Filters
total: 4509
displaying 1000 best results Help
Search results for: multi-phase machine
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublicationThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...
-
TensorHive: Management of Exclusive GPU Access for Distributed Machine Learning Workloads
PublicationTensorHive is a tool for organizing work of research and engineering teams that use servers with GPUs for machine learning workloads. In a comprehensive web interface, it supports reservation of GPUs for exclusive usage, hardware monitoring, as well as configuring, executing and queuing distributed computational jobs. Focusing on easy installation and simple configuration, the tool automatically detects the available computing...
-
The conception of energetic investigations of the multisymptom fatigue of the simple mechanical systems' constructional materials
PublicationThe article presents the basic assumptions of the research project aimed, as the main scientific purpose, an identification of the slow-changeable energy processes surrounding the high-cycle fatigue of constructional materials within the plain mechanical system, especially the marine one, for diagnostic purposes. There is foreseen an application of alternative diagnostic methods based on energetic observations of the multi-symptom,...
-
Genetic Algorithm Approach for Gains Selection of Induction Machine Extended Speed Observer
PublicationThe subject of this paper is gains selection of an extended induction machine speed observer. A high number of gains makes manual gains selection difficult and due to nonlinear equations of the observer, well-known methods of gains selection for linear systems cannot be applied. A method based on genetic algorithms has been proposed instead. Such an approach requires multiple fitness function calls; therefore, using a quality index...
-
A pilot study to assess manufacturing processes using selected point measures of vibroacoustic signals generated on a multitasking machine
PublicationThe article presents the method for the evaluation of selected manufacturing processes using the analysis of vibration and sound signals. This method is based on the use of sensors installed outside the machining zone, allowing to be used quickly and reliably in real production conditions. The article contains a developed measurement methodology based on the specific location of microphones and vibration transducers mounted on...
-
Rapid Multi-Criterial Antenna Optimization by Means of Pareto Front Triangulation and Interpolative Design Predictors
PublicationModern antenna systems are designed to meet stringent performance requirements pertinent to both their electrical and field properties. The objectives typically stay in conflict with each other. As the simultaneous improvement of all performance parameters is rarely possible, compromise solutions have to be sought. The most comprehensive information about available design trade-offs can be obtained through multi-objective optimization...
-
EMPIRICAL ASSESMENT OF THE MAIN DRIVING SYSTEM OF THE CIRCULAR SAWING MACHINE
PublicationThe producers of panel saws tend to improve sawing accuracy and minimise a level of vibrations, to increase their competitiveness at the market. Mechanical vibrations in the main saw driving system, which level depend on a plethora independent factors, may really affect sawing accuracy and general machine tool vibrations. The objective of the research was to explore vibrations signals of the main spindle system, and to extract...
-
Sampling-based novel heterogeneous multi-layer stacking ensemble method for telecom customer churn prediction
PublicationIn recent times, customer churn has become one of the most significant issues in business-oriented sectors with telecommunication being no exception. Maintaining current customers is particularly valuable due to the high degree of rivalry among telecommunication companies and the costs of acquiring new ones. The early prediction of churned customers may help telecommunication companies to identify the causes of churn and design...
-
Broken rotor bar impact on sensorless control of induction machine
PublicationThe aim of the research is analysis of the sensorless control system of induction machine with broken rotor for diagnostic purposes. Increasing popularity of sensorless controlled variable speed drives requires research in area of reliability, range of stable operation, fault symptoms and application of diagnosis methods. T transformation (Cunha et al.,2003) used for conversion of instantaneous rotor currents electrical circuit...
-
Insights in microbiotechnology: 2022.Editorial
PublicationThis Research Topic serves as an invaluable resource for readers interested in staying updated with the latest progress and developments in the field of microbiotechnology. It spotlights the innovative research conducted by up-and-coming experts in the field, specifically emphasizing the transforming abilities of microorganisms that greatly influence the scientific community. The advent of multi-omic technologies has revolutionized microbiotechnology,...
-
Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification
PublicationLiquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community...
-
Research on Tool Temperature Dependence on Lapping Grains Size
PublicationCommonly used as a finishing operation, lapping has been used for achieving ultra-high finishes and close tolerances between mating pieces. Its carried out by applying loose abrasive grains between work and lap surfaces, and causing a relative motion between them resulting in a finish of multi-directional lay. The grains activity (sliding and rolling) in the working gap causes not only the material removal but also the temperature...
