Search results for: charge distribution
-
Dynamic Charging of Electric Buses as a Way to Reduce Investment Risks of Urban Transport System Electrification
PublicationNight charging and fast charging are currently the two most common systems for charging electric buses. Despite the fact that numerous trial installations were started, neither of these two systems has obtained unqualified approval of the users. The alternative is to charge vehicles in motion - dynamic charging which combines the advantages of trolleybus transport and of electric buses. One of the advantages is the reduction of...
-
Impedance of cation-coupled electron transfer reaction: Theoretical description of one pathway process
PublicationIt has been assumed that cation electron coupled charge transfer can be conducted in accordance with two mutually coupled reactions. Using a differential method an expression was introduced which describes the impedance of a cation electron coupled transfer reaction. Also, an electrical equivalent circuit has been defined. The total faradaic impedance is the sum of electron transfer impedance and cation transfer impedance. Issues...
-
Identification of diagnostic parameter sensitivity during dynamic processes of a marine engine
PublicationChanging some parameters of the engine structure alters the emission of harmful components in the exhaust gas. This applies in particular to the damage of charge exchange system as well as fuel system and engine supercharger. These changes are much greater during the dynamic states and their accompanying transitional processes. The different sensitivity of diagnostic parameters to the same force, coming from the engine structure, but...
-
Unraveling Energy Transfer and Fluorescence Quenching Dynamics in Biomolecular Complexes: A Comprehensive Study of Imiquimod-Rifampicin Interaction.
PublicationIn nature, numerous biomolecules are implicated in charge transfer (CT) and energy transfer (ET) mechanisms crucial for fundamental processes such as photosynthesis. Unveiling these mechanisms is pertinent to multiple disciplines including chemistry, engineering and biochemistry. This letter presents a study involving two molecules forming a model system with efficient ET properties. Specifically, their complex exhibits dark quenching...
-
Mixed, quantum-classical description of electron density transfer in the collision process
PublicationIn this work, we investigate an ion-atom model describing the time-dependent evolution of electron density during the collision. For a S3+- H system, numerical simulations are based on classical trajectory calculations, and the electron density behaviour is described with the time-dependent Schrödinger equation. We apply the finite difference method to obtain quantitative insights into the charge transfer dynamics, providing detailed...
-
Exploring the cocrystallization potential of urea and benzamide
PublicationThe cocrystallization landscape of benzamide and urea interacting with aliphatic and aromatic carboxylic acids was studied both experimentally and theoretically. Ten new cocrystals of benzamide were synthesized using an oriented samples approach via a fast dropped evaporation technique. Information about types of known bi-component cocrystals augmented with knowledge of simple binary eutectic mixtures was used for the analysis...
-
Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type—A review
PublicationThis article discusses the current use of different pyrolytic reactors, their constructions and operating principles regarding the yields of main products of waste tyre pyrolytic recycling. Whether one makes a larger or smaller profit, or even a loss due to a surcharge being levied on waste tyre recycling, depends on the sale of the pyrolysis products (gas, char, oil), the proportions and market prices of which differ. The cheapest...
-
On the mechanism of photocatalytic reactions on CuxO@TiO2 core–shell photocatalysts
PublicationTitania (titanium(IV) oxide) is a highly active, stable, cheap and abundant photocatalyst, and is thus commonly applied in various environmental applications. However, two main shortcomings of titania, i.e., charge carrier recombination and inactivity under visible-light (vis) irradiation, should be overcome for widespread commercialization. Accordingly, titania has been doped, surface modified and coupled with various ions/compounds,...
-
Polaron hopping conduction in manganese borosilicate glass
PublicationA study on a novel material - manganese borosilicate glass without alkali metals, was reported. It was found that the obtained samples containing high amount of manganese oxide (60MnO–xSiO2–(40 − x)B2O3, x = 5, 10, 15, 20 and 30 mol%) were amorphous and homogeneous. XPS measurements showed that most of manganese ions are at oxidation level of Mn2 + ions and the mean oxidation level slightly moves toward higher value, with increasing...
