Filters
total: 1362
filtered: 1007
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: LEARNING
-
Active Kriging-based conjugate first-order reliability method for highly efficient structural reliability analysis using resample strategy
PublicationEfficient structural reliability analysis method is crucial to solving reliability analysis of complex structural problems. High-computational cost and low-failure probability problems greatly limit the efficiency in structural reliability analysis problems, causing the safety and reliability of the structure to be questioned. In this work, a highly efficient structural reliability analysis method coupling active Kriging algorithm...
-
Sounding Mechanism of a Flue Organ Pipe—A Multi-Sensor Measurement Approach
PublicationThis work presents an approach that integrates the results of measuring, analyzing, and modeling air flow phenomena driven by pressurized air in a flue organ pipe. The investigation concerns a Bourdon organ pipe. Measurements are performed in an anechoic chamber using the Cartesian robot equipped with a 3D acoustic vector sensor (AVS) that acquires both acoustic pressure and air particle velocity. Also, a high-speed camera is employed...
-
Chat GPT Wrote It: What HCI Educators Can Learn from their Students?
PublicationRecently students, teachers, and researchers equally have become impressed by Generative AI (GenAI) tools, with ChatGPT at the top. However, numerous concerns about the GenAI-related threats to academic integrity and the validity of learning outcomes are emerging. This problem is also vivid in Human-Computer Interaction (HCI) education since students can use GenAI tools to rapidly generate ideas, user interface templates, screen...
-
Real-Time Sensor-Based Human Activity Recognition for eFitness and eHealth Platforms
PublicationHuman Activity Recognition (HAR) plays an important role in the automation of various tasks related to activity tracking in such areas as healthcare and eldercare (telerehabilitation, telemonitoring), security, ergonomics, entertainment (fitness, sports promotion, human–computer interaction, video games), and intelligent environments. This paper tackles the problem of real-time recognition and repetition counting of 12 types of...
-
Will NILM Technology Replace Multi-Meter Telemetry Systems for Monitoring Electricity Consumption?
PublicationThe estimation of electric power utilization, its baseload, and its heating, light, ventilation, and air-conditioning (HVAC) power component, which represents a very large portion of electricity usage in commercial facilities, are important for energy consumption controls and planning. Non-intrusive load monitoring (NILM) is the analytical method used to monitor the energy and disaggregate total electrical usage into appliance-related...
-
Sensing Direction of Human Motion Using Single-Input-Single-Output (SISO) Channel Model and Neural Networks
PublicationObject detection Through-the-Walls enables localization and identification of hidden objects behind the walls. While numerous studies have exploited Channel State Information of Multiple Input Multiple Output (MIMO) WiFi and radar devices in association with Artificial Intelligence based algorithms (AI) to detect and localize objects behind walls, this study proposes a novel non-invasive Through-the-Walls human motion direction...
-
Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for Remote Sensing Object Detection
PublicationRemote sensing object detection plays a major role in satellite imaging and is required in various scenarios such as transportation, forestry, and the ocean. Deep learning techniques provide efficient performance in remote sensing object detection. The existing techniques have the limitations of data imbalance, overfitting, and lower efficiency in detecting small objects. This research proposes the spiral search grasshopper (SSG)...
-
Finding the Right Solvent: A Novel Screening Protocol for Identifying Environmentally Friendly and Cost-Effective Options for Benzenesulfonamide
PublicationThis study investigated the solubility of benzenesulfonamide (BSA) as a model compound using experimental and computational methods. New experimental solubility data were collected in the solvents DMSO, DMF, 4FM, and their binary mixtures with water. The predictive model was constructed based on the best-performing regression models trained on available experimental data, and their hyperparameters were optimized using a newly...
-
High-quality academic teachers in business school. The case of The University of Gdańsk, Poland
PublicationThe Bologna process, the increasing number of higher education institutions, the mass education and the demographic problems make the quality of education and quality of the academic teachers a subject of wide public debate and concern. The aim of the paper is to identify the most preferred characteristics of a teacher working at a business school. The research problem was: What should a high-quality business school academic teacher...
-
Cross-Cultural Interactions between Expatriates and Local Managers in the Light of Positive Organizational Behaviour
PublicationThe main purpose of this article is to identify the ‘individual positive deviance’ presented by expatriates and local managers in their mutual cooperation. The theoretical basis for the publication is the discussion of the Positive Organizational Behaviour (POB) essence and the application of this approach in the area of expatriation. Attitudes, behaviour, working style and personality traits of employees of different nationalities...
