Search results for: VEHICLE DETECTION, TRAFFIC MONITORING SYSTEM, BACKGROUND SUBTRACTION, CONVOLUTIONAL NEURAL NETWORK
-
Study of QoS Parameters Measurement Methodology and Requirements in RSMAD
PublicationThe paper presents the results of analysis and research of the quality of service requirements (defined by the QoS parameters) for data transmission services in Radio System for Monitoring and Acquisition of Data from Traffic Enforcement Cameras (in short: RSMAD). The paper also presents and discusses the results of test of impact of the size of images from traffic enforcement cameras (TECs) on the average transmission time. Moreover,...
-
Artificial Neural Networks as an architectural design tool- generating new detail forms based on the Roman Corinthian order capital
PublicationThe following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital....
-
Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach
PublicationIn recent years, we have been witnessing a growing interest in the subject of communication at sea. One of the promising solutions to enable widespread access to data transmission capabilities in coastal waters is the possibility of employing an on-shore wireless access infrastructure. However, such an infrastructure is a heterogeneous one, managed by many independent operators and utilizing a number of different communication...
-
Dekodowanie kodów iterowanych z użyciem sieci neuronowej
PublicationNadmiarowe kody iterowane są jedną z prostych metod pozyskiwania długich kodów korekcyjnych zapewniających dużą ochronę przed błędami. Jednocześnie, chociaż ich podstawowy iteracyjny dekoder jest prosty koncepcyjnie oraz łatwy w implementacji, to nie jest on rozwiązaniem optymalnym. Poszukując alternatywnych rozwiązań zaproponowano, przedstawioną w pracy, strukturę dekodera tego typu kodów wspomaganą przez sieci neuronowe. Zaproponowane...
-
Underground Water Level Prediction in Remote Sensing Images Using Improved Hydro Index Value with Ensemble Classifier
PublicationThe economic sustainability of aquifers across the world relies on accurate and rapid estimates of groundwater storage changes, but this becomes difficult due to the absence of insitu groundwater surveys in most areas. By closing the water balance, hydrologic remote sensing measures offer a possible method for quantifying changes in groundwater storage. However, it is uncertain to what extent remote sensing data can provide an...
-
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublicationDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...
-
Bicycle Traffic Model for Sustainable Urban Mobility Planning
PublicationModelling tools and transport models are required to assess the impact of measures for the effective planning of cycling routes in cities. This paper presents the methodology for developing a four-stage macroscopic model of bicycle traffic for the city of Gdynia, and its use in planning new bicycle routes, considering a modal shift. The model presented in this paper allows for the evaluation of the influence of the characteristics...
-
GNSS reference solution for permanent sition stability monitoring and geodynamical investigations - the ASG-EUPOS case study
PublicationThe aim of this paper is to present the strategy of determination of the reference solution for the ASG-EUPOS (ActiveGeodetic Network – European Position Determination System) coordinate monitoring system. ASG-EUPOS is a network of permanent GNSS (Global Navigation Satellite System) stations controlled by the Polish Head Office of Geodesy and Cartography (HOGC), which main role is to realize the ETRS89 (European Terrestrial Reference...
-
Rafał Leszczyna dr hab. inż.
PeopleDr hab. Rafal Leszczyna is an associate professor at Gdansk University of Technology, Faculty of Management and Economics. He holds the M.Sc. degrees of Computer Science and Business Management. In December, 2006 he earned a Ph.D. in Computer Science, specialisation - Computer Security at the Faculty of Electronics, Telecommunications and Informatics of Gdansk University of Technology. Between 2004 and 2008 he worked in the European...
-
Indykatory mobilne GIS w analizie ruchu miejskiego
PublicationW ramach artykułu autorzy przedstawią możliwości monitorowania sytuacji komunikacyjnej miasta z wykorzystaniem autorskiego i dedykowanego systemu monitorowania ruchu w mieście, opartego o pakiet oprogramowania stacjonarnego i mobilnego przeznaczonego dla korporacji taxi. Celem publikacji jest przedstawienie założeń optymalnych i minimalnych do realizacji monitoringu ruchu w mieście. Przywołane zostaną autorskie próby wdrożeń rozwiązań...
