Filters
total: 444
Search results for: OXIDATION/REDUCTION
-
Electrochemical degradation of textile dyes in a flow reactor: effect of operating conditions and dyes chemical structure
PublicationIn this study, electrochemical oxidation of five azo dyestuffs (Yellow D-5GN, Red D-B8, Ruby F-2B, Blue D-5RN, Black DN), that are widely used in the textile industry, was investigated in a flow reactor. BDD electrode with a high boron doping level (C/B = 10 000) was prepared and used. Two configurations of reactor were considered, i.e., one with the undivided cell, and the other with the cell divided by anodic and cathodic compartments....
-
Oxidation and hydrogen behavior in Zr-2Mn alloy
PublicationThe purpose of the present research was to determine the oxidation and hydrogenation behavior in the new Zr-2Mn alloy. The oxidation of alloy was performed at temperatures between 350°C and 900°C for 30 minutes. The hydrogen charging was made for 72 h at a current density 80 mA/cm2. The charged samples were heat treated at 400°C for 4 h to obtain a uniform hydrogen profile content across the sample. The oxidation resulted in an...
-
Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications
PublicationThe zirconium alloys used in nuclear industry include mainly ZreSn and ZreNb alloys ofdifferent chemical composition, microstructure and susceptibility to both hydrogendegradation and oxidation. The hypothetic nuclear accidents can create a real danger tothe Zr alloys and stability of parts made of these alloys, and especially such as loss ofcoolant accident (LOCA) and reactivity initiated accidents (RIA). The hydrogen degradationcan...
-
Photocatalytic selectivity oxidation of 2-phenoxy-1-phenylethanol coupled with Cd-MOF/S/Ni-NiO for hydrogen evolution performance and mechanism
PublicationIn this study, Cd-MOF/S/Ni–NiO (MOF = metal–organic framework) composite materials were prepared using a hydrothermal synthesis method and employed for the high-efficiency photocatalytic oxidation of the lignin β-O-4 model compound 2-phenoxy-1-phenylethanol, coupled with water splitting hydrogen evolution. The Cd-MOF/S/Ni–NiO composite material retained the petal-like morphology of Cd-MOF, with Ni-BTC acting as the precursor for...
-
High-temperature oxidation of the Crofer 22 H ferritic steel with Mn1.45Co1.45Fe0.1O4 and Mn1.5Co1.5O4 spinel coatings under thermal cycling conditions and its properties
PublicationThe aim of the presented study was to deposit protective-conducting Mn1.45Co1.45Fe0.1O4 and Mn1.5Co1.5O4 spinel coatings on the Crofer 22 H ferritic steel by means of electrophoresis and to evaluate their physicochemical properties after high-temperature oxidation under thermal cycling conditions. When the Crofer 22 H steel – whether uncoated or coated with the two spinels – was oxidized in 48-h cycles involving a temperature of...
-
X-Ray Computer Tomography Study of Degradation of the Zircaloy-2 Tubes Oxidized at High Temperatures
PublicationThe investigations of high-temperature oxidation of zirconium alloys, applied for fuel pellets in nuclear power plants, are usually limited to oxidation kinetics, phase transformations and microstructural characterization. The purpose of this research was to characterize the degradation phenomena occurring within oxide layer and at the interface oxide/metal, on internal and external Zircaloy-2 tube...
-
Modeling of microstructure evolution during high-temperature oxidation of porous Fe-Cr steels
PublicationResearch on the high-temperature oxidation of metals and alloys is experimentally challenging due to the requirement for long-term corrosion exposure, and in the case of porous alloys, due to their complex internal microstructure. In this study, a corrosion model based on the morphological operations of dilation and erosion has been developed. This approach allows for a utilization of various raster representations of the microstructure...
-
Overall color parameter as a parameter determining the level of oxidation of olive oil
PublicationEdible fats are an important part of a human daily diet. They have a significant effect on the proper functioning of the human body. During frying, the oil is chemically modified and the fats consumed should have the highest oxidation stability. The subject of the study were samples of olive oil bought at local markets in Gdansk. Samples were heated at 20 °C, 60 °C, 100 °C, 140 °C and 180 °C. The aim of the study was to determine...
