Search results for: hydrogen production microwave plasma liquid hydrocarbons
-
Phenolic compounds from Nerium oleander leaves: microwave assisted extraction, characterization, antiproliferative and cytotoxic activities
PublicationA microwave-assisted extraction (MAE) method was used for the extraction of phenolic compounds from Nerium oleander leaves. The influence of variables such as ethanol concentration, microwave power, irradiation time and liquid/solid ratio on polyphenol extraction was modelled using a second-order regression equation based on response surface methodology (RSM). The optimal conditions for MAE were: extraction solvent 35% ethanol...
-
Cavitation based cleaner technologies for biodiesel production and processing of hydrocarbon streams: A perspective on key fundamentals, missing process data and economic feasibility – A review
PublicationThe present review emphasizes the role of hydrodynamic cavitation (HC) and acoustic cavitation in clean and green technologies for selected fuels (of hydrocarbon origins such as gasoline, naphtha, diesel, heavy oil, and crude oil) processing applications including biodiesel production. Herein, the role of cavitation reactors, their geometrical parameters, physicochemical properties of liquid media, liquid oxidants, catalyst loading,...
-
Enhanced electrochemical kinetics of highly-oriented (111)-textured boron-doped diamond electrodes induced by deuterium plasma chemistry
PublicationNovel highly-oriented (111)-textured boron-doped diamond electrodes (BDDD) featuring high electrochemical activity and electrode stability toward electrochemical analytics were fabricated by deuterium-rich microwave plasma CVD. The high flux deuterium plasma-induced preferential formation of (111)-faceted diamond as revealed by XRD. The highly-oriented diamond surface exhibited improved boron dopant incorporation and activation,...
-
Fabrication of high-density nitrogen-vacancy (NV) center-enriched diamond particles through methyl trityl amine (C20H19N) seeding
PublicationDiamond particles (DPs) show promise for advanced applications in bioimaging and quantum sensing due to the presence of defect centers. This work reports a unique growth process for diamond particles composed of nitrogen-vacancy centers (NV-DPs) using a methyl trityl amine (C20H19N) diamondoid seed, which acts as a nitrogen source for NV creation. Growth was performed via microwave plasma-assisted chemical vapor deposition in a...
-
Effective degradation of sulfide ions and organic sulfides in cavitation-based Advanced Oxidation Processes (AOPs)
PublicationThe paper presents the results of investigations on the effectiveness and reaction rate constants of the oxidation of sulfide ions and organic sulfides in real industrial effluents from the production of bitumens (2000 mg S2- L-1) using hydrodynamic and acoustic cavitation. The content of the effluents was analysed in terms carbon disulfide, dimethyl sulfide, and di-tert-butyl disulfide concentration. A possibility of complete...
-
CO2 Separation Using Supported Deep Eutectic Liquid Membranes Based on 1,2-propanediol
PublicationIn this work, deep eutectic solvents (DESs) composed of choline chloride, acetylcholine chloride or tetrabutylammonium chloride, and 1,2-propanediol were used as a liquid phase for polypropylene-based supported liquid membranes (SLMs) and evaluated for the separation of carbon dioxide from CO2/N2 mixtures. Fourier transform infrared spectra were obtained to confirm DES formation, and the thermal stability of solvents was investigated...
-
Fabrication of ILs-Assisted AgTaO3 Nanoparticles for the Water Splitting Reaction: The Effect of ILs on Morphology and Photoactivity
PublicationThe design of an active, stable and ecient photocatalyst that is able to be used for hydrogen production is of great interest nowadays. Therefore, four methods of AgTaO3 perovskite synthesis, such as hydrothermal, solvothermal, sol-gel and solid state reactions, were proposed in this study to identify the one with the highest hydrogen generation eciency by the water splitting reaction. The comprehensive results clearly show that...
-
RAMAN DIAGNOSTICS OF CVD DIAMOND GROWTH
PublicationDevelopment of Raman spectroscopic system for diagnostics of growth of diamond and BDD (Boron- Doped-Diamond) thin films during μPA CVD (Microwave Plasma Assisted Chemical Vapour Deposition) process is described. Raman studies of such films were carried out as in-situ monitoring of film deposition as ex-situ measurements conducted for a sample outside the reaction vessel after manufacturing process. Modular system for the in-situ...
