Filters
total: 1970
-
Catalog
- Publications 1534 available results
- Journals 70 available results
- Conferences 110 available results
- People 133 available results
- Projects 1 available results
- Research Teams 1 available results
- e-Learning Courses 80 available results
- Events 19 available results
- Open Research Data 22 available results
displaying 1000 best results Help
Search results for: sztuczna inteligencja
-
How Machine Learning Contributes to Solve Acoustical Problems
PublicationMachine learning is the process of learning functional relationships between measured signals (called percepts in the artificial intelligence literature) and some output of interest. In some cases, we wish to learn very specific relationships from signals such as identifying the language of a speaker (e.g. Zissman, 1996) which has direct applications such as in call center routing or performing a music information retrieval task...
-
Automatic Rhythm Retrieval from Musical Files
PublicationThis paper presents a comparison of the effectiveness of two computational intelligence approaches applied to the task of retrieving rhythmic structure from musical files. The method proposed by the authors of this paper generates rhythmic levels first, and then uses these levels to compose rhythmic hypotheses. Three phases: creating periods, creating simplified hypotheses and creating full hypotheses are examined within this study....
-
Computational intelligence-aided character animation
PublicationW pracy przedstawiono pokrótce metody animacji komputerowej, a także podano zasady oceny jakości wyniku animacji postaci. Dodatkowo dokonano przeglądu metod inteligentnych stosowanych w animacji komputerowej i w dziedzinach pokrewnych. W badaniach skupiono się na animacji ruchu w kontekście uzyskiwanej ekspresji. Podano reguły stosowane w animacji tradycyjnej oraz wyznaczono parametry opisujące fazy ruchu w odniesieniu do poszczególnych...
-
Social media for e-learning of citizens in smart city
PublicationThe rapid development of social media can be applied for citizens’ e-learning in a smart city. Big cities have to cope with several open issues like a growing population or a traffic congestion. Especially, a home and public space is supposed to be used in more efficient way. Sustainable homes and buildings can be planned with using some modern techniques. Even currently, there is a huge problem with a lack of key resources like...
-
Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence
PublicationThis work is based on a literature review (191). It mainly refers to two diagnostic methods based on artificial intelligence. This review presents new possibilities for using genetic algorithms (GAs) for diagnostic purposes in power plants transitioning to cooperation with renewable energy sources (RESs). The genetic method is rarely used directly in the modeling of thermal-flow analysis. However, this assignment proves that the...
-
Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach
PublicationIn recent years, we have been witnessing a growing interest in the subject of communication at sea. One of the promising solutions to enable widespread access to data transmission capabilities in coastal waters is the possibility of employing an on-shore wireless access infrastructure. However, such an infrastructure is a heterogeneous one, managed by many independent operators and utilizing a number of different communication...
-
Deep Learning-Based Cellular Nuclei Segmentation Using Transformer Model
PublicationAccurate segmentation of cellular nuclei is imperative for various biological and medical applications, such as cancer diagnosis and drug discovery. Histopathology, a discipline employing microscopic examination of bodily tissues, serves as a cornerstone for cancer diagnosis. Nonetheless, the conventional histopathological diagnosis process is frequently marred by time constraints and potential inaccuracies. Consequently, there...
-
Wielowymiarowe techniki analizy danych pomiarowych - przykłady z zakresu analityki i monitoringu środowiska.
PublicationPrzedstawiono techniki obróbki wielowymiarowych zbiorów wyników pomiarowych. Na podstawie danych literaturowych zaprezentowano możliwość wykorzystania w analityce i moitoringu środowiskowym takich technik jak: analiza wariancji (ANOVA), analiza szeregów czasowych, analiza czynnikowa, sztuczne sieci neuronowe.
-
Training of Deep Learning Models Using Synthetic Datasets
PublicationIn order to solve increasingly complex problems, the complexity of Deep Neural Networks also needs to be constantly increased, and therefore training such networks requires more and more data. Unfortunately, obtaining such massive real world training data to optimize neural networks parameters is a challenging and time-consuming task. To solve this problem, we propose an easy-touse and general approach to training deep learning...
