Search results for: MODIFICATION OF GRAPHENE OXIDE COATINGS
-
The determinants of morphology and properties of the nanohydroxyapatite coating deposited on the Ti13Zr13Nb alloy by electrophoretic techniqe
PublicationThe titanium and its alloys belong at present to the most preferred and commonly applied biomaterials for load- bearing implants. The surfaces of biomaterials are subjected to modification, including the hydroxyapatite coatings deposited in order to ensure corrosion resistance and better joining between an implant and a bone through the possibility of ingrowth bone into the coating. In this paper, the morphology and properties...
-
Evaluating Gelatin-Based Films with Graphene Nanoparticles for Wound Healing Applications
PublicationIn this study, gelatin-based films containing graphene nanoparticles were obtained. Nanoparticles were taken from four chosen commercial graphene nanoplatelets with different surface areas, such as 150 m2/g, 300 m2/g, 500 m2/g, and 750 m2/g, obtained in different conditions. Their morphology was observed using SEM with STEM mode; porosity, Raman spectra and elemental analysis were checked; and biological properties, such as hemolysis...
-
Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results
PublicationAlthough titaniumand its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone....
-
Self-Organized Nanotubular Oxide Layers on Ti and Ti Alloys
PublicationTo improve bioactivity of titanium and titanium, the implant surface modification by formation of self-organized TiO2 nanotube arrays with electrochemical techniques is presented. The influence of electrolyte composition and deposition parameters during anodization is characterized. The enhancement of phosphates deposition by titanium nanotubular structure is discussed. The calcium phosphate ceramics is shown to be uniformly deposited...
-
Effective yttrium based coating for steel interconnects of solid oxide cells: Corrosion evaluation in steam-hydrogen atmosphere
PublicationThis work describes manufacture, analysis and test of a new well conducting corrosion-protection coating that can be applied on steel types with high chromium content. Electrolytic deposition of yttrium salts is used to form thin (<100 nm) coatings on both flat steel sheets (material: Crofer 22 APU) and its properties are proven on woven wire-meshes (materials from two different sources: SUS316 and SUS316L). The oxide scale on...
-
On the Possibility of Improving the Oxidation Resistance of High-Chromium Ferritic Stainless Steel Using Reactive Element Oxide Nanoparticles
PublicationHigh-chromium ferritic steels are current the only viable candidates for cheap interconnect materials for application in high-temperature solid oxide fuel and electrolyzer cells (HT-SOFCs/SOECs). The durability and operating characteristics of interconnects manufactured using these materials may be improved significantly by applying a protective-conducting MoCo2O4 coating and depositing an intermediate layer consisting of nanoparticles...
-
Influence of Ultrasound on the Characteristics of CaP Coatings Generated Via the Micro-arc Oxidation Process in Relation to Biomedical Engineering
PublicationOver the past decade, bone tissue engineering has been at the core of attention because of an increasing number of implant surgeries. The purpose of this study was to obtain coatings on titanium (Ti) implants with improved properties in terms of biomedical applications and to investigate the effect of ultrasound (US) on these properties during the micro-arc oxidation (MAO) process. The influence of various process parameters, such...
-
Fabrication, Microstructure and High Temperature Corrosion Resistance of Porous Alloys for Solid Oxide Fuel Cells
PublicationPorous alloys find use in modern Solid Oxide Fuel Cells as the supporting structures. As they are exposed to high temperatures (> 500°C) an oxide scale forms on their surface due to high temperature corrosion phenomena. Since the ratio between the surface area and volume is much higher than for planar samples, formation of the oxide can lead to a breakaway oxidation after relatively short times. Therefore corrosion properties of...
-
Warstwy funkcjonalne tlenkowych ogniw paliwowych
PublicationIn this paper, results describing current research on solid oxide fuel cells conducted at Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics are presented. The results are related to three kinds of functional layers: a thin cathode layer between the porous cathode layer and the electrolyte to improve the cathode performance, a buffer layer between the electrolyte and the cathode to slow...
-
Nanotubular Oxide Layer Formed on Helix Surfaces of Dental Screw Implants
PublicationSurface modification is used to extend the life of implants. To increase the corrosion resistance and improve the biocompatibility of metal implant materials, oxidation of the Ti-13Nb- 13Zr titanium alloy was used. The samples used for the research had the shape of a helix with a metric thread, with their geometry imitating a dental implant. The oxide layer was produced by a standard electrochemical method in an environment of...