-
Phytoremediation—From Environment Cleaning to Energy Generation—Current Status and Future Perspectives
Publication:Phytoremediationis a technology based on the use of green plants to remove, relocate, deactivate, or destroy harmful environmental pollutants such as heavy metals, radionuclides, hydrocarbons, and pharmaceuticals. Under the general term of phytoremediation, several processes with distinctively different mechanisms of action are hidden. In this paper, the most popular modes of phytoremediation are described and discussed. A broad...
-
Boron doped Nanocrystalline Diamond-Carbon Nanospike Hybrid Electron Emission Source
PublicationElectron emission signifies an important mechanism facilitating the enlargement of devices that have modernized large parts of science and technology. Today, the search for innovative electron emission devices for imaging, sensing, electronics, and high-energy physics continues. Integrating two materials with dissimilar electronic properties into a hybrid material is an extremely sought-after synergistic approach envisioning a...
-
Local impedance imaging of boron-doped polycrystalline diamond thin films
PublicationLocal impedance imaging (LII) was used to visualise surficial deviations of AC impedances in polycrystalline boron-doped diamond (BDD). The BDD thin film electrodes were deposited onto the highly doped silicon substrates via microwave plasma-enhanced CVD. The studied boron dopant concentrations, controlled by the [B]/[C] ratio in plasma, ranged from 1 × 1016 to 2 × 1021 atoms cm−3. The BDD films displayed microcrystalline structure,...
-
A novel (Ti/Ce)UiO-X MOFs@TiO2 heterojunction for enhanced photocatalytic performance: Boosting via Ce4+/Ce3+ and Ti4+/Ti3+ redox mediators
PublicationTitanium-substituted cerium-oxo-based UiO MOFs with terephthalate linkers modified by various groups (–Br, –NH2, –NO2) or their derivatives (N-heterocyclic or biphenyl groups) were combined with titanium dioxide in a multistep route to obtain a core-shell-like architecture. DFT simulations showed that Ce- and bimetallic Ti/Ce- MOFs exhibited different charge compensation. Extended characterization revealed the formation of heterojunctions between...
-
The effect of ionic liquids on the surface and photocatalytic properties of semiconducting materials
PublicationSemiconductor-mediated photocatalysis represents an environmentally friendly technology that could be used for the degradation of different pollutants in the gas and aqueous phases, for hydrogen generation, and for CO2-to-valuable product transformation reactions. Therefore, it is extremely important to accurately design a photocatalyst with the relevant features. In recent years, ionic liquids have often been employed as reagents...
-
XPS data of deuterium and hydrogen grown boron-doped diamond
Open Research DataThe high-resolution C1s X-ray absorption spectra of BDD@H and BDD@D samples were measured using the facilities of the HE-SGM beamline (HE-SGM) at the BESSY II synchrotron radiation source of Helmholtz–Zentrum Berlin (HZB).[90] The measurements were carried out under ultra-high vacuum conditions: P ≈ 2×10−9 Torr at T = 300 K. The NEXAFS spectra were...
-
Comparative study of a combined heat and power plant retrofitted by CO2 capture during the combustion of syngas from sewage sludge gasification versus zero-emission combustion of hydrogen produced using renewables
PublicationWith ecological requirements aimed at limiting the production of CO2, it is necessary to produce all, or most of the energy from RES. During the transformation process, ecological and highly efficient combustion power plants will be needed. The classic cycle of combined heat and power (CCGT) with green improvements will continue to be one of the most suitable technologies for this task. This article presents the modernization of...
-
Determination of chemical oxygen demand (cod) at boron-doped diamond (bdd) sensor by means of amperometric technique
PublicationA boron-doped diamond (BDD) sensor was proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Thin boron doped diamond active sensor layer was deposited on Si wafer and glassy carbon substrate by Microwave Plasma Enhanced Chemical Vapor Deposition (MW PE CVD). The structure of BDD was confirmed by Raman spectra analysis. Broad Raman bands centered at 482 cm-1 and 1219 cm-1 are typical...