-
Sensors and System for Vehicle Navigation
PublicationIn recent years, vehicle navigation, in particular autonomous navigation, has been at the center of several major developments, both in civilian and defense applications. New technologies, such as multisensory data fusion, big data processing, or deep learning, are changing the quality of areas of applications, improving the sensors and systems used. Recently, the influence of artificial intelligence on sensor data processing and...
-
The impact of the AC922 Architecture on Performance of Deep Neural Network Training
PublicationPractical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...
-
Civil liability for artificial intelligence products versus the sustainable development of CEECs: which institutions matter?
PublicationThe aim of this paper is to conduct a meta-analysis of the EU and CEECs civil liability institutions in order to find out if they are ready for the Artificial Intelligence (AI) race. Particular focus is placed on ascertaining whether civil liability institutions such as the Product Liability Directive (EU) or civil codes (CEECs) will protect consumers and entrepreneurs, as well as ensure undistorted competition. In line with the...
-
A Review of Emotion Recognition Methods Based on Data Acquired via Smartphone Sensors
PublicationIn recent years, emotion recognition algorithms have achieved high efficiency, allowing the development of various affective and affect-aware applications. This advancement has taken place mainly in the environment of personal computers offering the appropriate hardware and sufficient power to process complex data from video, audio, and other channels. However, the increase in computing and communication capabilities of smartphones,...
-
Tacit Knowledge Sharing and Project Performance. Does the Knowledge Workers' Personal Branding Matter?
PublicationTacit knowledge sharing is the real challenge for knowledge management today. Network economy has completely changed the role of knowledge workers who now become independent tacit knowledge producers. Bearing this fact in mind, the author studied how tacit knowledge sharing affects the process of building a personal brand and project performance. For this purpose, the authors conducted a study among Polish professionals with different...
-
Examining Statistical Methods in Forecasting Financial Energy of Households in Poland and Taiwan
PublicationThis paper examines the usefulness of statistical methods in forecasting the financial energy of households. The study’s objective is to create the innovative ratios that combine both financial and demographic information of households and implement them in the forecasting models. To conduct this objective, six forecasting models are developed using three different methods—discriminant analysis, logit analysis, and decision trees...
-
Automatic classification and mapping of the seabed using airborne LiDAR bathymetry
PublicationShallow coastal areas are among the most inhabited areas and are valuable for biodiversity, recreation and the economy. Due to climate change and sea level rise, sustainable management of coastal areas involves extensive exploration, monitoring, and protection. Current high-resolution remote sensing methods for monitoring these areas include bathymetric LiDAR. Therefore, this study presents a novel methodological approach to assess...
-
MOST Wiedzy jako narzędzie promocji otwartych zasobów nauki
PublicationRośnie znaczenie wiedzy zgromadzonej w różnego rodzaju systemach, w tym w kursach on-line. Połączenie systemów je przetwarzających z Internetem w znaczącym stopniu usprawniło rozprzestrzenianie informacji i zwiększyło jej dostępność. Coraz szersze uznanie zyskują ruchy Otwartego Dostępu (ang. Open Access). Politechnika Gdańska w ramach projektu Multidyscyplinarny Otwarty System Transferu Wiedzy – MOST Wiedzy buduje platformę o...
-
ANALIZA STANU TECHNICZNEGO RUROCIĄGÓW: WODY PRZeMYSŁOWEJ I SOLANKI
PublicationPracę wykonano na zlecenie Przedsiębiorstwa Badawczo-Wdrożeniowego "HYDRO-POMP" Sp. z o.o. ul. Wróblewskiego 19, 93-578 Łódź. Wykonawcą zlecenia jest Politechnika Gdańska, Wydział Chemiczny, Katedra Elektrochemii, Korozji i Inżynierii Materiałowej, 80-233 Gdańsk, ul. G. Narutowicza 11/12. Celem pracy była analiza stanu technicznego i badania dwóch rurociągów: solanki oraz wody przemysłowej. Badania wykonywano w warunkach terenowych...
-
Speaker Recognition Using Convolutional Neural Network with Minimal Training Data for Smart Home Solutions
PublicationWith the technology advancements in smart home sector, voice control and automation are key components that can make a real difference in people's lives. The voice recognition technology market continues to involve rapidly as almost all smart home devices are providing speaker recognition capability today. However, most of them provide cloud-based solutions or use very deep Neural Networks for speaker recognition task, which are...