-
Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods
PublicationNowadays, titanium and its alloys are widely used materials in implantology. Nevertheless, the greatest challenge is still its appropriate surface treatment in order to induce optimal properties, which facilitates formation of a permanent bond between the implant and human tissue. The use of electrochemical treatment such as anodic oxidation or plasma electrolytic oxidation allows for the production of porous coating that mimics...
-
Growth and Isolation of Large Area Boron‐Doped Nanocrystalline Diamond Sheets: A Route toward Diamond‐on‐Graphene Heterojunction
PublicationMany material device applications would benefit from thin diamond coatings, but current growth techniques, such as chemical vapor deposition (CVD) or atomic layer deposition require high substrate and gas‐phase temperatures that would destroy the device being coated. The development of freestanding, thin boron‐doped diamond nanosheets grown on tantalum foil substrates via microwave plasma‐assisted CVD is reported. These diamond...
-
Influence of Surface Modification of Titanium and Its Alloys for Medical Implants on Their Corrosion Behavior
PublicationTitanium and its alloys are often used for long-term implants after their surface treatment. Such surface modification is usually performed to improve biological properties but seldom to increase corrosion resistance. This paper presents research results performed on such metallic materials modified by a variety of techniques: direct voltage anodic oxidation in the presence of fluorides, micro-arc oxidation (MAO), pulse laser treatment,...
-
Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application
PublicationUtilizing the electrical properties of polymer nanocomposites is an important strategy to develop high performance solvent sensors. Here we report the synergistic effect of multi walled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) in regulating the sensitivity of the naturally occurring elastomer, natural rubber (NR). Composites were fabricated by dispersing CNTs alone and together with exfoliated RGO sheets (thermally...
-
PARAMETERS OF THE ELECTROPHORETIC DEPOSITION PROCESS AND ITS INFLUENCE ON THE MORPHOLOGY OF HYDROXYAPATITE COATINGS. REVIEW
PublicationMetallic materials intended for bone implants should exhibit not only appropriate mechanical properties, but also high biocompatibility. The surface treatment modifications, for example acidic treatment, laser treatment, ion implantation and deposition of highly biocompatible coatings, are practiced. One of the most popular methods of surface modification is to deposit hydroxyapatite (HAp) coatings. HAp naturally occurs in human...
-
THE ROLE OF THIN FUNCTIONAL LAYERS IN SOLID OXIDE FUEL CELLS
PublicationWidespread commercialization of solid oxide fuel cells requires lowering its cost. It is generally accepted that to lower the cost of solid oxide fuel cells it is necessary to use metal alloys as interconnectors and, consequently, lower its operating temperature to slow down interconnectors degradation. As a result the area specific resistance of the cathodes should be lowered to sustain the performance of the cells. In order to...
-
Mn-Co spinel coatings on Crofer 22 APU by electrophoretic deposition: Up scaling, performance in SOFC stack at 850 °C and compositional modifications
PublicationCeramic coatings for metallic interconnects play a key role in limiting corrosion and chromium evaporation in solid oxide cells. This study presents the upscaling of the electrophoretic deposition (EPD) technique to process Mn-Co spinels on real-dimension Crofer 22 APU interconnects and the test in a SOFC stack. Area specific resistance of long-term test conducted for 5000 h at 850 °C demonstrated that two-steps sintering has a...
-
Structural and Transportation Properties of Strontium Titanate Composites with Ion Conductive Oxides
PublicationThis paper has been written based on the author’s doctoral dissertation “Structural and transportation properties of strontium and titanate composites with ion conductive oxides”, prepared under the supervision of Prof. Dr. Hab. Eng. Bogusław Kusz at the Department of Solid State Physics of Gdańsk University of Technology. It reports the idea of the thesis and conclusions from the study. Niobium doped strontium titanate (Sr(Ti,Nb)O3)...
-
Three-component NiO/Fe3O4/rGO nanostructure as an electrode material towards supercapacitor and alcohol electrooxidation
PublicationA nanocomposite made of nickel oxide and iron oxide (NiO/Fe3O4) and its hybrid with reduced graphene oxide (rGO) as a conductive substrate with a highly functional surface (NiO/Fe3O4/rGO) was synthesized using a simple hydrothermal approach. This study addresses the challenge of developing efficient materials for energy storage and alcohol fuel cells. After confirming the synthesis through structural analysis, the potential of...
-
Effects of Micro-Arc Oxidation Process Parameters on Characteristics of Calcium-Phosphate Containing Oxide Layers on the Selective Laser Melted Ti13Zr13Nb Alloy
PublicationTitania-based films on selective laser melted Ti13Zr13Nb have been formed by micro-arc oxidation (MAO) at different process parameters (voltage, current, processing time) in order to evaluate the impact of MAO process parameters in calcium and phosphate (Ca + P) containing electrolyte on surface characteristic, early-stage bioactivity, nanomechanical properties, and adhesion between the oxide coatings and substrate. The surface...