-
The use of thin diamond films in fiber optic low-coherence interferometers”
PublicationIn this paper we present the use of thin diamond films in fiber-optic low-coherence interferometers. Two kinds of diamond surfaces were used: undoped diamond film and boron-doped diamond film. They were deposited on glass plates as well as silicon layers. A conventionally used mirror was used as a reference layer. Diamond films were deposited using Microwave Plasma Enhanced Chemical Vapour Deposition (μPE CVD) system. Measurements...
-
Determination of Chemical Oxygen Demand (COD) at Boron-doped Diamond (BDD) Sensor by Means of Amperometric Technique
PublicationA boron-doped diamond (BDD) sensor was proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Thin boron doped diamond active sensor layer was deposited on Si wafer and glassy carbon substrate by Microwave Plasma Enhanced Chemical Vapor Deposition (MW PE CVD). The structure of BDD was confirmed by Raman spectra analysis. Broad Raman bands centered at 482 cm-1 and 1219 cm-1 are typical...
-
The low coherence Fabry-Pérot interferometer with diamond and ZnO layers
PublicationThe authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave...
-
Carbon nanowalls: A new versatile graphene based interface for laser desorption/ionization-mass spectrometry detection of small compounds in real samples.
PublicationCarbon nanowalls, vertically aligned graphene nanosheets, attract attention owing to their tunable band-gap, high conductivity, high mechanical robustness, high optical absorbance and other remarkable properties. In this paper, we report for the first time, the use of hydrophobic boron-doped carbon nanowalls (CNWs) for laser desorption/ionization of small compounds and their subsequent detection by mass spectrometry (LDI-MS). The...
-
Nanostructure of the laser-modified transition metal nanocomposites for water splitting
PublicationAlthough hydrogen is considered by many to be the green fuel of the future, nowadays it is primarily produced through steam reforming, which is a process far from ecological. Therefore, emphasis is being put on the development of electrodes capable of the efficient production of hydrogen and oxygen from water. To make the green alternative possible, the solution should be cost-efficient and well processable, generating less waste...
-
INVESTIGATION OF THE CHARACTERISTICS OF A LOWEMISSION GAS TURBINE COMBUSTION CHAMBER OPERATING ON A MIXTURE OF NATURAL GAS AND HYDROGEN
PublicationT his article is devoted to the investigation of the characteristics of a low-emission gas turbine combustion chamber, which can be used in Floating Production, Storage and Offloading (FPSO) vessels and operates on a mixture of natural gas and hydrogen. A new approach is proposed for modelling the processes of burning out a mixture of natural gas with hydrogen under preliminary mixing conditions in gaseous fuel with an oxidizer...
-
From ashes to porous hierarchical nanocarbon electrode: Upcycling secondary waste materials through self-catalytic chemical vapour deposition
PublicationMetal and metal oxide particles are abundant in various ash-based wastes. Utilizing these as catalyst sources for the fabrication of carbon nanomaterials could present a valuable approach to reduce our reliance on non-renewable and costly catalyst sources, thereby facilitating large-scale nanomaterial production. In this context, secondary waste materials (SWMs) are by-products resulting from the (complete or partial) combustion...
-
Nanoparticle-assisted biohydrogen production from pretreated food industry wastewater sludge: Microbial community shifts in batch and continuous processes
PublicationBiohydrogen production from industrial waste has gained a significant attention as a sustainable energy source. In this study, the enrichment of biohydrogen production from pretreated dissolved air flotation (DAF) sludge, generated from food industry wastewater treatment plants, was investigated using SiO2@Cu-Ag dendrites cor- e–shell nanostructure (NS). The effect of NS on the changes of the microbial community and biohydrogen...
-
Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels
PublicationThe industrial-scale production of lignocellulosic-based biofuels from biomass is expected to benefit society and the environment. The main pathways of residues processing include advanced hydrolysis and fermentation, pyrolysis, gasification, chemical synthesis and biological processes. The products of such treatment are second generation biofuels. The degree of fermentation of organic substances depends primarily on their composition...