-
Parallel computations in the volunteer based Comcute system
PublicationThe paper presents Comcute which is a novel multi-level implemen- tation of the volunteer based computing paradigm. Comcute was designed to let users donate the computing power of their PCs in a simplified manner, requiring only pointing their web browser at a specific web address and clicking a mouse. The server side appoints several servers to be in charge of execution of particular tasks. Thanks to that the system can survive...
-
Four-body recombination in organic bulk heterojunction solar cells: an alternative interpretation
PublicationWe demonstrate a new interpretation of the previously reported quadrimolecular recombination in organic bulk heterojunction solar cells. It is suggested that the recently described (Szmytkowski 2012 Phys. Status Solidi RRL 6 300) interaction between exciton and electron–hole Langevin bound pair formed across the donor–acceptor interface is a four-particle process. This is in opposition to the treatment of this effect as a three-particle...
-
On the tendency of temperature and electric field dependences of interface recombination in P3HT:PCBM organic bulk heterojunction solar cells
PublicationWe demonstrate theoretical explanation of the temperature and electric field dependences of recombination coefficients in an organic P3HT:PCBM bulk heterojunction solar cell. Based onthe model of interface recombination, two analytical formulas describing the relative ratio of the interface (γI ) to the Langevin (γL) recombination coefficients have been derived. Our analysis indicates that the sign of parameters φT and φF determines...
-
Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries
PublicationHere, we report the synthesis of hard carbon materials (RH) made from natural rice husk through a single pyrolysis process and their application as an anode in sodium-ion batteries. The studies show that the electrochemical properties of RHs are affected by the treatment temperatures, which determine the materials morphology, in particular, their degree of graphitization and extent of continuous channels (nanovoids). The latter...
-
Closed-form expression for the magnetic shielding constant of the relativistic hydrogenlike atom in an arbitrary discrete energy eigenstate: Application of the Sturmian expansion of the generalized Dirac–Coulomb Green function
PublicationWe present analytical derivation of the closed-form expression for the dipole magnetic shielding constant of a Dirac one-electron atom being in an arbitrary discrete energy eigenstate. The external magnetic field, by which the atomic state is perturbed, is assumed to be weak, uniform, and time independent. With respect to the atomic nucleus we assume that it is pointlike, spinless, motionless, and of charge Ze. Calculations are...
-
New Method of Non-Linear Electrochemical Impedance Spectroscopy with an Amplitude-Modulated Perturbation Signal
PublicationThe paper presents a new method of non-linear electrochemical impedance spectroscopy (NLEIS), which allows fast and nondestructive evaluation of the corrosion rate and determination of the Tafel coefficients values for a corrosion system under investigation. This method employs amplitude modulation of the ac perturbation signal. The study demonstrated that it was possible to obtain impedance characteristic as a function of the...
-
GaN Nanowire Array for Charge Transfer in Hybrid GaN/P3HT:PC71BM Photovoltaic Heterostructure Fabricated on Silicon
PublicationAbstract: We demonstrate that a GaN nanowire array can be used for efficient charge transfer between the organic photovoltaic layer and silicon in a Si/GaN/P3HT:PC71BM inverted hybrid heterostructure. The band alignment of such a material combination is favorable to facilitate exciton dissociation, carrier separation and electron transport into Si. The ordered nature of the GaN array helps to mitigate the intrinsic performance...
-
Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture
PublicationThe charge recombination and exciton dissociation are generally recognized as the basic electronic processes limiting the efficiency of photovoltaic devices. In this work, we propose a detailed mechanism of photocurrent generation in dye-sensitized solar cells (DSSCs) examined by magnetic field effect (MFE) technique. Here we demonstrate that the magnitude of the MFE on photocurrent in DSSCs can be controlled by the radius and...