-
Impedance evaluation of coatings from biobased material
PublicationThe authors propose a modification of sodium caseinate edible coating for foodstuff protection. The aim was to improve the film’s barrier properties. It was achieved by the addition of propolis, which is a natural, environmentally friendly product known from its intrinsic sealing action. In the next step, propolis-admixed sodium caseinate films were exposed to elevated temperature for 10 min. This approach was meant to improve...
-
Wear Resistance Enhancement of Al6061 Alloy Surface Layer by Laser Dispersed Carbide Powders
PublicationIn this paper, results of the experimental study on improving wear resistance in sliding friction of Al-based alloy are presented. The technique used involves the formation of a metal matrix composite (MMC) in the alloy surface layer by laser dispersion of carbide powders such as WC, TiC and SiC. For WC and TiC MMC surface coatings fabricated under conditions typical for most of the technologically relevant solid-state lasers (wavelength...
-
Ceria Based Protective Coatings for Steel Interconnects Prepared by Spray Pyrolysis
PublicationStainless steels can be used in solid oxide fuel/electrolysis stacks as interconnects. For successful long term operation they require protective coatings, that lower the corrosion rate and block chemical reactions between the interconnect and adjacent layers of the oxygen or the hydrogen electrode. One of the promising coating materials for the hydrogen side is ceria. Using standard sintering techniques, ceria sinters at around...
-
Poloxamer: A versatile tri-block copolymer for biomedical applications
PublicationPoloxamers, also called Pluronic, belong to a unique class of synthetic tri-block copolymers containing central hydrophobic chains of poly(propylene oxide) sandwiched between two hydrophilic chains of poly(ethylene oxide). Some chemical characteristics of poloxamers such as temperature-dependent self-assembly and thermo-reversible behavior along with biocompatibility and physiochemical properties make poloxamer-based biomaterials...
-
Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes
PublicationIn this work electrochemical performance of thin composite films consisted of poly(3,4-ethylenedioxythiophene) (PEDOT), graphene oxide (GOx) and oxidized multiwalled carbon nanotubes (oxMWCNTs) is investigated in various sulphates (Li2SO4, Na2SO4, K2SO4, MgSO4) and acidic (H2SO4) electrolytes. Capacitance values, rate capability and cycling stability achieved for the composite layers are correlated with the electrolytes’ properties...
-
Elucidating charge transfer process and enhancing electrochemical performance of laser-induced graphene via surface engineering with sustainable hydrogel membranes: An electrochemist's perspective
PublicationLaser-induced graphene (LIG) has emerged as a promising solvent-free strategy for producing highly porous, 3D graphene structures, particularly for electrochemical applications. However, the unique character of LIG and hydrogel membrane (HM) coated LIG requires accounting for the specific conditions of its charge transfer process. This study investigates electron transfer kinetics and the electroactive surface area of LIG electrodes,...
-
Development of Microstructured Carbon Coatings by Substrate-Catalytic CVD
PublicationCarbon nanostructured films were synthesized by chemical vapor deposition (CVD) on H18 stainless steel (AISI 440C) sheets with an H2/CH4/N2 gas mixture at various substrate temperatures. During the synthesis, the iron and chromium oxide layer was formed between the steel and carbonaceous layer. The carbon films exhibited wall-like and spherical morphologies and structures, as characterized by scanning electron microscopy and Raman...
-
Recycled Polyurethane as a Second Phase in Thermoset Blends and Its Effect on Thermal Degradation Kinetics Studies
PublicationA new approach is introduced in the modification of thermosetting polymer by using different amount of polyurethane of waste origin. The post consumer polyurethane foam coatings are degraded using glycolysis process and the recycled product is further converted into new polyurethane. The blending of recycled polyurethane with epoxy exhibits transparency and produces nanostructures. The effective interaction between two polymers...
-
A critical review on electrospun membranes containing 2D materials for seawater desalination
PublicationElectrospun nanofibers are a cutting-edge class of membranes which have been applied in several molecular separations. These membranes can be well designed and tailored due to the versatility of the electrospinning process. Eminently, electrospun membranes, once implemented in membrane processes, are an alternative in removing salts and some other minerals from water, so-called desalination, for producing drinking water. Such membranes...
-
Electrically Conductive Carbon‐based (Bio)‐nanomaterials for Cardiac Tissue Engineering
PublicationA proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials...