-
Insightful Analysis of Phenomena Arising at the Metal|Polymer Interphase of Au-Ti Based Non-Enzymatic Glucose Sensitive Electrodes Covered by Nafion
PublicationThis paper focuses on the examination of glucose oxidation processes at an electrode material composed of gold nanoparticles embedded in a titanium template. Three dierent conditions were investigated: the chloride content in the electrolyte, its ionic conductivity and the presence of a Nafion coating. The impact of the provided environment on the oxidation reaction was evaluated by cyclic voltammetry (CV) and electrochemical impedance...
-
Three-component NiO/Fe3O4/rGO nanostructure as an electrode material towards supercapacitor and alcohol electrooxidation
PublicationA nanocomposite made of nickel oxide and iron oxide (NiO/Fe3O4) and its hybrid with reduced graphene oxide (rGO) as a conductive substrate with a highly functional surface (NiO/Fe3O4/rGO) was synthesized using a simple hydrothermal approach. This study addresses the challenge of developing efficient materials for energy storage and alcohol fuel cells. After confirming the synthesis through structural analysis, the potential of...
-
Effect of oxidation and in vitro intestinal hydrolysis on phospholipid toxicity towards HT29 cell line serving as a model of human intestinal epithelium
PublicationOxidation of food-derived phospholipids (PLs) can influence nutrient digestion and induce oxidative stress in gastrointestinal epithelium. In this study, hen egg yolk PL fraction was used to evaluate the effect of lipoxygenase (LOX)-induced PL oxidation on the rate of PL hydrolysis catalyzed by pancreatic phospholipase A2 (PLA2) in the presence of bile salts (BSs). Then, PL/BS solutions containing native or oxidized PLs were used...
-
Electrocatalytic performance of oxygen-activated carbon fibre felt anodes mediating degradation mechanism of acetaminophen in aqueous environments
PublicationCarbon felts are flexible and scalable, have high specific areas, and are highly conductive materials that fit the requirements for both anodes and cathodes in advanced electrocatalytic processes. Advanced oxidative modi- fication processes (thermal, chemical, and plasma-chemical) were applied to carbon felt anodes to enhance their efficiency towards electro-oxidation. The modification of the porous anodes results in increased...
-
Valence and ionic lowest-lying electronic states of small esters studied by high resolution vacuum ultraviolet photoabsorption, photoelectron spectroscopy and ab initio calculations
PublicationEsters are an important class of oxygenated volatile organic compounds used in food flavorings, perfumes and other cosmetic products. They are present in fruits and pheromones and are emitted to the atmosphere naturally. Esters are also formed in the atmosphere as a product of the oxidation of ethers. Some of them form poly-molecule chains and are used in plastics. Phosphoesters form DNA backbone, while nitroesters are known for...
-
Influence of S-Oxidation on Cytotoxic Activity of Oxathiole-Fused Chalcones
PublicationSynthesis, in vitro cytotoxic activity, and interaction with tubulin of oxidized, isomeric 1-(5-alkoxybenzo[d] [1,3]oxathiol-6-yl)-3-phenylprop-2-en-1-ones and 1-(6- alkoxybenzo[d][1,3]oxathiol-5-yl)-3-phenylprop-2-en-1- ones are described. Most of the compounds demonstrated cytotoxic activity at submicromolar concentrations. It was found that oxidation of sulfur atom of the oxathiole-fused chalcones strongly influenced activity...
-
Effect of native air-formed oxidation on the corrosion behavior of AA7075 aluminum alloys
PublicationThe microstructure of aluminum alloys plays a key role in their corrosion resistance. In particular, the presence of intermetallic precipitates differing in the potential from the alloy matrix induces local corrosion. The study presents the effect of native air-formed oxidation on the corrosion behavior of AA 7075 aluminum alloy. Various microscopic and spectroscopic techniques were used to examine the changes occurring in the...
-
High-temperature kinetics study of 430L steel powder oxidized in air at 600–850 °C
PublicationThe 430L stainless steel powder with a mean particle size of 95 μm was studied to determine its high-temperature oxidation properties. Continuous thermogravimetric measurements were carried out for 100 h in air at temperatures in the range of 600–850 °C. Even though a considerable amount of Cr (up to ˜5 wt.% Cr) inside the grains was depleted – especially inside small grains – no breakaway oxidation was observed. This indicates...
