Search results for: BIODEGRADABLE METALLIC IMPLANT
-
From polymer waste to potential main industrial products: Actual state of recycling and recovering
Publicationlastics have become widely used materials in everyday life due to their special properties such as durability, easy processing, light-weight and low-cost of production. However, because of their stable and non-biodegradable nature, postconsumer plastics become an issue to the environment. The growing amounts of waste are generated, as plastic products are commonly used only once before disposal. The alternatives of practical techniques...
-
Applicability of edible Candelilla wax composite blended with Bryophyllumpinnatum extract to prolong shelf life of fruits/vegetables
PublicationCandelilla wax (CW) is a natural lipid source that can be used to make biodegradable and edible coatings and films for fruits. However, CW alone does not provide sufficient antimicrobial and antioxidant properties to prevent microbial spoilage and oxidative deterioration of fresh products. This study aims at evaluating the applicability of CW blended with Bryophyllum pinnatum extract (BPE), a plant with medicinal and phytochemical...
-
Sustainable polymers targeted at the surgical and otolaryngological applications: Circularity and future
PublicationThe ongoing climate changes, high air and noise pollution have significant impact on humans’ health. This influence is especially visible in otolaryngology, which focuses on respiratory and hearing systems disfunctions. However, even though surgeries are done in response to diseases related to climate changes, they also have a negative impact on the environment, mostly connected with the inherence of single-use fossil fuel derived...
-
Supramolecular deep eutectic solvents and their applications
PublicationIn recent years, the growing awareness of the harmfulness of chemicals to the environment has resulted in the development of green and sustainable technologies. The compromise between economy and environmental requirements is based on the development of new efficient and green solutions. Supramolecular deep eutectic solvents (SUPRADESs), a new deep eutectic solvent (DES) subclass characterized by inclusion properties, are a fresh...
-
How to make membrane distillation greener? A review on environmentally friendly and sustainable aspects
PublicationThere is an urgent need for the development of new water resources in order to solve the problem of the world’s growing demand for clean water. Membrane distillation (MD) is a promising alternative to conventional seawater desalination. Although MD itself is often defined as sustainable desalination technology, there are many aspects within the membrane manufacture and process operation that make it far from being green. For instance,...
-
The use of constructed wetlands for the treatment of industrial wastewater
PublicationConstructed wetlands are characterized by specific conditions enabling simultaneous various physical and biochemical processes. This is the result of specific environment for the growth of microorganisms and hydro-phytes (aquatic and semiaquatic plants) which are capable of living in aerobic, anaerobic and facultative anaerobic conditions. Their interaction contributes to the intensification of oxidation and reduction responsible...
-
Wastewater treatment by means of Advanced Oxidation Processes at basic pH conditions: A review
PublicationAdvanced oxidation processes (AOPs) have been used as an alternative and effective option for treatment of industrial wastewater, especially in the case of the non-biodegradable compounds. Despite of several well developed AOPs, the majority of them are effective only at acidic or neutral pH, namely Fenton related processes, making the list of available effective advanced oxidation technologies strongly limited. In many cases,...
-
Polymer derived SiOC/Sn nanocomposites from a low-cost single source precursor as anode materials for lithium storage applications
PublicationMetal- based materials capable of lithium (Li) alloy formation are key to realization of the next generation of high-energy density anodes for Li-ion batteries, owing to their high storage capacity. Designing a good sup- porting matrix is essential for homogeneously nesting these metallic nanodomains, to effectively utilize their high capacity while tackling the volume expansion issues. Silicon oxycarbides (SiOC), obtained via...
-
Multifunctional catalyst-assisted sustainable reformation of lignocellulosic biomass into environmentally friendly biofuel and value-added chemicals
PublicationRapid urbanization is increasing the world's energy demand, making it necessary to develop alternative energy sources. These growing energy needs can be met by the efficient energy conversion of biomass, which can be done by various means. The use of effective catalysts to transform different types of biomasses will be a paradigm change on the road to the worldwide goal of economic sustainability and environmental protection. The...