-
Fiber-optic sensors based on microspheres with nanocoatings (Zastosowanie mikrosfer optycznych z cienkowarstwowymi pokryciami w czujnikach światłowodowych)
PublicationTemperature is one of the most important physical quantities. Temperature measurements are used in every field of life, especially electronics, electrical engineering, energy-related fields, including energy source and storage devices. The goal of this dissertation is to design and optimize the microsphere-based fiber-optic sensors construction for measurement of the sensor surrounding medium temperature, including selection of...
-
Titania Nanotubes/Hydroxyapatite Nanocomposites Produced with the Use of the Atomic Layer Deposition Technique: Estimation of Bioactivity and Nanomechanical Properties
PublicationTitanium dioxide nanotubes/hydroxyapatite nanocomposites were produced on a titanium alloy (Ti6Al4V/TNT/HA) and studied as a biocompatible coating for an implant surface modification. As a novel approach for this type of nanocomposite fabrication, the atomic layer deposition (ALD) method with an extremely low number of cycles was used to enrich titania nanotubes (TNT) with a very thin hydroxyapatite coating. X-ray diffraction (XRD)...
-
Tailoring a low-energy ball milled MnCo2O4 spinel catalyst to boost oxygen evolution reaction performance
PublicationThe development of cost-efficient oxygen evolution reaction (OER) catalysts is one of the most important tasks facing modern techniques for hydrogen production. In this work, for the first time, a low-energy ball milling process of MnCo2O4 (MCO) spinel powders, with a mechanical modification time exceeding 1 day was used. After 6 days of ball-milling, the obtained overpotential of the electrocatalyst reached the value of 375 mV...
-
Recent Advances in Polymer Nanocomposites: Unveiling the Frontier of Shape Memory and Self-Healing Properties—A Comprehensive Review
PublicationShape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, opening up new avenues for diverse applications. The...
-
New Trends in Sample Preparation Techniques for the Analysis of the Residues of Pharmaceuticals in Environmental Samples
PublicationPharmaceutical residues in the environment is a field of special interest due to the adverse effects to either human health or aquatic and soil environment. Pharmaceuticals have been already detected in underground, surface and wastewaters, soils, manure and sediments. The growing awareness of environmental pollution arising from human activity forces the need for their comprehensive determination. Environmental samples are complex...
-
Optical monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode
PublicationIn this work we discuss the application of optical fiber sensors based on lossy-mode resonance (LMR) phenomenon for real-time optical monitoring of electrochemical processes. The sensors were obtained by a reactive high power impulse magnetron sputtering of indium tin oxide (ITO) on a 2.5 cm-long core of polymer-clad silica fibers. The LMR effect made monitoring of changes in optical properties of both ITO and its surrounding medium...
-
Sorbents modified by deep eutectic solvents in microextraction techniques
PublicationIn recent years, considerable attention has been directed towards the employment of green solvents, specifically deep eutectic solvents (DES), in liquid phase microextraction techniques. However, comprehensive and organized knowledge regarding the modification of sorbent surface structures with DES remains limited. Therefore, this paper reviews the application of DES in modifying and improving the properties of sorbents for microextraction...
-
Mono- and bimetallic (Pt/Cu) titanium(IV) oxide photocatalysts. Physicochemical and photocatalytic data of magnetic nanocomposites’ shell
PublicationSurface modification of titania with noble and semi-noble metals resulted in significant enhancement of photocatalytic activity. Presented data, showing the photocatalytic properties of TiO2-M (where M is Pt and/or Cu) photocatalysts were further used as Fe3O4@SiO2/TiO2-M magnetic nanocomposites shells in "Mono- and bimetallic (Pt/Cu) titanium(IV) oxide core-shell photocatalysts with Vis light activity and magnetic separability"...
-
Effect of interconnect coating procedure on solid oxide fuel cell performance
PublicationChromium (Cr) species vaporizing from chromia-forming alloy interconnects is known as a source of degradation in solid oxide fuel cell (SOFC) stacks called “cathode poisoning”. (Mn,Co)3O4 spinel coatings offer good protection against Cr evaporation during operation. In this study, Crofer 22 APU steel interconnects were electrophoretically deposited in different mediums to obtain high packing of green coating layer. The optimized...
-
Marcin Wekwejt dr inż.
PeopleMarcin Wekwejt holds a bachelor’s degree in Biomedical Engineering (2016; J. and J. Śniadecki Bydgoszcz University of Technology & L. Rydygier Collegium Medicum), a master’s degree in Mechanical-Medical Engineering (2018; Gdańsk University of Technology & Gdańsk Medical University), and a PhD in Materials Engineering (2021; Gdańsk University of Technology). He was awarded the title of Doctor of Engineering and Technical...