-
Experimental determination of general characteristic of internal combustion engine using mobile test bench connected via Power Take-Off unit
PublicationThe general characteristics of the engine include information about the regions of the engine's operating area that are most efficient, where specific fuel consumption reaches the smallest values. Economic operation based on those characteristics can contribute to a significant reduction of fuel consumption and consequently less pollutant emissions and lower costs. The paper presents an experimental method of determination of general...
-
Long Distance Vital Signs Monitoring with Person Identification for Smart Home Solutions
PublicationAbstract— Imaging photoplethysmography has already been proved to be successful in short distance (below 1m). However, most of the real-life use cases of measuring vital signs require the system to work at longer distances, to be both more reliable and convenient for the user. The possible scenarios that system designers must have in mind include monitoring of the vital signs of residents in nursing homes, disabled people, who...
-
Neural network agents trained by declarative programming tutors
PublicationThis paper presents an experimental study on the development of a neural network-based agent, trained using data generated using declarative programming. The focus of the study is the application of various agents to solve the classic logic task – The Wumpus World. The paper evaluates the effectiveness of neural-based agents across different map configurations, offering a comparative analysis to underline the strengths and limitations...
-
Utilising AI Models to Analyse the Relationship between Battlefield Developments in the Russian-Ukrainian War and Fluctuations in Stock Market Values
PublicationThis study examines the impact of battlefield developments in the ongoing Russian–Ukrainian war, which to date has lasted over 1000 days, on the stock prices of defence corporations such as BAE Systems, Booz Allen Hamilton, Huntington Ingalls, and Rheinmetall AG. Stock prices were analysed alongside sentiment data extracted from news articles, and processed using machine learning models leveraging natural...
-
Topology, Size, and Shape Optimization in Civil Engineering Structures: A Review
PublicationThe optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications. Structural optimization approaches seek to determine the optimal design, by considering material performance, cost, and structural safety. The design approaches aim to reduce the built environment’s energy use and carbon emissions. This comprehensive review examines optimization...
-
Autoencoder application for anomaly detection in power consumption of lighting systems
PublicationDetecting energy consumption anomalies is a popular topic of industrial research, but there is a noticeable lack of research reported in the literature on energy consumption anomalies for road lighting systems. However, there is a need for such research because the lighting system, a key element of the Smart City concept, creates new monitoring opportunities and challenges. This paper examines algorithms based on the deep learning...
-
Potential of Explainable Artificial Intelligence in Advancing Renewable Energy: Challenges and Prospects
PublicationModern machine learning (ML) techniques are making inroads in every aspect of renewable energy for optimizationand model prediction. The effective utilization of ML techniques for the development and scaling up of renewable energy systemsneeds a high degree of accountability. However, most of the ML approaches currently in use are termed black box since their work isdifficult to comprehend. Explainable artificial intelligence (XAI)...
-
Classification of Covid-19 using Differential Evolution Chaotic Whale Optimization based Convolutional Neural Network
PublicationCOVID-19, also known as the Coronavirus disease-2019, is an transferrable disease that spreads rapidly, affecting countless individuals and leading to fatalities in this worldwide pandemic. The precise and swift detection of COVID-19 plays a crucial role in managing the pandemic's dissemination. Additionally, it is necessary to recognize COVID-19 quickly and accurately by investigating chest x-ray images. This paper proposed a...
-
Age Prediction from Low Resolution, Dual-Energy X-ray Images Using Convolutional Neural Networks
PublicationAge prediction from X-rays is an interesting research topic important for clinical applications such as biological maturity assessment. It is also useful in many other practical applications, including sports or forensic investigations for age verification purposes. Research on these issues is usually carried out using high-resolution X-ray scans of parts of the body, such as images of the hands or images of the chest. In this...
-
Energy-Aware Scheduling for High-Performance Computing Systems: A Survey
PublicationHigh-performance computing (HPC), according to its name, is traditionally oriented toward performance, especially the execution time and scalability of the computations. However, due to the high cost and environmental issues, energy consumption has already become a very important factor that needs to be considered. The paper presents a survey of energy-aware scheduling methods used in a modern HPC environment, starting with the...
-
Online sound restoration system for digital library applications
PublicationAudio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...
