Filters
total: 1528
filtered: 1240
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: artificial intelligence, machine learning, cnn, neural networks, optimization algorithms
-
Musical Instrument Separation Applied to Music Genre Classification . Separacja instrumentów muzycznych w zastosowaniu do rozpoznawania gatunków muzycznych
PublicationThis paper outlines first issues related to music genre classification and a short description of algorithms used for musical instrument separation. Also, the paper presents proposed optimization of the feature vectors used for music genre recognition. Then, the ability of decision algorithms to properly recognize music genres is discussed based on two databases. In addition, results are cited for another database with regard to...
-
From Individual to Collective: Intelligence Amplification with Bio-Inspired Decisional DNA and its Extensions
PublicationIn nature, deoxyribonucleic acid (DNA) contains the genetic instructions used in the development and functioning of all known living organisms. The idea behind our vision is to develop an artificial system, an architecture that would support discovering, adding, storing, improving and sharing information and knowledge among agents and organizations through experience. We propose a novel Knowledge Representation (KR) approach in...
-
Scheduling with Complete Multipartite Incompatibility Graph on Parallel Machines
PublicationIn this paper we consider a problem of job scheduling on parallel machines with a presence of incompatibilities between jobs. The incompatibility relation can be modeled as a complete multipartite graph in which each edge denotes a pair of jobs that cannot be scheduled on the same machine. Our research stems from the works of Bodlaender, Jansen, and Woeginger (1994) and Bodlaender and Jansen (1993). In particular, we pursue the...
-
Eventual Convergence of the Reputation-Based Algorithm in IoT Sensor Networks
PublicationUncertainty in dense heterogeneous IoT sensor networks can be decreased by applying reputation-inspired algorithms, such as the EWMA (Exponentially Weighted Moving Average) algorithm, which is widely used in social networks. Despite its popularity, the eventual convergence of this algorithm for the purpose of IoT networks has not been widely studied, and results of simulations are often taken in lieu of the more rigorous proof....
-
Optimizing FSO networks resilient to adverse weather conditions by means of enhanced uncertainty sets
PublicationThis work deals with dimensioning of wireless mesh networks (WMN) composed of FSO (free space optics) links. Although FSO links realize broadband transmission at low cost, their drawback is sensitivity to adverse weather conditions causing transmission degradation on multiple links. Hence, designing such FSO networks requires an optimization model to find the cheapest configuration of link capacities that will be able to carry...
-
Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate
PublicationFast replacement models (or surrogates) have been widely applied in the recent years to accelerate simulation-driven design procedures in microwave engineering. The fundamental reason is a considerable—and often prohibitive—CPU cost of massive full-wave electromagnetic (EM) analyses related to solving common tasks such as parametric optimization or uncertainty quantification. The most popular class of surrogates are data-driven...
-
Analysis of Denoising Autoencoder Properties Through Misspelling Correction Task
PublicationThe paper analyzes some properties of denoising autoencoders using the problem of misspellings correction as an exemplary task. We evaluate the capacity of the network in its classical feed-forward form. We also propose a modification to the output layer of the net, which we called multi-softmax. Experiments show that the model trained with this output layer outperforms traditional network both in learning time and accuracy. We...
-
Controlling computer by lip gestures employing neural network
PublicationResults of experiments regarding lip gesture recognition with an artificial neural network are discussed. The neural network module forms the core element of a multimodal human-computer interface called LipMouse. This solution allows a user to work on a computer using lip movements and gestures. A user face is detected in a video stream from a standard web camera using a cascade of boosted classifiers working with Haar-like features....
-
Planning optimised multi-tasking operations under the capability for parallel machining
PublicationThe advent of advanced multi-tasking machines (MTMs) in the metalworking industry has provided the opportunity for more efficient parallel machining as compared to traditional sequential processing. It entailed the need for developing appropriate reasoning schemes for efficient process planning to take advantage of machining capabilities inherent in these machines. This paper addresses an adequate methodical approach for a non-linear...
-
Emotion Recognition from Physiological Channels Using Graph Neural Network
PublicationIn recent years, a number of new research papers have emerged on the application of neural networks in affective computing. One of the newest trends observed is the utilization of graph neural networks (GNNs) to recognize emotions. The study presented in the paper follows this trend. Within the work, GraphSleepNet (a GNN for classifying the stages of sleep) was adjusted for emotion recognition and validated for this purpose. The...