-
New trifunctional acrylic water-based paint with self-cleaning, biocidal and magnetic properties
PublicationIn the present study, we report the synthesis and application of ZnFe2O4/SiO2-TiO2 nanocomposites with nonstoichiometric content of Fe to Zn used for the first time for the preparation of new generation trifunctional paints with self-cleaning, biocidal and magnetic properties. Currently, there are no compositions on the market for obtaining protective coatings in the form of paint, which simultaneously exhibit biocidal, magnetic...
-
Biocompatibility and bioactivity of load-bearing metallic implants
PublicationThe main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation;...
-
The Effect of Sodium Tetrafluoroborate on the Properties of Conversion Coatings Formed on the AZ91D Magnesium Alloy by Plasma Electrolytic Oxidation
PublicationMagnesium and its alloys are widely used in many areas because of their light weight, excellent dimensional stability, and high strength-to-weight ratio. However, the material exhibits poor wear and corrosion resistance, which limits its use. Plasma electrolytic oxidation (PEO) is an effective surface modification method for producing ceramic oxide layers on Mg and their alloys. The influence of the additions of sodium tetrafluoroborate...
-
Structural evaluation of percolating, self-healing polyurethane–polycaprolactone blends doped with metallic, ferromagnetic, and modified graphene fillers
PublicationComposites with differently shaped micro- and nanofillers show various, unique thermal, and physicochemical properties when mixed with carefully chosen polymer matrix. Selected composition holds strategic value in achieving desired properties that is biodegradability, thermoelectric conductivity, and shape memory for organic coating. The main aim of this work is to briefly examine structural changes after reaching percolation...
-
Structural evaluation of percolating, self-healing polyurethane–polycaprolactone blends doped with metallic, ferromagnetic, and modified graphene fillers
PublicationComposites with differently shaped micro- and nanofillers show various, unique thermal, and physicochemical properties when mixed with carefully chosen polymer matrix. Selected composition holds strategic value in achieving desired properties that is biodegradability, thermoelectric conductivity, and shape memory for organic coating. The main aim of this work is to briefly examine structural changes after reaching percolation threshold...
-
Unlocking the electrochemical performance of glassy carbon electrodes by surface engineered, sustainable chitosan membranes
PublicationChitosan coatings, derived from crustacean shell waste, possess inherent biocompatibility and biodegradability, rendering them suitable for various biomedical and environmental applications, including electrochemical biosensing. Its amine and hydroxyl functional groups offer abundant sites for chemical modifications to boost the charge transfer kinetics and provide excellent adhesion, enabling the construction of robust electrode-coating...
-
Biological and mechanical properties of bone cement with nanoarticles - in vitro and in vivo research
PublicationDespite antibiotic preventive treatment both before and after implant implementation, the risks of infection are real. These infections develop at the implant surface a few months after inserting them into the body. To prevent the development of bacteria and reduce the risk of infection, implants coated with nanoparticles are used. The Mechanical Department of the Technical University of Gdansk carries out research into using bone...
-
Synchrotron radiation photoemission spectroscopy of the oxygen modified CrCl3 surface
PublicationWe investigate the experimentally challenging CrCl3 surface by photon energy dependent photoemission (PE). The core and valence electrons after cleavage of a single crystal, either in a ultrahigh vacuum (UHV) or in air, are studied by keeping the samples at 150 1C, aiming at confirming the atomic composition with respect to the expected bulk atomic structure. A common spectroscopic denominator revealed by data is the presence of...
-
Chitosan-based nanomaterials for removal of water pollutants
PublicationThe rise of micropollutants presents a significant threat to both the environment and human well-being, requiring effective strategies for their mitigation. Chitin serves as the precursor for chitosan, composed of two monomers featuring acetamido and amino groups. Chitosan possesses several noteworthy attributes, including its ability to bind water and fat, humidity content, solubility, consistent molecular weight, and various...
-
Optical Detection of Ketoprofen by Its Electropolymerization on an Indium Tin Oxide-Coated Optical Fiber Probe
PublicationIn this work an application of optical fiber sensors for real-time optical monitoring of electrochemical deposition of ketoprofen during its anodic oxidation is discussed. The sensors were fabricated by reactive magnetron sputtering of indium tin oxide (ITO) on a 2.5 cm-long core of polymer-clad silica fibers. ITO tuned in optical properties and thickness allows for achieving a lossy-mode resonance (LMR) phenomenon and it can be...