-
Compact, Order Extensible and Wide-Stopband Bandpass Filter Based on SIW Cavity with Rectangular Ring Slot
PublicationThis article introduces novel architectures of bandpass filters (BPFs) using a substrate integrated waveguide (SIW) cavity with a rectangular ring slot (RRS) for compact size, extensible order, and broad stopband responses. Two bandpass filters, which demonstrate a second-and a fourth-order Chebyshev response, respectively, are realized by employing identical cavities with RRS, without increasing the physical size of the circuit....
-
High-temperature oxidation of the Crofer 22 H ferritic steel with Mn1.45Co1.45Fe0.1O4 and Mn1.5Co1.5O4 spinel coatings under thermal cycling conditions and its properties
PublicationThe aim of the presented study was to deposit protective-conducting Mn1.45Co1.45Fe0.1O4 and Mn1.5Co1.5O4 spinel coatings on the Crofer 22 H ferritic steel by means of electrophoresis and to evaluate their physicochemical properties after high-temperature oxidation under thermal cycling conditions. When the Crofer 22 H steel – whether uncoated or coated with the two spinels – was oxidized in 48-h cycles involving a temperature of...
-
Structural and luminescent study of TeO2-BaO-Bi2O3-Ag glass system doped with Eu3+ and Dy3+ for possible color-tunable phosphor application
PublicationTellurite glass systems of 73TeO2-4BaO-3Bi2O3-1Ag:xEu2O3-(2-x)Dy2O3 (where x = 0.5, 1, 1.5, 2 in molar ratio) composition have been successfully synthesized. In order to acquire Ag nanoparticles, materials have been heat treated at 350 °C in the air atmosphere. Structural properties of obtained samples were evaluated with various techniques. X-Ray Diffraction (XRD) measurements indicated that obtained materials are amorphous in...
-
SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF NIOBIUM-DOPED HYDROXYAPATITE CERAMICS
PublicationHydroxyapatite (HAp) ceramic materials are considered as one of the most promising implant materials in bone surgery and in dentistry. They exhibit unique biocompatibility, bioactivity, and osteoconductivity, which are the most desirable biomaterial features. However, HAp itself is brittle, has low strength, high degree of crystallinity and low solubility at physiological pH. Doping synthetic HAp with metal ions plays an important...
-
Effect of hybrid modification by ceramic layer formation in MAO process and laser remelting on the structure of titanium bio-alloy Ti13Nb13Zr
PublicationTo improve the biological properties of titanium alloy Ti13Nb13Zr, hybrid modifications involving micro-arc oxidation (MAO) and Nd: YAG laser remelting were carried out in two combinations. The first consisted of laser modification before the production of the ceramic layer by the micro-arc oxidation process, and the second combination involved Nd: YAG laser modification after the MAO process. The creation of developed surface...
-
Fatigue fracture morphology of AISI H13 steel obtained by additive manufacturing
PublicationThe paper focuses on researching the effect of fatigue loading on metallic structure, lifetime, and fracture surface topographies in AISI H13 steel specimens obtained by selective laser melting (SLM). The topography of the fracture surfaces was measured over their entire area, according to the entire total area method, with an optical three-dimensional surface measurement system. The fatigue results of the SLM 3D printed steel...
-
Material Design and Optimisation of Electrochemical Li-Ion Storage Properties of Ternary Silicon Oxycarbide/Graphite/Tin Nanocomposites
PublicationIn this work, we present the characterization and electrochemical performance of various ternary silicon oxycarbide/graphite/tin (SiOC/C/Sn) nanocomposites as anodes for lithium-ion batteries. In binary SiOC/Sn composites, tin nanoparticles may be produced in situ via carbothermal reduction of SnO2 to metallic Sn, which consumes free carbon from the SiOC ceramic phase, thereby limiting the carbon content in the final ceramic nanocomposite....