-
Experience-Oriented Knowledge Management for Internet of Things
PublicationIn this paper, we propose a novel approach for knowledge management in Internet of Things. By utilizing Decisional DNA and deep learning technologies, our approach enables Internet of Things of experiential knowledge discovery, representation, reuse, and sharing among each other. Rather than using traditional machine learning and knowledge discovery methods, this approach focuses on capturing domain’s decisional events via Decisional...
-
Localization in wireless sensor networks using switched parasitic antennas
PublicationA switched parasitic monopole antenna for 2.4 GHz ISM applications is design and investigated in this paper. One of the most promising applications for such switched-beam antennas is localization in wireless sensor networks (WSN). It is demonstrated that the use of this antenna improves accuracy of localization algorithms and allows for reduction of the number of reference nodes in localization system.
-
DIAGNOSIS OF MALIGNANT MELANOMA BY NEURAL NETWORK ENSEMBLE-BASED SYSTEM UTILISING HAND-CRAFTED SKIN LESION FEATURES
PublicationMalignant melanomas are the most deadly type of skin cancer but detected early have high chances for successful treatment. In the last twenty years, the interest of automated melanoma recognition detection and classification dynamically increased partially because of public datasets appearing with dermatoscopic images of skin lesions. Automated computer-aided skin cancer detection in dermatoscopic images is a very challenging task...
-
Application of mechanistic and data-driven models for nitrogen removal in wastewater treatment systems
PublicationIn this dissertation, the application of mechanistic and data-driven models in nitrogen removal systems including nitrification and deammonification processes was evaluated. In particular, the influential parameters on the activity of the Nitrospira activity were assessed using response surface methodology (RSM). Various long-term biomass washout experiments were operated in two parallel sequencing batch reactor (SBR) with a different...
-
Energy-Aware Scheduling for High-Performance Computing Systems: A Survey
PublicationHigh-performance computing (HPC), according to its name, is traditionally oriented toward performance, especially the execution time and scalability of the computations. However, due to the high cost and environmental issues, energy consumption has already become a very important factor that needs to be considered. The paper presents a survey of energy-aware scheduling methods used in a modern HPC environment, starting with the...
-
Evolutionary Algorithm for Selecting Dynamic Signatures Partitioning Approach
PublicationIn the verification of identity, the aim is to increase effectiveness and reduce involvement of verified users. A good compromise between these issues is ensured by dynamic signature verification. The dynamic signature is represented by signals describing the position of the stylus in time. They can be used to determine the velocity or acceleration signal. Values of these signals can be analyzed, interpreted, selected, and compared....
-
Optimizing control by robustly feasible model predictive control and application to drinking water distribution systems
PublicationThe paper considers optimizing Model Predictive Control (MPC) for nonlinear plants with output constraints under uncertainties. Although the MPC technology can handle the constraints in the model by solving constraint model based optimization task, satisfying the plant output constraints under the model uncertainty still remains a challenge. The paper proposes Robustly Feasible MPC (RFMPC), which achieves feasibility of the outputs...
-
TOWARDS EXPLAINABLE CLASSIFIERS USING THE COUNTERFACTUAL APPROACH - GLOBAL EXPLANATIONS FOR DISCOVERING BIAS IN DATA
PublicationThe paper proposes summarized attribution-based post-hoc explanations for the detection and identification of bias in data. A global explanation is proposed, and a step-by-step framework on how to detect and test bias is introduced. Since removing unwanted bias is often a complicated and tremendous task, it is automatically inserted, instead. Then, the bias is evaluated with the proposed counterfactual approach. The obtained results...
-
Data Acquisition in a Manoeuver Auto-negotiation System
PublicationTypical approach to collision avoidance systems with artificial intelligence support is that such systems assume a central communication and management point (such as e.g. VTS station), usually located on shore. This approach is, however, not applicable in case of an open water encounter. Thus, recently a new approach towards collision avoidance has been proposed, assuming that all ships in the encounter, either restricted or open...