-
High temperature corrosion evaluation and lifetime prediction of porous Fe22Cr stainless steel in air in temperature range 700–900 °C
PublicationThis work describes a high temperature corrosion kinetics study of ~30% porous Fe22Cr alloys. The surface area of the alloy (~0.02 m2 g-1) has been determined by tomographic microscopy. The weight gain of the alloys was studied by isothermal thermogravimetry in the air for 100 hours at 700 - 900 °C. Breakaway oxidation was observed after oxidation at 850 °C (~100 hours) and 900 °C (~30 hours). The lifetime prediction shows the...
-
On the use of black tea waste as a functional filler for manufacturing self-stabilizing polyethylene composites: In-depth thermal analysis
PublicationThermal and oxidative stabilization are critical aspects in the processing and exploitation of polyolefins. Black tea contains many natural antioxidants, the largest group of compounds in its composition. When used as a filler for composite manufacturing, the thermo-oxidation process of polyethylene can be slowed down. Black tea waste (BTW) generated during the process of packing tea into sachets was introduced into a bio-based...
-
Application of BDD thin film electrode for electrochemical decomposition of heterogeneous aromatic compounds
PublicationThe aim of the presented study is to investigate the applicability of electrochemical oxidation of aromatic compounds containing heteroatoms, e.g. waste from production of pesticides or pharmaceutics, at a borondoped diamond (BDD) electrode. The BDD electrodes were synthesized by microwave plasma enhanced chemical vapour deposition (MW PE CVD). Investigation of the electrode surface by optical microscopy and scanning electron microscopy...
-
Effective method of treatment of industrial effluents under basic pH conditions using acoustic cavitation – a comprehensive comparison with hydrodynamic cavitation processes
PublicationThe use of acoustic cavitation in advanced oxidation processes (AOPs) is a promising trend in research for treatment of industrial effluents. The paper presents the results of investigations on the use of acoustic cavitation aided by additional oxidation processes (ozonation/H2O2 oxidation/Peroxone/UV-C) for the treatment of effluents from the production of bitumens. Under these conditions, the total contaminant load, expressed...
-
Laser-assisted approach for improved performance of Au-Ti based glucose sensing electrodes
PublicationThis paper focuses on the synthesis route and electrochemical properties of electrocatalytic material based on gold nanoparticles (NPs) embedded in a structured titanium template obtained via optimized anodization, chemical etching and laser processing. SEM inspection reveals the presence of Au NPs (60–90 nm in diameter) sited in the titanium foil cavities. Performed electrochemical measurements enable nomination of the set of working...
-
NOx Photooxidation over Different Noble Metals Modified TiO2
PublicationWe compared the activity enhancement effect of noble metal deposited on TiO2 in photocatalytic nitrogen oxides oxidation. Titanium dioxide was decorated with Ag, Au, Pt or Pd in the sol-gel process. Synthesized catalysts were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller measurement (BET), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX)....
-
Hydrogen Embrittlement and Oxide Layer E ect in the Cathodically Charged Zircaloy-2
PublicationThe present paper is aimed at determining the less investigated effects of hydrogen uptake on the microstructure and the mechanical behavior of the oxidized Zircaloy-2 alloy. The specimens were oxidized and charged with hydrogen. The different oxidation temperatures and cathodic current densities were applied. The scanning electron microscopy, X-ray electron diffraction spectroscopy, hydrogen absorption assessment, tensile, and...
-
Characteristics of volatile organic compounds emission profiles from hot road bitumens
PublicationA procedure for the investigation and comparison of volatile organic compounds (VOCs) emission profiles to the atmosphere from road bitumens with various degrees of oxidation is proposed. The procedure makes use of headspace analysis and gas chromatography with universal as well as selective detection, including gas chromatography–mass spectrometry (GC–MS). The studies revealed that so-called vacuum residue, which is the main component...
-
Influence of the boron doping level on the electrochemical oxidation of raw landfill leachates: advanced pre-treatment prior to the biological nitrogen removal
PublicationThe electrochemical oxidative treatment of landfill leachates (LLs) containing high amounts of ammonia nitrogen and organic matter was used as a promising method, prior to biological processes, to achieve the final effluent quality that would be acceptable by current regulations. The deposited boron-doped diamond electrodes (BDDs) with different boron doping concentrations (10000, 5000 and 500 ppm of B) were applied as anodes....