-
Metal (Mo, W, Ti) Carbide Catalysts: Synthesis and Application as Alternative Catalysts for Dry Reforming of Hydrocarbons—A Review
PublicationDry reforming of hydrocarbons (DRH) is a pro-environmental method for syngas production. It owes its pro-environmental character to the use of carbon dioxide, which is one of the main greenhouse gases. Currently used nickel catalysts on oxide supports suffer from rapid deactivation due to sintering of active metal particles or the deposition of carbon deposits blocking the flow of gases through the reaction tube. In this view,...
-
Determination of fuel combustion product in airport runoff water samples using liquid–liquid extraction with gas chromatography–spectrometry
PublicationDetermination of xenobiotics in samples of airport runoff water is both a complex and indispensable task due to an increasing threat resulting from the activities of numerous airports. The aim of this study was to develop, optimize, and validate a procedure based on liquid–liquid extraction (LLE) coupled with gas chromatography–mass spectrometry (GC–MS) for the determination of polycyclic aromatic hydrocarbons (PAHs). So far, no...
-
Role of the Solvation Water in Remote Interactions of Hyperactive Antifreeze Proteins with the Surface of Ice
PublicationMost protein molecules do not adsorb onto ice, one of the exceptions being so-called antifreeze proteins. In this paper, we describe that there is a force pushing an antifreeze protein molecule away from the ice surface when it is not oriented with its ice-binding plane toward the ice and that this pushing force may be also present even when the protein is oriented with its ice-binding plane toward the ice. This force is absent...
-
Powering the Future by Iron Sulfide Type Material (FexSy) Based Electrochemical Materials for Water Splitting and Energy Storage Applications: A Review
PublicationWater electrolysis is among the recent alternatives for generating clean fuels (hydrogen). It is an efficient way to produce pure hydrogen at a rapid pace with no unwanted by-products. Effective and cheap water-splitting electrocatalysts with enhanced activity, specificity, and stability are currently widely studied. In this regard, noble metal-free transition metal-based catalysts are of high interest. Iron sulfide (FeS) is one...
-
Removal of cyclohexane vapors from air in biotrickling filters: Effects of gas mixture composition and circular economy approach
PublicationThis work presents results of investigations on biotrickling filtration of air polluted with cyclohexane co-treated in binary, ternary and quaternary volatile organic compounds (VOCs) mixtures, including vapors of hexane, toluene and ethanol. The removal of cyclohexane from a gas mixture depends on the physicochemical properties of the co-treated VOCs and the lower the hydrophobicity of the VOC, the higher the removal efficiency...
-
Electron attachment to hexafluoropropylene oxide (HFPO)
PublicationWe probe the electron attachment in hexafluoropropylene oxide (HFPO), C3F6O, a gas widely used in plasma technologies. We determine the absolute electron attachment cross section using two completely different experimental approaches: (i) a crossed-beam experiment at single collision conditions (local pressures of 5 × 10−4 mbar) and (ii) a pulsed Townsend experiment at pressures of 20–100 mbar. In the latter method, the cross sections...
-
In-situ monitoring of electropolymerization processes at boron-doped diamond electrodes by Mach-Zehnder interferometer
PublicationIn this work, the Mach-Zehnder interferometer was designed to monitor the electrochemical processes conducted at boron-doped diamond electrode surface. The diamond electrodes were synthesized via Microwave Plasma-Assisted Chemical Vapor Deposition on optical grade quartz glass. The achieved transmittance in working are of diamond electrodes reached 55 %. A cage system-based Mach-Zehnder interferometer was used which allowed the...
-
Accumulation of radioisotopes and heavy metals in selected species of mushrooms
PublicationSeven species of forest mushrooms from different regions of Poland (edible: Imleria badia, Cantharellus cibarius, Xerocomus subtomentosus, Suillus luteus and inedible by humans but being food for animals: Paxillus involutus, Tylopilus felleus and Russula emetica) were analyzed for radioisotope activity (Cs-137, K-40, Bi-214 and Pb-210) as well as concentrations of heavy metals (aluminum, chromium, cadmium, manganese, iron, lead,...