-
Optimization of Division and Reconfiguration Locations of the Medium-Voltage Power Grid Based on Forecasting the Level of Load and Generation from Renewable Energy Sources
PublicationThe article addresses challenges in optimizing the operation of medium voltage networks, emphasizing optimizing network division points and selecting the best network configuration for minimizing power and energy losses. It critically reviews recent research on the issue of network configuration optimization. The optimization of the medium voltage power grid reconfiguration process was carried out using known optimization tools....
-
Comparison of the Ability of Neural Network Model and Humans to Detect a Cloned Voice
PublicationThe vulnerability of the speaker identity verification system to attacks using voice cloning was examined. The research project assumed creating a model for verifying the speaker’s identity based on voice biometrics and then testing its resistance to potential attacks using voice cloning. The Deep Speaker Neural Speaker Embedding System was trained, and the Real-Time Voice Cloning system was employed based on the SV2TTS, Tacotron,...
-
Performance analysis of an rfid-based 3d indoor positioning system combining scene analysis and neural network methods
PublicationThe main purpose of this research is to improve localization accuracy of an active Radio Frequency Identification, RFID tag, in 3D indoor space. The paper presents a new RFID based 3D Indoor Positioning System which shows performance improvement. The proposed positioning system combines two methods: the Scene Analysis technique and Artificial Neural Network. The results of both simulation using Log-Distance Path Loss Model and...
-
Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition
PublicationPredictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural...
-
Learning and memory processes in autonomous agents using an intelligent system of decision-making
PublicationThis paper analyzes functions and structures of the memory that is an indispensable part of an Intelligent System of Decision-making (ISD), developed as a universal engine for autonomous robotics. A simplified way of processing and coding information in human cognitive processes is modelled and adopted for the use in autonomous systems. Based on such a knowledge structure, an artificial model of reality representation and a model...
-
Learning and memory processes in autonomous agents using an intelligent system of decision-making
PublicationThis paper analyzes functions and structures of the memory that is an indispensable part of an Intelligent System of Decision-making (ISD), developed as a universal engine for autonomous robotics. A simplified way of processing and coding information in human cognitive processes is modelled and adopted for the use in autonomous systems. Based on such a knowledge structure, an artificial model of reality representation and a model...
-
Potential and Use of the Googlenet Ann for the Purposes of Inland Water Ships Classification
PublicationThis article presents an analysis of the possibilities of using the pre-degraded GoogLeNet artificial neural network to classify inland vessels. Inland water authorities monitor the intensity of the vessels via CCTV. Such classification seems to be an improvement in their statutory tasks. The automatic classification of the inland vessels from video recording is a one of the main objectives of the Automatic Ship Recognition and...
-
Medical Image Segmentation Using Deep Semantic-based Methods: A Review of Techniques, Applications and Emerging Trends
PublicationSemantic-based segmentation (Semseg) methods play an essential part in medical imaging analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is classified into an instance, where each class is corresponded by an instance. In particular, the semantic segmentation can be used by many medical experts in the domain of radiology, ophthalmologists, dermatologist, and image-guided radiotherapy. The authors...
-
A Comprehensive Analysis of Deep Neural-Based Cerebral Microbleeds Detection System
PublicationMachine learning-based systems are gaining interest in the field of medicine, mostly in medical imaging and diagnosis. In this paper, we address the problem of automatic cerebral microbleeds (CMB) detection in magnetic resonance images. It is challenging due to difficulty in distinguishing a true CMB from its mimics, however, if successfully solved it would streamline the radiologists work. To deal with this complex three-dimensional...
-
Buckling and shape control of prestressable trusses using optimum number of actuators
PublicationThis paper describes a method to control the nodal displacement of prestressable truss structures within the desired domains. At the same time, the stress in all members is unleashed to take any value between the allowable tensile stress and critical buckling stress. The shape and stresses are controlled by actuating the most active members. The technique considers the members’ initial crookedness, residual stresses, and slenderness...
-
Deep Instance Segmentation of Laboratory Animals in Thermal Images
PublicationIn this paper we focus on the role of deep instance segmentation of laboratory rodents in thermal images. Thermal imaging is very suitable to observe the behaviour of laboratory animals, especially in low light conditions. It is an non-intrusive method allowing to monitor the activity of animals and potentially observe some physiological changes expressed in dynamic thermal patterns. The analysis of the recorded sequence of thermal...