-
Polaron hopping conduction in manganese borosilicate glass
PublicationA study on a novel material - manganese borosilicate glass without alkali metals, was reported. It was found that the obtained samples containing high amount of manganese oxide (60MnO–xSiO2–(40 − x)B2O3, x = 5, 10, 15, 20 and 30 mol%) were amorphous and homogeneous. XPS measurements showed that most of manganese ions are at oxidation level of Mn2 + ions and the mean oxidation level slightly moves toward higher value, with increasing...
-
Enhanced Photoelectrocatalytical Performance of Inorganic-Inorganic Hybrid Consisting BiVO4, V2O5, and Cobalt Hexacyanocobaltate as a Perspective Photoanode for Water Splitting
PublicationThin layers of BiVO4/V2O5 were prepared on FTO substrates using pulsed laser deposition technique. The method of cobalt hexacyanocobaltate (Cohcc) synthesis on the BiVO4/V2O5 photoanodes consists of cobalt deposition followed by electrochemical oxidation of metallic Co in K3[Co(CN)6] aqueous electrolyte. The modified electrodes were tested as photoanodes for water oxidation under simulated sunlight irradiation. Deposited films...
-
Effect of gelation and storage conditions on the oxidative stability of microemulsion and nanoemulsion delivery systems
PublicationIncreased interest in the use of microemulsion and nanoemulsion delivery systems for medical, cosmetic and food purposes, promotes the development of research on their physical and chemical stability, and the safety of use. Here, we have for the first time evaluated the oxidative stability of linseed oil dispersed in the microemulsion, nanoemulsion, and their gelled systems, stored under different conditions, and compared to the...
-
Application of persulfate-based oxidation processes to address diverse sustainability challenges: A critical review
PublicationOver the past years, persulfate (PS) is widely applied due to their high versatility and efficacy in decontamination and sterilization. While treatment of organic chemicals, remediation of soil and groundwater, sludge treatment, disinfection on pathogen microorganisms have been covered by most published reviews, there are no comprehensive and specific reviews on its application to address diverse sustainability challenges, including...
-
Telomere uncapping by common oxidative guanine lesions: Insights from atomistic models
PublicationOxidative damage to DNA is widely known to contribute to aging and disease. This relationship has been extensively studied for telomeres – structures that cap chromosome ends – due to their role in cell proliferation and senescence, and exceptional susceptibility to oxidation. Indeed, the repetitive telomeric DNA sequence contains the 5′-GGG-3′ motif that has the lowest ionization potential of all trinucleotides. Accordingly, experiments...
-
Morphology and properties of nanotubular oxide layer on the Ti13Zr13Nb alloy
PublicationThe Ti13Zr13Nb alloy in solid and porous form was oxidised. The constant voltage 20 V, oxidation time 0.5 and 1 h, and 1 M H3PO4 (orthophosphoric acid) with addition of HF (hydrofluoric acid) as a test solution were applied. SEM (Scanning Electron Microscope) examinations of surface, EDS (Energy Dispersive X-ray Spectroscopy) chemical analysis, nanohardness and nano-scratch tests, and corrosion potentiokinetic tests at various...
-
Ball milling treatment of Mn3O4 regulates electron transfer pathway for peroxymonosulfate activation
PublicationHeterogeneous metal catalysts have attracted considerable interest in advanced oxidation processes (AOPs) for wastewater treatment by activating peroxymonosulfate (PMS). However, it remains challenging to the rational design of efficient reaction pathway for high-performance contaminants removal by regulating the inherent structure of metal oxides. Herein, a high-energy ball milling method was employed to modulate the electronic...
-
S-scheme heterojunction Bi2O3-ZnO/Bentonite clay composite with enhanced photocatalytic performance
PublicationThe industrial waste water is always a bottleneck problem in the modern civilization of the present era. In a quest to develop effective methods for the elimination of lethal pollutants from the waste water and water remediation, this work is focused on the development of a rapid and proficient approach for preparing supported binary metal oxide catalyst for photocatalytic advance oxidation process used in waste water treatment...
-
Closing the loop: Upcycling secondary waste materials into nanoarchitectured carbon composites for the electrochemical degradation of pharmaceuticals
PublicationIn this study, we demonstrated the application of electrochemical oxidation as a safer and cleaner technology for minimizing the impact of pharmaceuticals in wastewaters, simultaneously mediated by upcycled secondary waste materials (SWMs)-derived electrodes, to further reduce their environmental impact. The modularity, scalability, ease of operation and reliability make electrochemical oxidation an ideal process for the destruction...