-
An Automated Method for Biometric Handwritten Signature Authentication Employing Neural Networks
PublicationHandwriting biometrics applications in e-Security and e-Health are addressed in the course of the conducted research. An automated graphomotor analysis method for the dynamic electronic representation of the handwritten signature authentication was researched. The developed algorithms are based on dynamic analysis of electronically handwritten signatures employing neural networks. The signatures were acquired with the use of the...
-
Semantic segmentation training using imperfect annotations and loss masking
PublicationOne of the most significant factors affecting supervised neural network training is the precision of the annotations. Also, in a case of expert group, the problem of inconsistent data annotations is an integral part of real-world supervised learning processes, well-known to researchers. One practical example is a weak ground truth delineation for medical image segmentation. In this paper, we have developed a new method of accurate...
-
Predicting Ice Phenomena in a River Using the Artificial Neural Network and Extreme Gradient Boosting
PublicationForecasting ice phenomena in river systems is of great importance because these phenomena are a fundamental part of the hydrological regime. Due to the stochasticity of ice phenomena, their prediction is a difficult process, especially when data sets are sparse or incomplete. In this study, two machine learning models—Multilayer Perceptron Neural Network (MLPNN) and Extreme Gradient Boosting (XGBoost)—were developed to predict...
-
Is Artificial Intelligence Ready to Assess an Enterprise’s Financial Security?
PublicationThis study contributes to the literature on financial security by highlighting the relevance of the perceptions and resulting professional judgment of stakeholders. Assessing a company’s financial security using only economic indicators—as suggested in the existing literature—would be inaccurate when undertaking a comprehensive study of financial security. Specifically, indices and indicators based on financial or managerial reporting...
-
Data governance: Organizing data for trustworthy Artificial Intelligence
PublicationThe rise of Big, Open and Linked Data (BOLD) enables Big Data Algorithmic Systems (BDAS) which are often based on machine learning, neural networks and other forms of Artificial Intelligence (AI). As such systems are increasingly requested to make decisions that are consequential to individuals, communities and society at large, their failures cannot be tolerated, and they are subject to stringent regulatory and ethical requirements....
-
Advantageous conditions of saccharification of lignocellulosic biomass for biofuels generation via fermentation processes
PublicationProcessing of lignocellulosic biomass includes four major unit operations: pre-treatment, hydrolysis, fermentation and product purifcation prior to biofuel generation via anaerobic digestion. The microorganisms involved in the fermentation metabolize only simple molecules, i.e., monosugars which can be obtained by carrying out the degradation of complex polymers, the main component of lignocellulosic biomass. The object of this...
-
To Survive in a CBRN Hostile Environment: Application of CAVE Automatic Virtual Environments in First Responder Training
PublicationThis paper is of a conceptual nature and focuses on the use of a specific virtual reality environment in civil-military training. We analyzed the didactic potential of so-called CAVE automatic virtual environments for First Responder training, a type of training that fills the gap between First Aid training and the training received by emergency medical technicians. Since real training involves live drills based on unexpected situations,...
-
Metal–Organic Frameworks (MOFs) for Cancer Therapy
PublicationMOFs exhibit inherent extraordinary features for diverse applications ranging from catalysis, storage, and optics to chemosensory and biomedical science and technology. Several procedures including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasound techniques have been used to synthesize MOFs with tailored features. A continued attempt has also been directed towards functionalizing MOFs via “post-synthetic...
-
Enabling Deeper Linguistic-based Text Analytics – Construct Development for the Criticality of Negative Service Experience
PublicationSignificant progress has been made in linguistic-based text analytics particularly with the increasing availability of data and deep learning computational models for more accurate opinion analysis and domain-specific entity recognition. In understanding customer service experience from texts, analysis of sentiments associated with different stages of the service lifecycle is a useful starting point. However, when richer insights...
-
Halucynacje chatbotów a prawda: główne nurty debaty i ich interpretacje
PublicationGeneratywne systemy sztucznej inteligencji (SI) są w stanie tworzyć treści medialne poprzez zastosowanie uczenia maszynowego do dużych ilości danych szkoleniowych. Te nowe dane mogą obejmować tekst (np. Bard firmy Google, LLaMa firmy Meta lub ChatGPT firmy OpenAI) oraz elementy wizualne (np. Stable Diffusion lub DALL-E OpenAI) i dźwięk (np. VALL-E firmy Micro- soft). Stopień zaawansowania tych treści może czynić je nieodróżnialnymi...