-
Exergy and Energy Analyses of Microwave Dryer for Cantaloupe Slice and Prediction of Thermodynamic Parameters Using ANN and ANFIS Algorithms
PublicationThe study targeted towards drying of cantaloupe slices with various thicknesses in a microwave dryer. The experiments were carried out at three microwave powers of 180, 360, and 540 W and three thicknesses of 2, 4, and 6 mm for cantaloupe drying, and the weight variations were determined. Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) were exploited to investigate energy and exergy indices of...
-
Semi-definite programming and quantum information
PublicationThis paper presents a comprehensive exploration of semi-definite programming (SDP) techniques within the context of quantum information. It examines the mathematical foundations of convex optimization, duality, and SDP formulations, providing a solid theoretical framework for addressing optimization challenges in quantum systems. By leveraging these tools, researchers and practitioners can characterize classical and quantum correlations,...
-
A hybrid approach to optimization of radial inflow turbine with principal component analysis
PublicationEnergy conversion efficiency is one of the most important features of power systems as it greatly influences the economic balance. The efficiency can be increased in many ways. One of them is to optimize individual components of the power plant. In most Organic Rankine Cycle (ORC) systems the power is created in the turbine and these systems can benefit from effective turbine optimization. The paper presents the use of two kinds...
-
Forecasting risks and challenges of digital innovations
PublicationForecasting and assessment of societal risks related to digital innovation systems and services is an urgent problem, because these solutions usually contain artificial intelligence algorithms which learn using data from the environment and modify their behaviour much beyond human control. Digital innovation solutions are increasingly deployed in transport, business and administrative domains, and therefore, if abused by a malicious...
-
A Highly Scalable, Modular Architecture for Computer Aided Assessment e-Learning Systems
PublicationIn this chapter, the authors propose a novel e-learning system, dedicated strictly to knowledge assessment tasks. In its functioning it utilizes web-based technologies, but its design differs radically from currently popular e-learning solutions which rely mostly on thin-client architecture. The authors' research proved that such architecture, while well suited for didactic content distribution systems is ill-suited for knowledge...
-
Computer experiments with a parallel clonal selection algorithm for the graph coloring problem
PublicationArtificial immune systems (AIS) are algorithms that are based on the structure and mechanisms of the vertebrate immune system. Clonal selection is a process that allows lymphocytes to launch a quick response to known pathogens and to adapt to new, previously unencountered ones. This paper presents a parallel island model algorithm based on the clonal selection principles for solving the Graph Coloring Problem. The performance of...
-
Clonal selection algorithm for vehicle routing
PublicationOver the years several successful computing techniques have been inspired by biological mechanisms. Studies of the mechanisms that allow the immune systems of vertebratesto adapt and learn have resulted in a class of algorithms called artificial immune systems. Clonal selection is a process that allows lymphocytes to launch a quick response to known pathogens and to adapt to new, previously unencountered ones. This paper presents...
-
Selection of Features for Multimodal Vocalic Segments Classification
PublicationEnglish speech recognition experiments are presented employing both: audio signal and Facial Motion Capture (FMC) recordings. The principal aim of the study was to evaluate the influence of feature vector dimension reduction for the accuracy of vocalic segments classification employing neural networks. Several parameter reduction strategies were adopted, namely: Extremely Randomized Trees, Principal Component Analysis and Recursive...
-
BIG DATA SIGNIFICANCE IN REMOTE MEDICAL DIAGNOSTICS BASED ON DEEP LEARNING TECHNIQUES
PublicationIn this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video-based estimation of patient vital signs and other health-related parameters. Additionally, potential...
-
Computer-assisted pronunciation training—Speech synthesis is almost all you need
PublicationThe research community has long studied computer-assisted pronunciation training (CAPT) methods in non-native speech. Researchers focused on studying various model architectures, such as Bayesian networks and deep learning methods, as well as on the analysis of different representations of the speech signal. Despite significant progress in recent years, existing CAPT methods are not able to detect pronunciation errors with high...