-
Potential and Use of the Googlenet Ann for the Purposes of Inland Water Ships Classification
PublicationThis article presents an analysis of the possibilities of using the pre-degraded GoogLeNet artificial neural network to classify inland vessels. Inland water authorities monitor the intensity of the vessels via CCTV. Such classification seems to be an improvement in their statutory tasks. The automatic classification of the inland vessels from video recording is a one of the main objectives of the Automatic Ship Recognition and...
-
Adaptacyjny system oświetlania dróg oraz inteligentnych miast
PublicationPrzedmiotem rozprawy jest zbadanie praktycznej możliwości wykrywania w czasie rzeczywistym anomalii w systemie oświetlenia drogowego w oparciu o analizę danych ze inteligentnych liczników energii. Zastosowanie inteligentnych liczników energii elektrycznej (Smart Meter) w systemach oświetlenia drogowego stwarza nowe możliwości w zakresie automatycznej diagnostyki takich niepożądanych zjawisk jak awarie lamp, odstępstwa od harmonogramu...
-
Permanent traffic count stations - expressway S6 Poland 2016
Open Research DataThe data includes traffic data from permanent traffic count stations located on the expressway S6 in the Tri-City Agglomeration area in Poland. The data covers the 12 months of 2016.
-
Parallel implementation of background subtraction algorithms for real-time video processing on a supercomputer platform
PublicationResults of evaluation of the background subtraction algorithms implemented on a supercomputer platform in a parallel manner are presented in the paper. The aim of the work is to chose an algorithm, a number of threads and a task scheduling method, that together provide satisfactory accuracy and efficiency of a real-time processing of high resolution camera images, maintaining the cost of resources usage at a reasonable level. Two...
-
Real-Time Facial Features Detection from Low Resolution Thermal Images with Deep Classification Models
PublicationDeep networks have already shown a spectacular success for object classification and detection for various applications from everyday use cases to advanced medical problems. The main advantage of the classification models over the detection models is less time and effort needed for dataset preparation, because classification networks do not require bounding box annotations, but labels at the image level only. Yet, after passing...
-
Możliwości redukcji przebiegowego zużycia paliwa przy zastosowaniu elektronicznych systemów wspomagających kierowców
PublicationElektroniczne systemy wspomagające kierowcę pomagają kierującym kontrolować sytuację na drodze, przekazują sygnały do układu hamulcowego i napędowego, rozpoznają znaki drogowe, pozwalają utrzymać odpowiedni dystans w czasie jazdy w kolumnie, a także kontrolują położenie pojazdu na pasie ruchu. Elek-troniczne systemy wspomagające kierowcę pomagają również zmniejszyć przebiegowe zużycie paliwa, poprzez odpowiednie sterowanie układem...
-
Wykorzystanie sztucznych sieci neuronowych do wykrywania i rozpoznawania tablic rejestracyjnych na zdjęciach pojazdów
PublicationW artykule przedstawiono koncepcję algorytmu wykrywania i rozpoznawania tablic rejestracyjnych (AWiRTR) na obrazach cyfrowych pojazdów. Detekcja i lokalizacja tablic rejestracyjnych oraz wyodrębnienie z obrazu tablicy rejestracyjnej poszczególnych znaków odbywa się z wykorzystaniem podstawowych technik przetwarzania obrazu (przekształcenia morfologiczne, wykrywanie krawędzi) jak i podstawowych danych statystycznych obiektów wykrytych...
-
An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory
PublicationSentiment analysis is an automated approach which is utilized in process of analysing textual data to describe public opinion. The sentiment analysis has major role in creating impact in the day-to-day life of individuals. However, a precise interpretation of text still relies as a major concern in classifying sentiment. So, this research introduced Bidirectional Long Short Term Memory with Ranger AdaBelief Optimizer (Bi-LSTM RAO)...
-
Experimental bases for the rail track surface damage detection system
PublicationA diagnosis of rail surface is generally based on the classical method of direct assessment and track geometry measurements. Identification and qualification of inequality and damage on the surface rails is depend on the skills and experience person who conducting inspection. In times of increasing exploitation of railways, infrastructure managers decide to use systems supporting the assessment of technical condition of the railways....
-
Information System for Drivers Within the Integrated Traffic Management System - TRISTAR
PublicationAdvanced traveler information systems (ATIS) for drivers are a very important element of modern traffic management. In recent years ITS infrastructure is being developed also in Poland. It allows for delivering to drivers information related to the conditions in the road network through, inter alia, dedicated Variable Message Signs (VMS). Such information enables drivers to take decisions, contributing to improving the efficiency...