-
Non-linear circuit model of a single doubly-fed induction machine formulated in natural axes for drive systems simulation purposes
PublicationMathematical modelling and a circuit model formulated in natural axes of a single doubly-fed induction machine, with the account of magnetic circuit nonlinearity are presented in the paper. Derivation of the model differential equations was based on Lagrange's energy method. State functions of magnetic elements in the model are non-linear and depend on all currents flowing in the machine windings and on the angle of rotor position....
-
Nonadaptive estimation of the rotor speed in an adaptive full order observer of induction machine
PublicationThe article proposes a new method of reproducing the angular speed of the rotor of a cage induction machine designed for speed observers based on the adaptive method. In the proposed solution, the value of the angular speed of the rotor is not determined by the classical law of adaptation using the integrator only by an algebraic relationship. Theoretical considerations were confirmed by simulation and experimental tests.
-
Przydział narzędzi obróbkowych a efektywność szeregowania zadań produkcyjnych
PublicationThe paper addresses issues concerning the analysis of tool flow within a multi-machine machining cell, designated to small batch manufacturing a definite spectrum of prismatic parts. The approach utilises a method for job and tool allocation to work centres with limited number of machines and capacity of tool resources, based on the analysis of formalised relations: job - tool sets required. Selected allocation strategies are considered...
-
Machine learning applied to acoustic-based road traffic monitoring
PublicationThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Machine learning applied to acoustic-based road traffic monitoring
PublicationThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
“Shadow” vs. “Phase 3D” method within endoscopic examinations of marine engines
PublicationA visual investigation of surfaces creating internal, working spaces of marine combustion engines by means of specialized view-finders so called endoscopes is at present almost a basic method of technical diag-nostics. The surface structure of constructional material is visible during investigations like through the magnifying glass (usually with a precisely determined magnification), which makes possible a detection, recognition...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublicationCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
Analyzing the relationship between sound, color, and emotion based on subjective and machine-learning approaches
PublicationThe aim of the research is to analyze the relationship between sound, color, and emotion. For this purpose, a survey application was prepared, enabling the assignment of a color to a given speaker’s/singer’s voice recordings. Subjective tests were then conducted, enabling the respondents to assign colors to voice/singing samples. In addition, a database of voice/singing recordings of people speaking in a natural way and with expressed...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
A novel hybrid adaptive framework for support vector machine-based reliability analysis: A comparative study
PublicationThis study presents an innovative hybrid Adaptive Support Vector Machine - Monte Carlo Simulation (ASVM-MCS) framework for reliability analysis in complex engineering structures. These structures often involve highly nonlinear implicit functions, making traditional gradient-based first or second order reliability algorithms and Monte Carlo Simulation (MCS) time-consuming. The application of surrogate models has proven effective...
-
Muhammad Usman PhD
PeopleMuhammad Usman is a researcher at the Gdansk University of Technology, currently working on the BE-Light project focused on face skin analysis using multimodal imaging and machine learning methods. He previously worked as a Hardware Test Engineer at Apple Inc., specializing in the rigorous testing and validation of electronic systems, ensuring reliability and performance. He holds a Master of Science in Automation and Control from...
-
Time travel without paradoxes: Ring resonator as a universal paradigm for looped quantum evolutions
PublicationA ring resonator involves a scattering process where a part of the output is fed again into the input. The same formal structure is encountered in the problem of time travel in a neighborhood of a closed timelike curve (CTC). We know how to describe quantum optics of ring resonators, and the resulting description agrees with experiment. We can apply the same formal strategy to any looped quantum evolution, in particular to the...
-
Comparative Study of Machining Technology Selection to Manufacture Large-Size Components of Offshore Constructions
PublicationThe focus of this paper is on process planning for large parts manufacture in systems of definite process capabilities, involving the use of multi-axis machining centres. The analysis of machining heavy mechanical components used in off-shore constructions has been carried out. Setup concepts applied and operation sequences determined in related process plans underwent studies. The paper presents in particular a reasoning approach...