-
Intelligent turbogenerator controller based on artifical neural network
PublicationThe paper presents a desing of an intelligent controller based on neural network (ICNN). The ICNN ensures at the same time two fundamental functions : the maintaining of generator voltage at the desired value and the damping of the electromechanical oscillations. Its performance is evaluted on a single machine infinite bus power system through computer simulations. The dynamic and transient operation of the proposed controller...
-
Evaluating the Use of Edge Devices for Detection and Tracking of Vehicles in Smart City Environment
PublicationThis paper introduces a Smart City solution designed to run on edge devices, leveraging NVIDIA's DeepStream SDK for efficient urban surveillance. We evaluate five object-tracking approaches, using YOLO as the baseline detector and integrating three Nvidia DeepStream trackers: IOU, NvSORT, and NvDCF. Additionally, we propose a custom tracker based on Optical Flow and Kalman filtering. The presented approach combines advanced machine...
-
Vehicle classification based on soft computing algorithms
PublicationExperiments and results regarding vehicle type classification are presented. Three classes of vehicles are recognized: sedans, vans and trucks. The system uses a non-calibrated traffic camera, therefore no direct vehicle dimensions are used. Various vehicle descriptors are tested, including those based on vehicle mask only and those based on vehicle images. The latter ones employ Speeded Up Robust Features (SURF) and gradient images...
-
Detection of Lexical Stress Errors in Non-Native (L2) English with Data Augmentation and Attention
PublicationThis paper describes two novel complementary techniques that improve the detection of lexical stress errors in non-native (L2) English speech: attention-based feature extraction and data augmentation based on Neural Text-To-Speech (TTS). In a classical approach, audio features are usually extracted from fixed regions of speech such as the syllable nucleus. We propose an attention-based deep learning model that automatically de...
-
Towards Designing an Innovative Industrial Fan: Developing Regression and Neural Models Based on Remote Mass Measurements
PublicationThis article presents the process of the construction and testing a remote, fully autonomous system for measuring the operational parameters of fans. The measurement results obtained made it possible to create and verify mathematical models using linear regression and neural networks. The process was implemented as part of the first stage of an innovative project. The article presents detailed steps of constructing a system to...
-
Pareto Ranking Bisection Algorithm for EM-Driven Multi-Objective Design of Antennas in Highly-Dimensional Parameter Spaces
PublicationA deterministic technique for fast surrogate-assisted multi-objective design optimization of antennas in highly-dimensional parameters spaces has been discussed. In this two-stage approach, the initial approximation of the Pareto set representing the best compromise between conflicting objectives is obtained using a bisection algorithm which finds new Pareto-optimal designs by dividing the line segments interconnecting previously...
-
The Backbone Coloring Problem for Small Graphs
PublicationIn this paper we investigate the values of the backbone chromatic number, derived from a mathematical model for the problem of minimization of bandwidth in radio networks, for small connected graphs and connected backbones (up to 7 vertices). We study the relationship of this parameter with the structure of the graph and compare the results with the solutions obtained using the classical graph coloring algorithms (LF, IS), modified...
-
Power System Dynamics. Stability and Control. 3rd edition
PublicationComprehensive, state-of-the-art review of information on the electric power system dynamics and stability. It places the emphasis first on understanding the underlying physical principles before proceeding to more complex models and algorithms. The book explores the influence of classical sources of energy, wind farms and virtual power plants, power plants inertia and control strategy on power system stability. The book cover...
-
Optimizing Construction Engineering Management Using Metaheuristic Methods and Bayesian Networks
PublicationThe construction of buildings invariably involves time and costs, and disruptions impact ongoing construction projects. Crisis situations in management strategies, structural confusion, and finan-cial miscalculations often arise due to misguided decision-making. This article proposes a method that combines the learning of Bayesian Networks and heuristic techniques to optimize deci-sion-making processes in construction scheduling....
-
Problems of modelling toxic compounds emitted by a marine internal combustion engine in unsteady states
PublicationContemporary engine tests are performed based on the theory of experiment. The available versions of programmes used for analysing experimental data make frequent use of the multiple regression model, which enables examining effects and interactions between input model parameters and a single output variable. The use of multi-equation models provides more freedom in analysing the measured results, as those models enable simultaneous...