-
Nanocrystalline cathode functional layer for SOFC
PublicationRecently, it was shown that thin functional layers introduced between an electrolyte and cathode might improve cathode performance. However, the mechanism of this improvement still needs analysis. In this paper, a thin (∼140 nm), spin-coated perovskite layer (La0.6Sr0.4Co0.2Fe0.8O3-δ) was placed between a cathode (La0.6Sr0.4Co0.2Fe0.8O3-δ) and an electrolyte (Ce0.8Gd0.2O2-δ) and the effects of this investigated. The microstructure...
-
Development of dynamic method for evaluation of inhibition efficiency on the example of 8-hydroxyquinolin
PublicationSelection of a proper inhibitor should be based on the evaluation of its mechanism and effective concentrations. Mechanism of inhibition usually has dynamic character due to changing physicochemical conditions of the environment and corroding metal surface. Most of actually used methods are stationary or contain assumptions which highly influences obtained values. Development of new dynamic method, based on modified EIS, allows...
-
Mutually polarizable QM/MM model with in situ optimized localized basis functions
PublicationWe extend our recently developed quantum-mechanical/molecular mechanics (QM/MM) approach [Dziedzic et al., J. Chem. Phys. 145, 124106 (2016)] to enable in situ optimization of the localized orbitals. The quantum subsystem is described with ONETEP linear-scaling density functional theory and the classical subsystem – with the AMOEBA polarizable force field. The two subsystems interact via multipolar electrostatics and are fully...
-
Cezary Czaplewski prof. dr hab.
People -
Structure and electric transport properties of Ca-doped bulk PrBa2Cu3O7−δ
PublicationThe crystal structure and electric transport properties of Pr1-xCaxBa2Cu3O7- delta (x= 0.0, 0.1, 0.2, 0.5) bulk ceramic samples, prepared by the standard solid-state reaction in air, were examined by X-ray power diffraction, resistivity measurements and room temperature thermoelectric power determination. Ca atoms introduce additional holes to the system as well as structural defects. The orthorhombic-to-tetragonal structural...
-
Modeling the electrical characteristics of P3HT:PCBM bulk heterojunction solar cells: Influence of the interface recombination
PublicationThe interface recombination of charge carriers located in the material with lower permittivity (Szmytkowski 2009 Chem.Phys.Lett. 470 123) has been implemented for the first time to calculate the electrical characteristics of the donor-acceptor P3HT:PCBM bulk heterojunction solar cell. In order to estimate the photocurrent density in this system, a simple analytical formula has been derived. We have obtained a very good agreement...
-
Novel method for metal-oxide glass composite fabrication for use in thermoelectric devices
PublicationA novel method for thermoelectric materials fabrication using a reduction of oxide precursors in hydrogen was reported. On the example of Bi-Sb, Bi-Sb-Te and Te-Ag-Ge-Sb compounds it was shown that this simple and easy method is suitable for fabrication of two-, three- and even multicomponent thermoelectric materials. It allows controlling a composition, microstructure and even type a of electrical charge carriers. As a result...
-
Three phase transient model of wet coal pyrolysis
PublicationA one-dimensional transient mathematical model was developed to describe the thermal and flow phenomena during coal pyrolysis in a coke oven. The model was solved numerically using partly implicit methods for gas flow and heat transfer problems. It was successfully validated with industrial-scale measurements of temperature change in the middle-plane of the coke oven chamber. The evolution of temperature and pressure, distributions...
-
Evidence for solid state electrochemical degradation within a small molecule OLED
PublicationAcridone derivative have been synthesised and used as OLED (Organic Light Emitting Diode) emitters which were found to be electroactive. Electrochemical investigations showed a side reaction takes place inside an active layer which diminished the overall device efficiency. By using a dopant and host active layer architecture, the formation of the by product was removed. The by-product was identified as a σ-dimer formed inside an...
-
π-Conjugated Donor-acceptor Polyelectrolytes: Toward Artificial Photosynthesis
PublicationGreat advances have been made in the development of conjugated polyelectrolytes (CPEs), which provide tunable properties including water solubility and processability, main-chain exciton and charge transport, variable energy light absorption and fluorescence, non-covalent interactions, and formation of tertiary structures via self-assembly.[1] These characteristics allow CPEs to be considered for use in various optoelectronic applications,...