-
Physicochemical properties of Mn1.45Co1.45Cu0.1O4 spinel coating deposited on the Crofer 22 H ferritic steel and exposed to high-temperature oxidation under thermal cycling conditions
PublicationThe Crofer 22 H ferritic steel substrate was coated with an Mn1.45Co1.45Cu0.1O4 spinel by means of electrophoresis. After high-temperature oxidation under thermal cycling conditions, the physicochemical properties of the obtained system were evaluated. During 48-h cycles that involved heating the samples up to temperatures of either 750 or 800 °C, the oxidation kinetics of both coated and unmodified steel approximately obeyed...
-
Preparation and structure of nanocrystalline sol-gel derived Cu doped LiTi2O4 powders
PublicationAmong the spinel oxides materials, lithium titanate (Li1+xTi2-xO4 where 0 ≤ x ≤ 0.33) could be very interested from pratical applications point of view. Lithium titanate is a II type spinel oxide superconductor with relatively high (~13 K for x = 0) superconducting transition temperature Tc. Above Tc lithium titanate shows metallic behaviour and can be used e.g. as electrodes for rechargeable lithium-ion batteries. Since the discovery...
-
Water-Lubricated Sintered Bronze Journal Bearings—Theoretical and Experimental Research
PublicationWater lubricated bearings are used from many years in shipbuilding, hydro power and other industries because of their advantages such as: extensive serviceable life, low coefficient of friction, longevity of shaft sleeve, good abrasion resistance, low maintenance required, unit simplicity, no danger of pollution and low price. Various types of water lubricated sliding bearings have been tested at the Technical University of Gdansk...
-
Cadmium complex possessing simultaneously silanethiolato- and dithiocarbamato-ligands. A novel single-source precursor of cadmium sulfide
PublicationThermal decomposition of suitable coordination compounds may be used as efficient route for fabrication of semiconducting layers. A new potential CdS precursor—a cadmium complex with all-sulfur Cd-coordination sphere [Cd{l-SSi(OBut)3}(S2CNC4H8)]2 (1) —has been prepared and its properties are investigated. The complex was obtained in the reaction between dimeric bis(tri-tert-butoxysilanethiolato) cadmium(II) [Cd{SSi(OBut)3}2]2 and...
-
Influence and development of new kinematic systems in flat surface lapping
PublicationThe face grinding and lapping technology is widely used in the field of the precise and ultraprecise manufacturing. It has become an indispensable technology in the manufacture of many parts. An absence of material restrictions allows machining both metal and non-metallic materials, including technical ceramics [1]. Nowadays there are mainly two kinematic systems in lapping machines [2]. The machining plane-parallel surfaces is...
-
PARAMETERS OF THE ELECTROPHORETIC DEPOSITION PROCESS AND ITS INFLUENCE ON THE MORPHOLOGY OF HYDROXYAPATITE COATINGS. REVIEW
PublicationMetallic materials intended for bone implants should exhibit not only appropriate mechanical properties, but also high biocompatibility. The surface treatment modifications, for example acidic treatment, laser treatment, ion implantation and deposition of highly biocompatible coatings, are practiced. One of the most popular methods of surface modification is to deposit hydroxyapatite (HAp) coatings. HAp naturally occurs in human...
-
Investigations of Energy Conversion and Surface Effect for Laser-Illuminated Gold Nanorod Platforms
PublicationAchieving a quick temperature increase is a burning issue for biophysical applications, like germ inactivation and tumor ablation, and for energy performances, like solar collectors and steam generators. Based on the plasmon resonance phenomenon, noble metallic nanoparticles have emerged as promising weapons due to their very high biocompatibility, optical properties, and high surface-to-volume ratio, increasing energy conversion...
-
Eu2Mg3Bi4: Competing Magnetic Orders on a Buckled Honeycomb Lattice
PublicationThe honeycomb lattice and its derived variants provide information on modeling and designing quantum magnets. A novel magnetic material, Eu2Mg3Bi4, which stabilizes in a previously unknown buckled honeycomb lattice, was discovered by high-pressure and high-temperature methods. We report here on the synthesis exploration of pure single crystals, structural determination of the buckled honeycomb lattice of europium moments, and experimental observation...