-
Impact of SDN Controller’s Performance on Quality of Service
PublicationSoftware Defined Networking is a paradigm in network architecture; that is quickly becoming commonplace in modern telecommunication systems. It facilitates network customization for the requirements of different applications and simplifies the implementation of new services. Since its proposal, a significant evolution in its functionality has occurred. However, this development brought along problems of efficiency and performance,...
-
Economical methods for measuring road surface roughness
PublicationTwo low-cost methods of estimating the road surface condition are presented in the paper, the first one based on the use of accelerometers and the other on the analysis of images acquired from cameras installed in a vehicle. In the first method, miniature positioning and accelerometer sensors are used for evaluation of the road surface roughness. The device designed for installation in vehicles is composed of a GPS receiver and...
-
Identification of acoustic event of selected noise sources in a long-term environmental monitoring systems
PublicationABSTRACT Undertaking long-term acoustic measurements on sites located near an airport is related to a problem of large quantities of recorded data, which very often represents information not related to flight operations. In such areas, usually defined as zone of limited use, often other sources of noise exist, such as roads or railway lines treated is such context as acoustic background. Manual verification of such recorded data...
-
Self-organizing wireless monitoring system for cargo containers
PublicationThis paper presents a description of new global monitoring system for containers with its layer-modular structure, as a solution for enhance security and efficiency of container transport with particular emphasis on the practical implementation of that system for maritime container terminals. Especially the Smart Container Module (SCM) architecture and its operation as a part of the Self-Organizing ContainerMonitoring Network is...
-
Balanced Spider Monkey Optimization with Bi-LSTM for Sustainable Air Quality Prediction
PublicationA reliable air quality prediction model is required for pollution control, human health monitoring, and sustainability. The existing air quality prediction models lack efficiency due to overfitting in prediction model and local optima trap in feature selection. This study proposes the Balanced Spider Monkey Optimization (BSMO) technique for effective feature selection to overcome the local optima trap and overfitting problems....
-
Real-Time Sensor-Based Human Activity Recognition for eFitness and eHealth Platforms
PublicationHuman Activity Recognition (HAR) plays an important role in the automation of various tasks related to activity tracking in such areas as healthcare and eldercare (telerehabilitation, telemonitoring), security, ergonomics, entertainment (fitness, sports promotion, human–computer interaction, video games), and intelligent environments. This paper tackles the problem of real-time recognition and repetition counting of 12 types of...
-
A Study of Cross-Linguistic Speech Emotion Recognition Based on 2D Feature Spaces
PublicationIn this research, a study of cross-linguistic speech emotion recognition is performed. For this purpose, emotional data of different languages (English, Lithuanian, German, Spanish, Serbian, and Polish) are collected, resulting in a cross-linguistic speech emotion dataset with the size of more than 10.000 emotional utterances. Despite the bi-modal character of the databases gathered, our focus is on the acoustic representation...
-
Architectural Modifications to Enhance Steganalysis with Convolutional Neural Networks
PublicationThis paper investigates the impact of various modifications introduced to current state-of-the-art Convolutional Neural Network (CNN) architectures specifically designed for the steganalysis of digital images. Usage of deep learning methods has consistently demonstrated improved results in this field over the past few years, primarily due to the development of newer architectures with higher classification accuracy compared to...
-
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
PublicationThis work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...
-
Solutions of inverter systems in Shore-to-Ship Power supply systems
PublicationThe article presents a clearly formulated need for installing S2SP (Shore to Ship Power) systems, in particular Medium Voltage (MV) systems, along with certain solutions of modern inverter systems used in those systems. Requirements and basic configurations of S2SP systems are discussed, focusing in particular on capabilities of the S2SP system with DC distribution busbar. Moreover, on the background of the executing assumptions...
-
Estimating the Average Speed of Public Transport Vehicles Based on Traffic Control System Data
PublicationIntelligent Transport Systems are a valuable source of traffic information, covering both private and public vehicles. The main problem, however, is that very few studies are conducted to determine the speed of buses, trams and trolleys in urban networks in relation to traffic conditions. The paper investigates how ITS systems data could be used to model the speed of Public Transport vehicles. This is now possible thanks to the...