-
Oxidation kinetics and electrical properties of oxide scales formed under exposure to air and Ar–H2-H2O atmospheres on the Crofer 22 H ferritic steel for high-temperature applications such as interconnects in solid oxide cell stacks
PublicationA 100 h isothermal oxidation kinetics study for Crofer 22H was conducted in air and the Ar–H2-H2O gas mixture (p(H2)/p(H2O) = 94/6) in the range of 973–1123 K. The parabolic rate constant was independent of oxygen partial pressure in the range from 6.2 × 10−24 to 0.21 atm at 1023 and 1073 K, while at 973 and 1123 K it was higher in air than in Ar–H2-H2O. The scales consisted of Cr2O3 and manganese chromium spinel with an Mn:Cr...
-
High temperature corrosion resistance of porous hastelloy alloy
PublicationTo further understand the suitability of Ni-Cr-base alloy for solid oxide fuel cell (SOFC), a commercial Ni-Cr-Fe-Mo alloy, Hastelloy X was selected and evaluated for oxidation behaviour under high temperature conditions. HastelloyX was chosen due to its unusual resistance to oxidizing, reducing and neutral atmospheres. For long term stability of metal supported fuel cell, the corrosion resistance plays a vital role and must be...
-
Ti-Fe2O3/In2O3 as photoactive material: The role of the substrate in photoelectrochemical water oxidation
PublicationThe layers of Ti-Fe2O3/In2O3 were prepared on the different substrates using hydrothermal method: Ti/TiO2 nanotubes, Ti foil, FTO and FTO/TiO2. Materials were characterized using scanning electron microscopy, XRD, Raman, UV-Vis, and X-ray photoelectron spectroscopy and tested as photoanodes for water oxidation under illumination. The formation of heterojunction on the TiO2 nanotubes increases photocurrent of water oxidation at...
-
Protective properties of Al2O3 + TiO2 coating produced by the electrostatic spray deposition method
PublicationMechanical resistance of Al2O3 + TiO2 nanocomposite ceramic coating deposited by electrostatic spray deposition method onto X10CrAlSi18 steel to thermal and slurry tests was investigated. The coating was produced from colloidal suspension of TiO2 nanoparticles dispersed in 3 wt% solution of Al2(NO3)3, as Al2O3 precursor, in ethanol. TiO2 nanoparticles of two sizes, 15 nm and 32 nm, were used in the experiments. After deposition,...
-
Physicochemical properties of Mn1.45Co1.45Cu0.1O4 spinel coating deposited on the Crofer 22 H ferritic steel and exposed to high-temperature oxidation under thermal cycling conditions
PublicationThe Crofer 22 H ferritic steel substrate was coated with an Mn1.45Co1.45Cu0.1O4 spinel by means of electrophoresis. After high-temperature oxidation under thermal cycling conditions, the physicochemical properties of the obtained system were evaluated. During 48-h cycles that involved heating the samples up to temperatures of either 750 or 800 °C, the oxidation kinetics of both coated and unmodified steel approximately obeyed...
-
Heterogeneous oxidation of highly boron-doped diamond electrodes and its influence on the surface distribution of electrochemical activity
PublicationThe electrochemical active surface area (EASA) of polycrystalline boron-doped diamond (BDD) electrodes is heterogeneous and can be affected by numerous factors. There is a strong need for proper consideration of BDD heterogeneity in order to improve this material's range of application in electrochemistry. Localized changes in surface termination due to the influence of oxidation agent result in increased surface resistance. The...
-
High-Temperature Oxidation of Heavy Boron-Doped Diamond Electrodes: Microstructural and Electrochemical Performance Modification
PublicationIn this work, we reveal in detail the effects of high-temperature treatment in air at 600 °C on the microstructure as well as the physico-chemical and electrochemical properties of boron-doped diamond (BDD) electrodes. The thermal treatment of freshly grown BDD electrodes was applied, resulting in permanent structural modifications of surface depending on the exposure time. High temperature affects material corrosion, inducing...