-
Novel Versatile Topologies and Design Optimization of Wide-Bandstop Frequency Selective Surfaces for X-Band, Ku-Band and Millimeter-Wave Applications
PublicationNovel designs of frequency selective surface (FSS) are presented for wideband applications in X, Ku and mmWave (millimeter Wave) bands. Two identical metallic layers of FSS are imprinted on both sides of the RO4003 substrate. The geometry parameters are optimized to maximize the bandstop at the specified in-band maximum transmission level of –10 dB; satisfaction of the latter condition is enforced through appropriate formulation...
-
Novel Coplanar-Strip-Based Excitation Technique for Design of Broadband Circularly Polarization Antennas with Wide 3-dB Axial Ratio Beamwidth
PublicationIn this paper, a novel excitation technique for design of a single-point-fed compact low-profile wide-slot antennas with broadband circular polarization (CP) and wide 3 dB axial ratio (AR) beamwidth is presented. Two inverted L-shape parasitic strips placed coplanar to the microstrip line of an asymmetric CPW, and a horizontal strip that protrudes from the vertical edge of the backside ground plane of the substrate are used for...
-
THE ANALYSIS OF THE INFLUENCE OF STRESS DISTRIBUTION ON WEAR PROFILE IN LUBRICATED SLIDING CONTACT OF UHMW-PE VS TITANIUM Ti-13Nb-13Zr ALLOY
PublicationMetal – polymer sliding contacts are a typical combination in industry and medicine. For decades such a set of materials has been the primary choice in human joints endoprosthetic technology. In this paper tribological issues of are presented from a research on the potential for practical use of Ti-13Nb-13Zr/UHMW-PE couple for orthopedic endoprosthesis. In tests on simplified models it is critically important to carefully...
-
In-depth characterization of icosahedral ordering in liquid copper
PublicationThe presence of icosahedral ordering in liquid copper at temperatures close to the melting point is now well-established both experimentally and through computer simulation. However, a more elaborate analysis of local icosahedral and icosahedron-like structures, together with a system for classifying such structures based on some measure of "icosahedrity", has so far been conspicuously absent in the literature. Similarly, the dynamics...
-
Whether Carbon Nanotubes Are Capable, Promising, and Safe for Their Application in Nervous System Regeneration. Some Critical Remarks and Research Strategies
PublicationCarbon nanotubes are applied in or considered for different fields of medicine. Among them is the regeneration or rebuilding of nervous system components, which still lack substantial progress; this field is supported by carbon nanotubes to a great extent as the principal material. The limited research on this issue has involved PU/silk/MWCNTs, PCL/silk/MWCNTs, PCL/PGS/CNTs, chitin/CNTs, PGF/CNTs, CNTs/PGFs/PLDLA,MWCNTs chitosan,MWCNTs/PPy,...
-
Theoretical and experimental analysis of guided wave propagation in plate-like structures with sinusoidal thickness variations
PublicationGuided waves have attracted significant attention for non-destructive testing (NDT) and structural health monitoring (SHM) due to their ability to travel relatively long distances without significant energy loss combined with their sensitivity to even small defects. Therefore, they are commonly used in damage detection and localization applications. The main idea of incorporating guided waves in NDT and SHM is based on processing...
-
A facile structural manipulation strategy to prepare ultra-strong, super-tough, and thermally stable polylactide/nucleating agent composites
PublicationPolylactide (PLA) is a biodegradable thermoplastic widely used in diferent felds, but it should be adequately modifed considering high-performance applications. However, the current processes for developing PLA materials achieve high strength at the expense of toughness or ductility of the materials. Therefore, there is need to develop new strategies for generation of PLA materials with high strength, great toughness, good ductility,...
-
Comparison of the Effects of Conventional and Alternative External Carbon Sources for Enhancing of the Denitrification Process
PublicationFood industry effluents are considered a potential alternative for methanol when seeking external carbon sources to enhance denitrification in municipal wastewater treatment plants (WWTPs). The aim of this study was to determine the immediate effects of dosing different carbon sources on the denitrification capability of process biomass from the "Wschod" WWTP in Gdansk (northern Poland). Five carbon sources, including settled wastewater,...