-
Deep learning-enabled integration of renewable energy sources through photovoltaics in buildings
PublicationInstalling photovoltaic (PV) systems in buildings is one of the most effective strategies for achieving sustainable energy goals and reducing carbon emissions. However, the requirement for efficient energy management, the fluctuating energy demands, and the intermittent nature of solar power are a few of the obstacles to the seamless integration of PV systems into buildings. These complexities surpass the capabilities of rule-based...
-
Intelligent turbogenerator controller based on artifical neural network
PublicationThe paper presents a desing of an intelligent controller based on neural network (ICNN). The ICNN ensures at the same time two fundamental functions : the maintaining of generator voltage at the desired value and the damping of the electromechanical oscillations. Its performance is evaluted on a single machine infinite bus power system through computer simulations. The dynamic and transient operation of the proposed controller...
-
Data augmentation for improving deep learning in image classification problem
PublicationThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...
-
Food analysis using artificial senses.
PublicationNowadays, consumers are paying great attention to the characteristics of food such as smell, taste, and appearance. This motivates scientists to imitate human senses using devices known as electronic senses. These include electronic noses, electronic tongues, and computer vision. Thanks to the utilization of various sensors and methods of signal analysis, artificial senses are widely applied in food analysis for process monitoring...
-
QoS Extensions for Flow-Awareness Networks
PublicationThe paper contains a description and research results of the proposal for distributed QoS extensions for Flow-Based Networking. These QoS extensions let the network accept or reject flows based on current network load and QoS promises for each of the flows. Proposed solution consists of two distributed components, each of them performing in every node, measurement system and access control. The solution could be applied in any...
-
Melanoma skin cancer detection using mask-RCNN with modified GRU model
PublicationIntroduction: Melanoma Skin Cancer (MSC) is a type of cancer in the human body; therefore, early disease diagnosis is essential for reducing the mortality rate. However, dermoscopic image analysis poses challenges due to factors such as color illumination, light reflections, and the varying sizes and shapes of lesions. To overcome these challenges, an automated framework is proposed in this manuscript. Methods: Initially, dermoscopic...
-
Smart Approach for Glioma Segmentation in Magnetic Resonance Imaging using Modified Convolutional Network Architecture (U-NET)
PublicationSegmentation of a brain tumor from magnetic resonance multimodal images is a challenging task in the field of medical imaging. The vast diversity in potential target regions, appearance and multifarious intensity threshold levels of various tumor types are few of the major factors that affect segmentation results. An accurate diagnosis and its treatment demand strict delineation of the tumor affected tissues. Herein, we focus on...
-
Multifunctional PID Neuro-Controller for Synchronous Generator
PublicationThis paper deals with a PID Neuro-Controller (PIDNC) for synchronous generator system. The controller is based on artificial neural network and adaptive control strategy. It ensures two functions: maintaining the generator voltage at its desired value and damping electromechanical oscillations. The performance of the proposed controller is evaluated on the basis of simulation tests. A comparative study of the results obtained with...
-
Akustyczna analiza parametrów ruchu drogowego z wykorzystaniem informacji o hałasie oraz uczenia maszynowego
PublicationCelem rozprawy było opracowanie akustycznej metody analizy parametrów ruchu drogowego. Zasada działania akustycznej analizy ruchu drogowego zapewnia pasywną metodę monitorowania natężenia ruchu. W pracy przedstawiono wybrane metody uczenia maszynowego w kontekście analizy dźwięku (ang.Machine Hearing). Przedstawiono metodologię klasyfikacji zdarzeń w ruchu drogowym z wykorzystaniem uczenia maszynowego. Przybliżono podstawowe...
-
An ANN-Based Method for On-Load Tap Changer Control in LV Networks with a Large Share of Photovoltaics—Comparative Analysis
PublicationThe paper proposes a new local method of controlling the on-load tap changer (OLTC) of a transformer to mitigate negative voltage phenomena in low-voltage (LV) networks with a high penetration of photovoltaic (PV) installations. The essence of the method is the use of the load compensation (LC) function with settings determined via artificial neural network (ANN) algorithms. The proposed method was compared with other selected...