-
MACHINE LEARNING–BASED ANALYSIS OF ENGLISH LATERAL ALLOPHONES
PublicationAutomatic classification methods, such as artificial neural networks (ANNs), the k-nearest neighbor (kNN) and selforganizing maps (SOMs), are applied to allophone analysis based on recorded speech. A list of 650 words was created for that purpose, containing positionally and/or contextually conditioned allophones. For each word, a group of 16 native and non-native speakers were audio-video recorded, from which seven native speakers’...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublicationA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
Exploring Cause-and-Effect Relationships Between Public Company Press Releases and Their Stock Prices
PublicationThe aim of the work is to design and implement a method of exploring the cause-and-effect relationships between company announcements and the stock prices on NASDAQ stock exchange, followed by a brief discussion. For this purpose, it was necessary to download the stock quotes of selected companies from the NASDAQ market from public web sources. Additionally, media messages related to selected companies had to be downloaded, and...
-
Data governance: Organizing data for trustworthy Artificial Intelligence
PublicationThe rise of Big, Open and Linked Data (BOLD) enables Big Data Algorithmic Systems (BDAS) which are often based on machine learning, neural networks and other forms of Artificial Intelligence (AI). As such systems are increasingly requested to make decisions that are consequential to individuals, communities and society at large, their failures cannot be tolerated, and they are subject to stringent regulatory and ethical requirements....
-
Soft computing based automatic recognition of musical instrument classes.
PublicationW artykule przedstawiono wyniki eksperymentów dotyczących automatycznego rozpoznawania klas instrumentów muzycznych. Proces klasyfikacji zrealizowano w oparciu o sztuczne sieci neuronowe, zaś wektor cch został oparty o parametry obliczane w wyniku analizy falkowej dźwięków instrumentów muzycznych.
-
Wzorzec poprawnej pracy wymienników regeneracyjnych oparty o sztuczne sieci neuronowe
PublicationArtykuł opisuje probę stworzenia wzorca poprawnej pracy wymiennikow regeneracyjnych silowni turbo parowej o mocy 20mw przy pomocy sztucnych sieci neurnowych (SSN). Stworzony model pracy wymienników w zmiennych warunkachruchu silowni może zostać wykorzystany do diagnostki tych wlasnie urządzeń jaki i również do diagnostyki calego systemu silowni turbo parowej. Model neuronowy ma zastapic skomplikowane i czasochlonne obliczenia bilansowe...
-
Field Calibration of Low-Cost Particulate Matter Sensors Using Artificial Neural Networks and Affine Response Correction
PublicationDue to detrimental effects of atmospheric particulate matter (PM), its accurate monitoring is of paramount importance, especially in densely populated urban areas. However, precise measurement of PM levels requires expensive and sophisticated equipment. Although low-cost alternatives are gaining popularity, their reliability is questionable, attributed to sensitivity to environmental conditions, inherent instability, and manufacturing...
-
Spotkanie politechnicznego klubu sztucznej inteligencji
EventsPierwsze w tym roku akademickim spotkanie klubu AI Bay – Zatoka Sztucznej Inteligencji, który działa na Politechnice Gdańskiej odbędzie się w Gmachu B Wydziału Elektroniki, Telekomunikacji i Informatyki (Audytorium 1P).
-
PPAM 2022
EventsThe PPAM 2022 conference, will cover topics in parallel and distributed computing, including theory and applications, as well as applied mathematics.
-
Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance
PublicationMachine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience...
-
Application of fuzzy logic to determine the odour intensity of model gas mixtures using electronic nose
PublicationThe paper presents the possibility of application of fuzzy logic to determine the odour intensity of model, ternary gas mixtures (α-pinene, toluene and triethylamine) using electronic nose prototype. The results obtained using fuzzy logic algorithms were compared with the values obtained using multiple linear regression (MLR) model and sensory analysis. As the results of the studies, it was found the electronic nose prototype along...
-
Idea zastosowania sztucznej inteligencji w prognozowaniu wpływu drgań komunikacyjnych na odpowiedź dynamiczną budynków mieszkalnych
PublicationW poniższym artykule autorzy analizują wpływ drgań komunikacyjnych na budynki mieszkalne oraz metodykę pomiarową według PN-85 B-02170 [1]. Problemem badawczym jest opracowanie prostej metody prognozowania wpływu drgań na budynki mieszkalne w taki sposób, aby nie było konieczne przeprowadzanie pracochłonnych i kosztownych pomiarów polowych. W tym celu wykonano analizę przy użyciu algorytmów opartych na sztucznej inteligencji oraz...