-
The Simulation of Activated Sludge System for Optimization of Predictive Aeration at Large WWTP
PublicationEffective use of biodegradable substrates as an internal carbon sources (ICS) for denitrification and EBPR and predicting performance of aeration systems during nitrification in activated sludge bioreactors, may be useful in realization the sustainable development by potentially saving energy consumption at WWTPs. A large number of WWTPs use activated sludge systems with an integrated removal of carbon, nitrogen and phosphorus...
-
Damage detection in 3D printed plates using ultrasonic wave propagation supported with weighted root mean square calculation and wavefield curvature imaging
Publication3D printing (additive manufacturing, AM) is a promising approach to producing light and strong structures with many successful applications, e.g., in dentistry and orthopaedics. Many types of filaments differing in mechanical properties can be used to produce 3D printed structures, including polymers, metals or ceramics. Due to the simplicity of the manufacturing process, biodegradable polymers are widely used, e.g., polylactide (polylactide...
-
Bioreactors and biophoton-driven biohydrogen production strategies
PublicationGiven the current issues with global warming and rising greenhouse gas emissions, biohydrogen is a viable alternative fuel option. Technologies to produce biohydrogen include photo fermentation, dark fermentation, direct and indirect bio-photolysis, and two-stage fermentation. Biological hydrogen generation is a green and promising technique with mild reaction conditions and low energy consumption compared to thermochemical and...
-
A modern solid waste management strategy – the generation of new by-products
PublicationTo benefit the environment and society, EU legislation has introduced a ‘zero waste’ strategy, in which waste material should be converted to resources. Such legislation is supported by the solid waste hierarchy concept, which is a set of priorities in waste management. Under this concept, municipal solid waste plants (MSWPs) should be equipped with sorting and recycling facilities, composting/incineration units and landfill prisms...
-
The impact of thermomechanical and chemical treatment of waste Brewers’ spent grain and soil biodegradation of sustainable Mater-Bi-Based biocomposites
PublicationDue to the massive plastic pollution, development of sustainable and biodegradable polymer materials is crucial to reduce environmental burdens and support climate neutrality. Application of lignocellulosic wastes as fillers for polymer composites was broadly reported, but analysis of biodegradation behavior of resulting biocomposites was rarely examined. Herein, sustainable Mater-Bi-based biocomposites filled with thermomechanically-...
-
Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results
PublicationAlthough titaniumand its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone....
-
A Study on Emission of Airborne Wear Particles from Car Brake Friction Pairs
PublicationThe emission of airborne wear particles from friction material / cast iron pairs used in car brakes was investigated, paying special attention to the influence of temperature. Five low-metallic materials and one non-asbestos organic material were tested using a pin-on-disc machine. The machine was placed in a sealed chamber to allow airborne particle collection. The concentration and size distribution of 0.0056 to 10 μm particles...
-
Kinetics of Intermetallic Phase Precipitation in Manual Metal Arc Welded Duplex Stainless Steels
PublicationThe article presents the influence of heat treatment on the kinetics of transformations in lean duplex LDX2101 steel and a weld made of standard duplex 2209 material, which was welded by manual metal arc welding. Changes in the microstructure, hardness, and magnetic phase content were analyzed after heat treatment was conducted at a temperature of 800 °C for a period ranging from 15 to 1440 min. Light and scanning microscopy, Vickers...
-
The effect of microemulsion composition on the morphology of Pd nanoparticles deposited at the surface of TiO2 and photoactivity of Pd-TiO2
PublicationA series of microemulsion (ME) system, constituted by different water to surfactant molar ratios (Wo) and oil to surfactant mass ratios (S), have been applied for Pd-TiO2 preparation. The effect of ME properties on the morphology of Pd nanoparticles formed at TiO2 surface and an effect of Pd size and distribution on the surface and photocatalytic properties of Pd-TiO2 were investigated. Microemulsion systems were characterized...