-
Evaluation of Street Lighting Efficiency Using a Mobile Measurement System
PublicationThe issue concerns the initial stage of work on a method for performing a rapid assessment of the energy efficiency and illuminance of a street lighting installation. The proposed method is based on simultaneous measurement of illuminance from three lux meters placed on the roof of the vehicle. The data are acquired in road traffic, while the vehicle is driving. The proposed solution will allow in the future to quickly and reproducibly...
-
Stress Monitoring System for Individuals with Autism Spectrum Disorders
PublicationIn this article, a stress monitoring system tailored for individuals with Autism Spectrum Disorders (ASD) and developed for the educational institution is presented. People with ASD face problems with effective stress management due to their high self-perceived levels of stress, poor ability to cope with it, and dificulties with the accurate detection of the source of stress. Consistently, being able to measure stress appears to...
-
Spatiotemporal Assessment of Satellite Image Time Series for Land Cover Classification Using Deep Learning Techniques: A Case Study of Reunion Island, France
PublicationCurrent Earth observation systems generate massive amounts of satellite image time series to keep track of geographical areas over time to monitor and identify environmental and climate change. Efficiently analyzing such data remains an unresolved issue in remote sensing. In classifying land cover, utilizing SITS rather than one image might benefit differentiating across classes because of their varied temporal patterns. The aim...
-
Orientation-aware ship detection via a rotation feature decoupling supported deep learning approach
PublicationShip imaging position plays an important role in visual navigation, and thus significant focuses have been paid to accurately extract ship imaging positions in maritime videos. Previous studies are mainly conducted in the horizontal ship detection manner from maritime image sequences. This can lead to unsatisfied ship detection performance due to that some background pixels maybe wrongly identified as ship contours. To address...
-
Adaptacyjny system sterowania ruchem drogowym
PublicationAdaptacyjny system sterowania ruchem drogowym to rodzaj systemu sterowania, który dynamicznie, w czasie rzeczywistym, dostosowuje swoje parametry w oparciu o bieżące warunki ruchu drogowego. Celem niniejszej rozprawy jest sprawdzenie wpływu wybranych cech systemu, zbudowanego w oparciu o zaprojektowane i zbudowane z udziałem autora inteligentne znaki drogowe, na wybrane parametry mające wpływ na bezpieczeństwo i płynność ruchu....
-
Verification of the Parameterization Methods in the Context of Automatic Recognition of Sounds Related to Danger
PublicationW artykule opisano aplikację, która automatycznie wykrywa zdarzenia dźwiękowe takie jak: rozbita szyba, wystrzał, wybuch i krzyk. Opisany system składa się z bloku parametryzacji i klasyfikatora. W artykule dokonano porównania parametrów dedykowanych dla tego zastosowania oraz standardowych deskryptorów MPEG-7. Porównano też dwa klasyfikatory: Jeden oparty o Percetron (sieci neuronowe) i drugi oparty o Maszynę wektorów wspierających....
-
AUTOMATYCZNA KLASYFIKACJA MOWY PATOLOGICZNEJ
PublicationAplikacja przedstawiona w niniejszym rozdziale służy do automatycznego wykrywania mowy patologicznej na podstawie bazy nagrań. W pierwszej kolejności przedstawiono założenia leżące u podstaw przeprowadzonych badan wraz z wyborem bazy mowy patologicznej. Zaprezentowano również zastosowane algorytmy oraz cechy sygnału mowy, które pozwalają odróżnić mowę niezaburzoną od mowy patologicznej. Wytrenowane sieci neuronowe zostały następnie...
-
Evaluation of Vehicle Routing Problem Algorithms for Transport Logistics Using Dedicated GIS System
PublicationThe development and research related to optimization of fleet management is of high interest among many industrial and scientific entities related to logistics and transport. Optimal distribution of transportation resources leads to significant cost reduction. In this context, scientific research related to so called Vehicle Routing Problem (VRP) which relies on determining the shortest transport routes for a strictly limited number...
-
DEEP LEARNING BASED ON X-RAY IMAGING IMPROVES COXARTHROSIS DETECTION
PublicationObjective: The purpose of the study was to create an Artificial Neural Network (ANN) based on X-ray images of the pelvis, as an additional tool to automate and improve the diagnosis of coxarthrosis. The research is focused on joint space narrowing, which is a radiological symptom showing the thinning of the articular cartilage layer, which is translucent to X-rays. It is the first and the most important of the radiological signs...