-
Ultrasonic spectroscopy of silicon single crystal
PublicationSpecimens of Si single crystals with different crystal orientation [100] and [110] were studied by the electro-ultrasonic spectroscopy (EUS) and Resonant Ultrasonic Spectroscopy (RUS). A silicon single crystal is an anisotropic crystal, so its properties are different in different directions in the material relative to the crystal orientation. EUS is based on interaction of two signals: electric AC signal and ultrasonic signal,...
-
Magnetizability of the relativistic hydrogenlike atom in an arbitrary discrete energy eigenstate: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function
PublicationThe Sturmian expansion of the generalized Dirac--Coulomb Green function [R.\/~Szmytkowski, J.\ Phys.\ B 30 (1997) 825; erratum 30 (1997) 2747] is exploited to derive a closed-form expression for the magnetizability of an arbitrary discrete state of the relativistic one-electron atom with a point-like, spinless and motionless nucleus of charge $Ze$. The result has the form of a double finite sum involving the generalized hypergeometric...
-
Charge-based deep level transient spectroscopy of B-doped and undoped polycrystalline diamond films
PublicationThe undoped and B-doped polycrystalline diamond thin film was synthesized by hot filament chemical vapor deposition and microwave plasma, respectively. The structural characterization was performed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The electrical properties of synthesized diamond layer were characterized by dc-conductivity method and charge deep level transient spectroscopy. The B-doped...
-
Relativistic two-dimensional hydrogen-like atom in a weak magnetic field
PublicationA two-dimensional (2D) hydrogen-like atom with a relativistic Dirac electron, placed in a weak, static, uniform magnetic field perpendicular to the atomic plane, is considered. Closed forms of the first- and second-order Zeeman corrections to energy levels are calculated analytically, within the framework of the Rayleigh–Schrödinger perturbation theory, for an arbitrary electronic bound state. The second-order calculations are...
-
Photocatalytic activity of nitrogen doped TiO2 nanotubes prepared by anodic oxidation: The effect of applied voltage, anodization time and amount of nitrogen dopant
PublicationNitrogen doped TiO2 nanotube arrays were prepared by anodizing Ti foils in an organic electrolyte containing specified amounts of urea as nitrogen precursor. The photocatalytic activity of the samples was evaluated by analyzing the degradation kinetics of phenol in water. The influence of tubes’ length, tubes’ surface morphology and amount of nitrogen in the TiO2 lattice on hydroxyl radical formation efficiency, photocatalytic...
-
Design and Application of Magnetic Photocatalysts for Water Treatment. The Effect of Particle Charge on Surface
PublicationCore-interlayer-shell Fe3O4/SiO2/TiO2, CoFe2O4/SiO2/TiO2 and BaFe12O19/SiO2/TiO2 magnetic photocatalysts were obtained. A water-in-oil microemulsion system with suitable surfactants was used for functionalization of the magnetic core with silica interlayer and TiO2-based photocatalyst. Uncoated and coated particles were characterized by electrophoretic meaurements, X-ray diffractometry (XRD), scanning electron microscopy (SEM),...
-
Extended phase diagram of RNiC2 family: Linear scaling of the Peierls temperature
PublicationPhysical properties for the late-lanthanide-based RNiC2 (R = Dy, Ho, Er, and Tm) ternary compounds are reported. All the compounds show antiferromagnetic ground state with the Néel temperature ranging from 3.4 K for HoNiC2 to 8.5 K for ErNiC2. The results of the transport and galvanomagnetic properties confirm a charge density wave state at and above room temperature with transition temperatures TCDW = 284, 335, 366, and 394 K for...
-
Pulsed UV-irradiated Graphene Sensors for Ethanol Detection at Room Temperature
PublicationA graphene-based gas sensor fabricated in a FET (GFET) configuration and its sensitivity towards ethanol and methane is reported. Detection of ethanol at the level of 100 ppm was observed under pulsed UV irradiation and after cleaning by UV light in the N2 ambient. Reduction of the frequency of UV irradiation pulses resulted in increased changes in sensor resistance in the presence of ethanol. Improved sensing behavior was ascribed...