-
Two-step synthesis of niobium doped Na–Ca–(Mg)–P–Si–O glasses
PublicationNiobium doped biosolubility glasses in the Na–Ca–(Mg)–P–Si–O system were prepared by using an untypical two-step synthesis route. The parent glass was melted in air atmosphere at 1350 °C followed by re-melting the glass in Nb crucible with the addition of metallic Mg/Ca powder in the nitrogen atmosphere. The second melting step was carried out at 1450–1650 °C, using an induction furnace. The topography and structure of the obtained...
-
Synthesis, structural characterization, and thermal properties of Ca‐ and La‐doped soda‐lime glasses by laser melting
PublicationLaser melting techniques have been used in the preparation of unconventional glass compositions with high melting temperatures. Thus, we wanted to test the feasibility of using a CO2 laser in the preparation of nitrogen-rich oxynitride glasses and nitride silicate glasses. Melting from oxides and metallic raw materials, we wanted to study first glass formation and possible evaporation losses of the glass components. Two glass series...
-
New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5
PublicationIn this work, we present our discovery and characterization of a new kagome prototype structure, KV3Sb5. We also present the discovery of the isostructural compounds RbV3Sb5 and CsV3Sb5. All materials exhibit a structurally perfect two-dimensional kagome net of vanadium. Density-functional theory calculations indicate that the materials are metallic, with the Fermi level in close proximity to several Dirac points. Powder and single-crystal...
-
Time-frequency analysis in optical coherence tomography for technical objects examination
PublicationOptical coherence tomography (OCT) is one of the most advanced optical measurement techniques for complex structure visualization. The advantages of OCT have been used for surface and subsurface defect detection in composite materials, polymers, ceramics, non-metallic protective coatings, and many more. Our research activity has been focused on timefrequency spectroscopic analysis in OCT. It is based on time resolved spectral analysis...
-
Optical Coherence Tomography for nanoparticles quantitative characterization
PublicationThe unique features of nanocomposite materials depend on the type and size of nanoparticles, as well as their placement in the composite matrices. Therefore the nanocomposites manufacturing process requires inline control over certain parameters of nanoparticles such as dispersion and concentration. Keeping track of nanoparticles parameters inside a matrix is currently a difficult task due to lack of a fast, reliable and cost effective...
-
Nondestructive global corrosion measurement using guided wavefield data
PublicationMetallic structures often face degradation, and corrosion ranks among the most prevalent forms of deterioration. Accurate quantification of corrosion is crucial, especially for structures exposed to harsh environmental conditions, such as marine vessels and offshore installations. Because the traditional measurement methods based on scanning by ultrasonic gauge are time-consuming and provide only rough information on the thickness...
-
Experimental study and numerical simulation on porosity dependent direct reducibility of high-grade iron oxide pellets in hydrogen
PublicationThe transition to more environmentally friendly steel production methods has intensified research into hydrogen-based direct reduction (HyDR) of iron oxide pellets. The aim of this study is to systematically investigate the kinetics of the reduction process, the evolution of porosity and the resulting microstructural changes on the reduction behavior of high-quality pellets during HyDR of iron ore at different temperatures. A modified...
-
Structure redetermination, transport and thermal properties of the YNi3Al9 compound
PublicationSingle crystals of completely ordered variant of the YNi3Al9 compound were grown by self-flux method with excess of aluminum. The crystal structure of the title compound was redetermined from single crystal X-ray diffraction data. The structure adopts ErNi3Al9 type, space group R32, parameters of the unit cell a = 7.2838(2) Å, c = 27.4004(8) Å. The growth of relatively large single crystals of the YNi3Al9 compound, having completely...
-
Thermal dewetting as a method of surface modification of the gold thin films for surface plasmon resonance based sensor applications
PublicationHere, we report a quick and simple approach with low, optimized production costs to obtain surface plasmon resonance (SPR) based sensors fabricated through a time- and resource-effective method based on thermal dewetting of thin Au films. From the applicative point of view, the method of detection presented here should be easier to implement, since light transmission measurements seem to be much less challenging than light refractive...