-
Assessment Of the Relevance of Best Practices in The Development of Medical R&D Projects Based on Machine Learning
PublicationMachine learning has emerged as a fundamental tool for numerous endeavors within health informatics, bioinformatics, and medicine. However, novices among biomedical researchers and IT developers frequently lack the requisite experience to effectively execute a machine learning project, thereby increasing the likelihood of adopting erroneous practices that may result in common pitfalls or overly optimistic predictions. The paper...
-
Is it too late now to say we’re sorry? Examining anxiety contagion and crisis communication strategies using machine learning
PublicationIn this paper, we explore the role of perceived emotions and crisis communication strategies via organizational computer-mediated communication in predicting public anxiety, the default crisis emotion. We use a machine-learning approach to detect and predict anxiety scores in organizational crisis announcements on social media and the public’s responses to these posts. We also control for emotional and language tones in organizational...
-
Assessing the attractiveness of human face based on machine learning
PublicationThe attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...
-
The application of a photopolymer material for the manufacture of machine elements using rapid prototyping techniques
PublicationThe paper discusses the application of polymer resin for 3D printing. The first section focuses on rapid prototyping technique and properties of the photopolymer, used as input material in the manufacture of machine components. Second part of the article was devoted to exemplary 3-D-printed elements for incorporation in machines. The article also contains detailed description of problems encountered in implementation of the selected...
-
How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image
PublicationThis study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation...
-
Quantumness in Diagnostics of Marine Internal Combustion Engines and Other Ship Power Plant Machines
PublicationThe article provides proof that the diagnostics of marine internal combustion engines and other ship power plant machines should take into account the randomness and unpredictability of certain events, such as wear, damage, the variations of mechanical and thermal loads, etc., which take place during machine operation. In the article, the energy E, like the other forms (methods) that it can be converted into (heat and work), is...
-
Dangerous sound event recognition using Support Vector Machine classifiers
PublicationA method of recognizing events connected to danger based on their acoustic representation through Support Vector Machine classification is presented. The method proposed is particularly useful in an automatic surveillance system. The set of 28 parameters used in the classifier consists of dedicated parameters and MPEG-7 features. Methods for parameter calculation are presented, as well as a design of SVM model used for classification....
-
Influence of dispersed phase content on the mechanical properties of electroless nanocomposite Ni-P/Si3N4 and hybrid Ni-P/Si3N4/graphite layers deposited on the AW-7075 alloy.
PublicationThe article presents the results of mechanical testing of Ni-P/Si3N4 nanocomposite and hybrid Ni-P/Si3N4/graphite coatings deposited on AW-7075 aluminum alloy using the chemical reduction method. In terms of mechanical testing, microhardness was measured, and surface roughness and adhesion of the coatings to the aluminum substrate were determined using the “scratch test” method. The surface morphology of the deposited layers was...
-
Model-Based Adaptive Machine Learning Approach in Concrete Mix Design
PublicationConcrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...
-
Evaluation of Machine Learning Methods for the Experimental Classification and Clustering of Higher Education Institutions
PublicationHigher education institutions have a big impact on the future of skills supplied on the labour market. It means that depending on the changes in labour market, higher education institutions are making changes to fields of study or adding new ones to fulfil the demand on labour market. The significant changes on labour market caused by digital transformation, resulted in new jobs and new skills. Because of the necessity of computer...
-
Drivetrain of a Wind Turbine
PublicationIn a most commonly met design of a wind turbine the power is transmitted from the rotor to the generator through the system composed of the main shaft, friction connection, multiplying gearbox and a flexible coupling. The driving system comprises almost a complete set of the machine elements being described during machine design lectures and can serve as an interesting illustration...
-
Numerical and experimental investigation of guided ultrasonic wave propagation in non-uniform plates with structural phase variations
PublicationThe article presents the results of numerical and experimental investigations of guided wave propagation in aluminum plates with variable thickness. The shapes of plate surfaces have been specially designed and manufactured using a CNC milling machine. The shapes of the plates were defined by sinusoidal functions varying in phase shift, which forced the changes in thickness variability alongside the propagation path. The main aim...