-
Microscale diamond protection for a ZnO coated fiber optic sensor
PublicationFiber optic sensors are widely used in environmental, biological and chemical sensing. Due to the demanding environmental conditions in which they can be used, there is a risk of damaging the sensor measurement head placed in the measuring field. Sensors using nanolayers deposited upon the fiber structure are particularly vulnerable to damage. A thin film placed on the surface of the fiber end-face can be prone to mechanical damage...
-
Optically transparent boron-doped nanocrystalline diamond films for spectroelectrochemical measurements on different substrates
PublicationFabrication process of optically transparent boron nanocrystalline diamond (BNCD) electrode on silicon and quartz substrate was shown. The B-NCD films were deposited on the substrates using Microwave Plasma Assisted Chemical Vapor Deposition (MWPACVD) at glass substrate temperature of 475 ºC. A homogenous, continuous and polycrystalline surface morphology with high sp3 content in B-NCD films and film thickness depending from substrate...
-
Developments in Green Chromatography
PublicationGreen analytical chemistry is a widely recognized concept that has led to the development of new analytical methods with reduced environmental impact and minimized analyst occupational exposure. Achievements include the development of microextraction, ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE) techniques. Research towards greener separation processes focuses on the elimination of toxic solvents...
-
Self-organized multilayered graphene-boron doped diamond hybrid nanowalls for high performance electron emission devices
PublicationCarbon nanomaterials like nanotubes, nanoflakes/nanowalls and graphene have been used as electron sources due to their superior field electron emission (FEE) characteristics. Nevertheless, these materials show poor stability and a short lifetime, preventing them from being used in practical device applications. The intention of this study was to find an innovative nanomaterial, possessing both high robustness and reliable FEE behavior....
-
Model-based identification of the dominant N2O emission pathway in a full-scale activated sludge system
PublicationActivated sludge models (ASMs), extended with an N2O emission module, are powerful tools to describe the operation of full-scale wastewater treatment plants (WWTPs). Specifically, such models can investigate the most contributive N2O production pathways and guide towards N2O and carbon footprint (CF) mitigation measures. A common practice is to develop and validate models using data from a single WWTP. In this study, a successfully...
-
Enhanced capacitance of composite TiO2 nanotube / boron-doped diamond electrodes studied by impedance spectroscopy
PublicationWe report on the novel composite nanostructures based on boron-doped diamond thin film grown on top of TiO2 nanotubes. The nanostructures made of BDD-modified titania nanotubes showed an increase in activity and performance when used as electrodes in electrochemical environments. The BDD thin films (~200-500 nm) were deposited using microwave plasma assisted chemical vapor deposition (MW PA CVD) onto anodically fabricated TiO2...
-
Prototype of an opto-capacitive probe for non-invasive sensing cerebrospinal fluid circulation
PublicationIn brain studies, the function of the cerebrospinal fluid (CSF) awakes growing interest, particularly related to studies of the glymphatic system in the brain, which is connected with the complex system of lymphatic vessels responsible for cleaning the tissues. The CSF is a clear, colourless liquid including water (H2O) approximately with a concentration of 99 %. In addition, it contains electrolytes, amino acids, glucose, and...
-
Assessing the industrialization progress of hydrodynamic cavitation process intensification technology: a review
PublicationHydrodynamic cavitation (HC) is widely acknowledged as a promising green approach for enhancing various production and waste management processes, such as water treatment, sludge pretreatment, lignocellulosic biomass (LCB) pretreatment, emulsification, and food processing. Despite demonstrating superior industrialization potential compared with other emerging technologies such as ultrasound and microwave, the widespread commercial...
-
Influence of alkaline and oxidative pre-treatment of waste corn cobs on biohydrogen generation efficiency via dark fermentation
PublicationStages of waste corn cobs processing leading to the production of biohydrogen via dark fermentation are presented and discussed in this paper. Firstly, the effects of pretreatment conditions i.e. alkaline, alkaline-oxidizing and Fenton oxidizing pre-treatment of lignocellulosic biomass on the removal of lignin were examined. The solid residue obtained in the first stage was subjected to saccharification by means of enzymatic hydrolysis....