-
Properties of Barium Cerate-Zirconate Thin Films
PublicationIn this work, we review several experimental results showing the electrical properties of barium cerate-zirconate thin films and discuss them in view of the possible influence of various factors on their properties. Most of the presented Ba(Ce, Zr, Y)O3 thin films were formed by the pulsed laser deposition (PLD) technique, however thin films prepared using other methods, like RF magnetron sputtering, electron-beam deposition, powder...
-
Recent advances on magnetic carbon-related materials in advanced oxidation processes of emerging pollutants degradation
PublicationRecently, carbon-related materials have been proposed to improve the charge separation of the photogenerated carriers in the semiconductor matrices’ and surface properties. Carbon-related materials may act as co-catalysts, enhancing the pollutants adsorption on the surface, improving the charge carriers separation and photocatalyst stability and providing more active centres for photocatalytic reactions. This review summarizes...
-
Chitosan-coated coconut shell composite: A solution for treatment of Cr(III)-contaminated tannery wastewater
PublicationTannery industry generates a large amount of Cr(III)-contaminated wastewater daily. Unless properly treated, not only this effluent contaminates the water body, but also damages the environment and threatens public health. This batch study investigates the feasibility of chitosan-coated coconut shells as a low-cost material for removing Cr(III) from tannery wastewater. Both chitosan and coconut shell (CS) waste are abundantly available...
-
Detailed investigation of the phase transition inKxP4W8O32and experimental arguments for a charge density wave due to hidden nesting
PublicationDetailed structural and magnetotransport properties of monophosphate tungsten bronze Kx(PO2)4(WO3)8 single crystals are reported. Both galvanomagnetic and thermal properties are shown to be consistent with a charge density wave electronic transition due to hidden nesting of the quasi-1D portion of the Fermi surface. We also observe the enhancement of electronic anisotropy due to reconstruction of the Fermi surface at the Peierls...
-
Determination of pseudocapacitance chan ges of nickel oxide NiO electrode with use of dynamic electrochemical impedancje spectroscopy
PublicationThe electrochemical capacitors (ECs) are attractive energy storage devices which can be applied in many electronic products (e.g., cameras, laptops, cell phones) or hybrid electric vehicles (HEV). The energy storage in ECs is based on capacitive (the electrical double layer charging/discharging) and pseudocapacitive (additional charge provided by faradic reaction) phenomena. Considering the electrodes exhibiting pseudocapacitance,...
-
The Ellenbogen's "Matter as Software" Concept for Quantum Computer Implementation: III. Selection of X@C60 Molecular Building Blocks (MBBs) for Tip-Based Nanofabrication (TBN) of Trapped Neutral Atom Quantum Computing Devices
PublicationThe selection of guest atoms X of X@C60 MBBs for TBN of trapped neutral atom quantum computing devices is reported. Assuming the all-optical quantum computing as a final target stage, the two criteria are most important: the charge q accumulated on the C60 host must be as low as possible, and the atom X must have one or more available excited states within the band falling into the low energy window of neutral C60 molecule electronic...
-
Instantaneous impedance monitoring of synergistic effect between cavitation erosion and corrosion processes
PublicationThe most common method of determination of cavitation erosion resistance as well as the magnitude of erosion-corrosion synergistic interaction is based on the weight loss measurements. Nondestructive characterization of installations elements is in most cases impossible to perform. Also, such a measurement does not include local types of failure or alteration of operating conditions. There is an urge to elaborate a method for monitoring...
-
Bis(ammonium) Zoledronate Dihydrate
PublicationNeutralization of 2-(1-imidazole)-1-hydroxyl-1,1`-ethylidenediphosphonic acid (zoledronic acid) by an excess of ammonia yielded bis(ammonium) zoledronate dihydrate, {C5H8N2O7P2 2−, 2(H4N+), 2(H2O)}. The product is readily soluble in water and forms monocrystals for which the X-ray structural analysis was carried out. The zoledronic anion is of double negative charge due to deprotonation of three P–OH groups and protonation of the...