-
The effect of UV-C irradiation on lipids and selected biologically active compounds in human milk
PublicationThe effect of UV-C irradiation of human milk on lipid oxidation, content of antioxidants (vitamin C and catalase, CAT) and bactericidal compounds (lysozyme), as well as the total antioxidant capacity (TAC), of the breast milk was investigated. In parallel, the extent of inactivation of some bacteria was also determined. UV-C at doses from 85 to 740 J L−1 caused total inactivation of Escherichia coli and Staphylococcus aureus, but...
-
Production and Properties of the Porous Layer Obtained by the Electrochemical Method on the Surface of Austenitic Steel
Publication: The growing demand for implants has seen increasing interest in the introduction of new technologies and surface modification methods of metal biomaterials. This research aimed to produce and characterize a porous layer grown on austenitic stainless steel 316L, obtained via the anodization process near the micro-arc oxidation, i.e., low voltage micro-arc oxidation (LVMAO). The discussed layer significantly influences the properties...
-
Anisotropic optical properties of few-layer black phosphorus coatings: from fundamental insights to opto-electrochemical sensor design
PublicationFew-layer black phosphorus (FLBP) is characterised by a tuneable bandgap, high carrier mobility and anisotropic optical properties. It therefore has the potential to find applications in electronics and photonics. FLBP oxidizes upon exposure to air, limiting its utility in devices and components. To address this issue, the thesis introduces methods and tools developed for studying FLBP's optical parameters, with a particular emphasis...
-
How the Dimensions of Plant Filler Particles Affect the Oxidation-Resistant Characteristics of Polyethylene-Based Composite Materials
PublicationThis study analyzed the possibility of using plant-originated waste materials (black and green tea dust) as functional polyethylene fillers. The dependence between the size of the filler particles and their antioxidant potential is discussed. Six fractions were selected: below 50 µm, 50–100 µm, 100–200 µm, 200–400 µm, 400–630 µm and 630–800 µm. Significant differences between the effect of particle size and the antioxidant properties...
-
Synergistic effects of hybrid advanced oxidation processes (AOPs) based on hydrodynamic cavitation phenomenon – A review
PublicationHigh-performance water treatment systems based on cavitational processes have received an increasing interest of scientific community in the past few decades. Numerous studies indicated the advantageous application of hydrodynamic cavitation as an alternative, reagent-free treatment method of various pollutants in water. Both approaches were proved as an effective method to achieve mineralization of many organic contaminants as...
-
Cavitation-Based Processes for Water and Wastewater Treatment
PublicationCavitation based on advanced oxidation processes (Cav-AOPs) is interesting alternatives for already implemented wastewater treatment technologies. Destructive and strongly undesirable phenomena in the industry, i.e., cavitation, revealed to be useful in a positive manner as a source of energy for chemical reactions. During the implosion of cavitation bubbles, focused energy and resulting high temperature and pressure allows to...
-
Applications of Alkanethiols in Organic Synthesis
PublicationThis manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of alkanethiols. Thiols can be converted into sulfonic, sulfinic, sulfenic acid and their derivatives, sulfides, disulfides, polysulfides, sulfonium salts, and thiiranes, etc. These transformations are accomplished by nucleophilic displacement or addition, oxidation, condensation, or coupling reactions involving thiol...
-
Electrocatalytic oxidation of methanol, ethylene glycol and glycerine in alkaline media on TiO2 nanotubes decorated with AuCu nanoparticles for an application in fuel cells
PublicationIn this work, we present the catalytic and photocatalytic activity of AuCu nanostructures obtained on TiO2 nanotubes toward methanol, ethylene glycol and glycerine oxidation. The electrode material is prepared by anodization of Ti foil, thin AuCu layer sputtering and rapid thermal treatment under argon atmosphere. Scanning electron microscopy images confirmed the presence of ordered tubular architecture of TiO2 as well as nanoparticles...
-
Encapsulation of Cs3Bi2Br9 perovskite photocatalyst with polythiophene for prolonged activity in oxidizing and humid environment
PublicationDespite their growing popularity in modern technology, halide perovskites suffer from susceptibility to oxidation, limiting their applications. Our aim was to enhance Cs3Bi2Br9 perovskite's performance in humid environments through polythiophene encapsulation. This extended its lifespan while preserving photocatalytic abilities, as demonstrated in toluene decomposition experiments. We confirmed the stability of Cs3Bi2Br9 encapsulated...