-
Utilization of Gaseous Carbon Dioxide and Industrial Ca-rich Waste for Calcium Carbonate Precipitation: A Review
PublicationTechnologies for the management of various types of waste and the production of useful products from them are currently widely studied. Both carbon dioxide and calcium-rich waste from various production processes are problematic wastes that can be used to produce calcium carbonate. Therefore, the purpose of this paper is to provide an overview about the state of the development of processes that use these two wastes...
-
Structure and thermoelectric properties of Cs-Bi-Te alloys fabricated by different routes of reduction of oxide reagents
PublicationCesium-bismuth-telluride polycrystalline materials were fabricated using a cost-effective method based on a reduction of oxide reagents, leading to a production of a material with good thermoelectric properties. Several samples with various initial stoichiometry were prepared by melting of oxide powders at 1050 °C, quenching, milling to powders and then reducing in pure hydrogen at 400 °C. Another concept was to obtain the CsBi4Te6...
-
Experimental and theoretical studies on the Sulfamethazine-Urea and Sulfamethizole-Urea solid-liquid equilibria
PublicationThe miscibility of active pharmaceutical ingredients with excipients is an important aspect in pharmaceutical technology protocols. In this study, the differential scanning calorimetry (DSC) was used for Sulfamethazine-Urea (SI–U) and Sulfamethizole-Urea (SO–U) solid-liquid phase diagrams determination. Both sulfonamides form simple binary eutectics with Urea. The lack of new co-crystal phase formation was confirmed by inspection...
-
Incorporation of nitrogen in diamond films – A new way of tuning parameters for optical passive elements
PublicationThis paper investigates the impact of nitrogen incorporation in diamond films for the construction of an interferometric sensor to measure displacement. Diamond films with different nitrogen levels (0–5%) were deposited on silicon substrates by microwave plasma enhanced chemical vapor deposition. The structural characteristics of these samples are characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), confocal...
-
Application of boron-doped diamond film and ZnO layer in the Fabry-Pérot interferometer
PublicationIn this article there have been presented the use of boron-doped diamond films for sensor applications. The low-finesse Fabry-Pérot interferometer working in the reflective mode has been implemented. Two kinds of reflective layers have been elaborated: boron-doped diamond thin films and zinc-oxide (ZnO) layer. Thin ZnO layers were deposited by Atomic Layer Deposition (ALD) on the face of a standard telecommunication single-mode...
-
Influence of Diosmin Treatment on the Level of Oxidative Stress Markers in Patients with Chronic Venous Insufficiency
PublicationOxidative stress plays an important role in the pathophysiology of many human disorders, while antioxidants prevent the development of various adverse symptoms. Diosmin is a natural flavonoid applied in vascular system disorders, especially in chronic venous insufficiency (CVI), and it plays a significant part in the alleviation of CVI symptoms. Due to antioxidant activity, it also has the ability to scavenge the oxygen free radicals...
-
Theoretical investigation of the structural insights of the interactions of γ-Fe2O3 nanoparticle with (EMIM TFSI) ionic liquid
PublicationOne of the possible applications of ionic liquids is to produce electricity from heat. The iron oxide nanoparticle is a potent electrical particle, which is expected to improve the heat’s efficiency to electricity conversion, however, it is prone to aggregation and sedimentation, which hamper its application. One of the methods to enhance the nanoparticle’s solubility and electrical properties is the use of a stabilizing component...
-
Studies on the utilization of post-distillation liquid from Solvay process to carbon dioxide capture and storage
PublicationIn this work, a method of precipitated calcium carbonate production from the post-distillation liquid created in the Solvay process and waste carbon dioxide was proposed and investigated. Precipitation was carried out in a model solution of calcium chloride containing ammonia at various molar ratios in relation to Ca2+ ions, while gaseous carbon dioxide was supplied to the reactor as a pure gas or as a mixture with air. It was...