-
Unraveling a novel microwave strategy to fabricate exposed {001}/{101} facets anatase nanocrystals: Potential for use to the elimination of environmentally toxic metronidazole waste
PublicationThis study present a novel microwave strategy to fabricate highly active anatase particles, exposing {101} and {001} facets. Microwave treatment time was shown to determine the growth of crystals in a certain direction. To the best of our knowledge, it is the first report revealing that the contact time of TiO2 crystals with fluorine ions during the microwave process affects the formed morphology, in particular exposed facets ratio....
-
Widening of the electroactivity potential range by composite formation – capacitive properties of TiO2/BiVO4/PEDOT:PSS electrodes in contact with an aqueous electrolyte
PublicationComposites based on the titania nanotubes were tested in aqueous electrolyte as a potential electrode material for energy storage devices. The nanotubular morphology of TiO2 was obtained by Ti anodization. TiO2 nanotubes were covered by a thin layer of bismuth vanadate using pulsed laser deposition. The formation of the TiO2/BiVO4 junction leads to enhancement of pseudocapacitance in the cathodic potential range. The third component,...
-
Cascading transitions toward unconventional charge density wave states in the quasi-two-dimensional monophosphate tungsten bronze P4W16O56
PublicationSingle crystals of the m = 8 member of the low-dimensional monophosphate tungsten bronzes (PO2)4(WO3)2m family were grown by chemical vapour transport technique and the high crystalline quality obtained allowed a reinvestigation of the physical and structural properties. Resistivity measurements revealed three anomalies at TC1 = 258 K, TC2 = 245 K and TC3 = 140 K, never observed until now. Parallel X-ray diffraction investigations...
-
Fluorescence of nanodiamond cocktails: pH-induced effects through interactions with comestible liquids
PublicationFluorescent nanodiamonds with nitrogen-vacancy centers have become important nanoscale probes for sensing and imaging. The surface chemistry of the nanodiamonds influences their emission, interactions, and quantum properties. In this work, we propose to utilize fluorescent nanodiamonds as photostable markers for investigation of comestible liquids. We prepared nanodiamond/comestibles suspensions/cocktails with a wide range of pH...
-
Selected anionic and cationic surface active agents determined in river sediments – the Klodnica catchment
PublicationSurface active agents (SAAs) are specific compounds that contain hydrophilic/ hydrophobic group in their molecules named as amphiphilic structures. According to charge on the hydrophilic part of surfactants they can be classified into three main groups: anionic, cationic and non-ionic compounds. Due to the amphiphilic structure of SAAs they have specific properties (e.g. ability to adsorption at different surfaces, reduction of...
-
Preparation and Characterization of Nanomaterial Consisting of Silica Aerogel & Carbon Tested as an Electrode in Non-Aqueous Media Containing Lithium Salt.
PublicationSilica aerogel (SiO2ag) was combined with carbonaceous material in the pyrolysis process of hydrocarbons. The obtained nanocomposite SiO2ag/C was amorphous, partially preserving the porous structure of SiO2ag. The specific surface area changes from 445.6 m2/g for pure SiO2ag to 205.52 m2/g SiO2ag/C. The 29Si MAS-NMR shows a three-dimensional matrix with silicon atoms connected to other silicon atoms by four...
-
THE IDENTIFICATION OF TOXIC COMPOUND EMISSION SENSITIVITY AS A DIAGNOSTIC PARAMETER DURING DYNAMIC PROCESSES OF THE MARINE ENGINE
PublicationChanging some parameters of the engine structure alters the emission of harmful components in the exhaust gas. This applies in particular to the damage of charge exchange system as well as fuel system and engine supercharger. These changes are much greater during the dynamic states and their accompanying transitional processes. The different sensitivity of diagnostic parameters to the same force, coming from the engine structure,...