C
PublicationThis work describes a high temperature corrosion kinetics study of ~30% porous Fe22Cr alloys. The surface area of the alloy (~0.02 m2 g-1) has been determined by tomographic microscopy. The weight gain of the alloys was studied by isothermal thermogravimetry in the air for 100 hours at 700 - 900 °C. Breakaway oxidation was observed after oxidation at 850 °C (~100 hours) and 900 °C (~30 hours). The lifetime prediction shows the...
-
Modeling of Performance, Reliability and Energy Efficiency in Large-Scale Computational Environments
PublicationLarge scale of complexity of distributed computational systems imposes special challenges for prediction of quality in such systems. Existing quality models for lower-scale systems include functionality, performance, reliability, flexibility and usability. Among these attributes, performance and reliability have a particular significance to the large-scale systems computing quality modeling due to their strong dependence on the...
-
A history of the physical and chemical stability of pharmaceuticals : a review
Publication: There is a great need for a broad range review of stability tests of active pharmaceutical ingredients (APIs) in comparison with current requirements contained in the pharmacopoeia. This review focuses on a pharmaceutical history of physical and chemical stability determination. Traditional knowledge must be considered in the context of physical stability, while new knowledge must be applied and acquired in terms of identification...
-
Induction machine behavioral modeling for prediction of EMI propagation.
PublicationThis paper presents the results of wideband behavioral modeling of an induction machine (IM). The proposed solution enables modeling the IM differential- and common-mode impedance for a frequency range from 1 kHz to 10 MHz. Methods of parameter extraction are derived from the measured IM impedances. The developed models of 1.5 kW and 7.5 kW induction machines are designed using the Saber Sketch scheme editor and simulated in the...
-
RECSYS CHALLENGE 2015: a BUY EVENT PREDICTION IN THE E-COMMERCE DOMAIN
PublicationIn this paper we present our approach to RecSys Challenge 2015. Given a set of e-commerce events, the task is to predict whether a user will buy something in the current session and, if yes, which of the item will be bought. We show that the data preparation and enrichment are very important in finding the solution for the challenge and that simple ideas and intuitions could lead to satisfactory results. We also show that simple...
-
Lattice filter based multivariate autoregressive spectral estimation with joint model order and estimation bandwidth adaptation
PublicationThe problem of parametric, autoregressive model based estimation of a time-varying spectral density function of a multivariate nonstationary process is considered. It is shown that estimation results can be considerably improved if identification of the autoregressive model is carried out using the two-sided doubly exponentially weighted lattice algorithm which combines results yielded by two one-sided lattice algorithms running...
-
Modeling protein structures with the coarse-grained UNRES force field in the CASP14 experiment
PublicationThe UNited RESidue (UNRES) force field was tested in the 14th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP14), in which larger oligomeric and multimeric targets were present compared to previous editions. Three prediction modes were tested (i) ab initio (the UNRES group), (ii) contact-assisted (the UNRES- contact group), and (iii) template-assisted (the UNRES-template...
-
Assessment of Trajectories of Non-bankrupt and Bankrupt Enterprises
PublicationThe aim of this study is to show how long-term trajectories of enterprises can be used to increase the forecasting horizon of bankruptcy prediction models. The author used seven popular forecasting models (two from Europe, two from Asia, two from North America and one from Latin America). These models (five multivariate discriminant analysis models and two logit models) were used to develop 17-year trajectories separately for non-bankrupt...
-
Machine-learning methods for estimating compressive strength of high-performance alkali-activated concrete
PublicationHigh-performance alkali-activated concrete (HP-AAC) is acknowledged as a cementless and environmentally friendly material. It has recently received a substantial amount of interest not only due to the potential it has for being used instead of ordinary concrete but also owing to the concerns associated with climate change, sustainability, reduction of CO2 emissions, and energy consumption. The characteristics and amounts of the...