-
Scientific research in the Department of Machine Design and Automotive Engineering
PublicationShort descriptions of various research subjects taken up at the Department of Machine Design and Automotive Engineering are included in the paper. The subjects cover a wide range of bearing systems and tribology research and the research on tires and road surfaces. A third field of activity is biomedical engineering – with the attempts to improve methods of modelling biological materials in FEM calculations. The Department has...
-
Induction machine behavioral modeling for prediction of EMI propagation.
PublicationThis paper presents the results of wideband behavioral modeling of an induction machine (IM). The proposed solution enables modeling the IM differential- and common-mode impedance for a frequency range from 1 kHz to 10 MHz. Methods of parameter extraction are derived from the measured IM impedances. The developed models of 1.5 kW and 7.5 kW induction machines are designed using the Saber Sketch scheme editor and simulated in the...
-
Automatic music genre classification based on musical instrument track separation / Automatyczna klasyfikacja gatunku muzycznego wykorzystująca algorytm separacji dźwięku instrumentó muzycznych
PublicationThe aim of this article is to investigate whether separating music tracks at the pre-processing phase and extending feature vector by parameters related to the specific musical instruments that are characteristic for the given musical genre allow for efficient automatic musical genre classification in case of database containing thousands of music excerpts and a dozen of genres. Results of extensive experiments show that the approach...
-
Nowa metoda obliczania rozpływu prądów zwarciowych w przewodach odgromowych linii wysokiego napięcia
PublicationReferat przedstawia nowatorską metodę obliczania wartości prądów płynących w przewodach odgromowych w czasie zwarć, pozwalającą na dobór przewodów odgromowych pod względem wytrzymałości cieplnej. Proponowana metoda charakteryzuje się większą dokładnością i większą uniwersalnością niż powszechnie stosowane metody, pozwalając tym samym na dobór przewodów odgromowych z mniejszym ryzykiem niepewności. Prezentowana metoda obliczeniowa...
-
Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy
PublicationBiochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand for sustainable energy. Efficient management systems are needed in order to exploit fully the potential of biochar. Modern machine learning (ML) techniques, and in particular ensemble approaches and explainable AI methods, are valuable for forecasting the properties and efficiency of biochar properly. Machine-learning-based forecasts,...
-
The methodology of design of axial clearances compensation unit in hydraulic satellite displacement machine and their experimental verification
PublicationA new methodology of calculating the dimensions of the axial clearance compensation unit in the hydraulic satellite displacement machine is described in this paper. The methods of shaping the compensation unit were also proposed and described. These methods were used to calculate the geometrical dimensions of the compensation field in an innovative prototype of a satellite hydraulic motor. This motor is characterized by the fact...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublicationNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
Leveraging spatio-temporal features for joint deblurring and segmentation of instruments in dental video microscopy
PublicationIn dentistry, microscopes have become indispensable optical devices for high-quality treatment and micro-invasive surgery, especially in the field of endodontics. Recent machine vision advances enable more advanced, real-time applications including but not limited to dental video deblurring and workflow analysis through relevant metadata obtained by instrument motion trajectories. To this end, the proposed work addresses dental...
-
Z type Observer Backstepping For Induction Machines
PublicationThis paper contains a relatively new synthesis method for non-linear objects, named backstepping. This method can be used to obtain the observer structure. The paper presents the structure of the speed observer which is a new proposition of observer backstepping with additional state variables marked Z. The rotor speed can be estimated in three different ways. The first is based on the adaptive approach, the second on the nonadaptive...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublicationA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
Support Vector Machine Applied to Road Traffic Event Classification
PublicationThe aim of this paper is to present results of road traffic event signal recognition. First, several types of systems for road traffic monitoring, including Intelligent Transport System (ITS) are shortly described. Then, assumptions of creating a database of vehicle signals recorded in different weather and road conditions are outlined. Registered signals were edited as single vehicle pass by. Using the Matlab-based application...
-
Hybrid Processing by Turning and Burnishing of Machine Components
PublicationThe paper presents a method of hybrid manufacturing process of long 5 shafts and deep holes by simultaneous turning and burnishing method. The tech- 6 nological results of the research focus on the influence of the basic technological 7 parameters of this process on the surface roughness of piston rods of hydraulic 8 cylinders. Research results are presented in the graphs as well as mathematical 9 formula. Set of samples were made...