-
Otwarte zasoby edukacyjne - przegląd inicjatyw w Polsce i na świecie
PublicationOtwarte zasoby edukacyjne (OZE) to materiały szkoleniowe oraz narzędzia wspierające zarówno uczenie, jak i nauczanie. Zjawisko to nierozerwalnie łączy się z szerszym pojęciem otwartej edukacji (OE), które postuluje zniesienie barier w nauczaniu tak, aby uczący się mogli zdobywać wiedzę zgodnie ze swoimi potrzebami edukacyjno-szkoleniowymi. Celem artykułu jest zapoznanie czytelników z zagadnieniem otwartych zasobów edukacyjnych,...
-
Od zajęć tradycyjnych do MOOCów – role nauczyciela języków obcych
PublicationE-learning może stać się skutecznym środowiskiem uczenia się i nauczania przede wszystkim dzięki wytężonej pracy kompetentnego nauczyciela. Różne role, jakie musi on wypełniać, związane są z naturą procesu edukacyjnego prowadzonego online, na który ma wpływ przyjęta koncepcja metodyczna, instruktywistyczna lub konstruktywistyczna, liczba uczestników, struktura kursu, typy zasobów i aktywności oraz tematyka całego programu lub modułu....
-
Towards New Mappings between Emotion Representation Models
PublicationThere are several models for representing emotions in affect-aware applications, and available emotion recognition solutions provide results using diverse emotion models. As multimodal fusion is beneficial in terms of both accuracy and reliability of emotion recognition, one of the challenges is mapping between the models of affect representation. This paper addresses this issue by: proposing a procedure to elaborate new mappings,...
-
Asking Data in a Controlled Way with Ask Data Anything NQL
PublicationWhile to collect data, it is necessary to store it, to understand its structure it is necessary to do data-mining. Business Intelligence (BI) enables us to make intelligent, data-driven decisions by the mean of a set of tools that allows the creation of a potentially unlimited number of machine-generated, data-driven reports, which are calculated by a machine as a response to queries specified by humans. Natural Query Languages...
-
Minimizing Distribution and Data Loading Overheads in Parallel Training of DNN Acoustic Models with Frequent Parameter Averaging
PublicationIn the paper we investigate the performance of parallel deep neural network training with parameter averaging for acoustic modeling in Kaldi, a popular automatic speech recognition toolkit. We describe experiments based on training a recurrent neural network with 4 layers of 800 LSTM hidden states on a 100-hour corpora of annotated Polish speech data. We propose a MPI-based modification of the training program which minimizes the...
-
Preprocessing of Document Images Based on the GGD and GMM for Binarization of Degraded Ancient Papyri Images
PublicationThresholding of document images is one of the most relevant operations that influence the final results of their further analysis. Although many image binarization methods have been proposed during recent several years, starting from global thresholding, through local and adaptive methods, to more sophisticated multi-stage algorithms and the use of deep convolutional neural networks, proper thresholding of degraded historical...
-
Consumer Bankruptcy Prediction Using Balanced and Imbalanced Data
PublicationThis paper examines the usefulness of logit regression in forecasting the consumer bankruptcy of households using an imbalanced dataset. The research on consumer bankruptcy prediction is of paramount importance as it aims to build statistical models that can identify consumers in a difficult financial situation that may lead to consumer bankruptcy. In the face of the current global pandemic crisis, the future of household finances...
-
Teaching High–performance Computing Systems – A Case Study with Parallel Programming APIs: MPI, OpenMP and CUDA
PublicationHigh performance computing (HPC) education has become essential in recent years, especially that parallel computing on high performance computing systems enables modern machine learning models to grow in scale. This significant increase in the computational power of modern supercomputers relies on a large number of cores in modern CPUs and GPUs. As a consequence, parallel program development based on parallel thinking has become...
-
How Can We Identify Electrophysiological iEEG Activities Associated with Cognitive Functions?
PublicationElectrophysiological activities of the brain are engaged in its various functions and give rise to a wide spectrum of low and high frequency oscillations in the intracranial EEG (iEEG) signals, commonly known as the brain waves. The iEEG spectral activities are distributed across networks of cortical and subcortical areas arranged into hierarchical processing streams. It remains a major challenge to identify these activities in...