-
Data and codes accompanying the paper: Parteka A., Kordalska A. "Artificial intelligence and productivity: global evidence from AI patent and bibliometric data". Technovation, Volume 125, July 2023, 102764
Open Research DataThe folder contains the data and codes used in the analysis described in the paper: Parteka A., Kordalska A. (2023) Artificial intelligence and productivity: global evidence from AI patent and bibliometric data. Technovation, Volume 125, July 2023, 102764
-
Inteligentne systemy pomiarowe/smart metering [moduł III obowiązkowy, grupy A i B ]
e-Learning CoursesProwadzący: Dyr. Maciej Galik, Wydział Elektrotechniki i Automatyki PG Terminy realizacji: pierwsze spotkanie online: 5.05 (piątek) od 16.30 do 19:00 drugie spotkanie online: 12.05 (piątek) od 16.30 do 19:00 trzecie spotkanie online: 19.05 (piątek) od 16.30 do 19:00 czwarte spotkanie online: 26.05 (piątek) od 16.30 do 19:00 Celem zajęć jest poszerzenie rozumienia ryzyk związanych z technologią oraz przedstawienie...
-
Metody neuronowe do prognozowania finansowego
PublicationSztuczne sieci neuronowe mogą być stosowane do prognozowania kursów akcji na giełdzie, oceny wiarygodności kredytobiorców czy prognozowania kryzysów bankowych. W referacie omówiono zasady współpracy sieci neuronowych z algorytmami ewolucyjnymi oraz metodą wektorów wspierających. Ponadto, odniesiono się do pozostałych metod sztucznej inteligencji, które stosowane są w finansach.
-
Machine Learning and data mining tools applied for databases of low number of records
Publication -
Machine Learning and Electronic Noses for Medical Diagnostics
PublicationThe need for noninvasive, easy-to-use, and inexpensive methods for point-of-care diagnostics of a variety of ailments motivates researchers to develop methods for analyzing complex biological samples, in particular human breath, that could aid in screening and early diagnosis. There are hopes that electronic noses, that is, devices based on arrays of semiselective or nonselective chemical sensors, can fill this niche. Electronic...
-
Analysis of the Capability of Deep Learning Algorithms for EEG-based Brain-Computer Interface Implementation
PublicationMachine learning models have received significant attention for their exceptional performance in classifying electroencephalography (EEG) data. They have proven to be highly effective in extracting intricate patterns and features from the raw signal data, thereby contributing to their success in EEG classification tasks. In this study, we explore the possibilities of utilizing contemporary machine learning algorithms in decoding...
-
Machine learning system for estimating the rhythmic salience of sounds.
PublicationW artykule przedstawiono badania dotyczące wyszukiwania danych rytmicznych w muzyce. W pracy przedstawiono postać funkcji rankingujacej poszczególnych dźwięków frazy muzycznej. Opracowano metodę tworzenia wszystkich możliwych hierarchicznych struktur rytmicznych, zwanych hipotezami rytmicznymi. Otrzymane hipotezy są następnie porządkowane w kolejności malejącej wartości funkcji rankingującej, aby ustalić, która ze znalezionych...
-
Modelowanie przeplywu pary przez okołodźwiękowe wieńce turbinowe przy użyciu sztucznych sieci neuronowych
PublicationNiniejszy artykul stanowi opis modelu przepływu pary przez okołodźwiękowe stopnie turbinowe, stworzonego w oparciu o sztuczne sieci neuronowe (SSN). Przedstawiony model neuronowy pozwala na wyznaczenie rozkladu wybranych parametrów w analizowanym przekroju kanalu przeplywowego turbiny, dla rozpatrywanego zakresu wartości ciśnienia wlotowego.
-
Optymalizacja treningu i wnioskowania sieci neuronowych
PublicationSieci neuronowe są jedną z najpopularniejszych i najszybciej rozwijających się dziedzin sztucznej inteligencji. Ich praktyczne wykorzystanie umożliwiło szersze użycie komputerów w wielu obszarach komunikacji, przemysłu i transportu. Dowody tego są widoczne w elektronice użytkowej, medycynie, a nawet w zastosowaniach militarnych. Wykorzystanie sztucznej inteligencji w wielu przypadkach wymaga jednak znacznej mocy obliczeniowej,...
-
Wspomaganie decyzji przy utrzymaniu nawierzchni kolejowej.
PublicationW artykule przedstawiono koncepcje wspomagania decyzji przy utrzymaniu nawierzchni kolejowej. Zaprezentowano problemy decyzyjne, użytkowane już systemy wspomagania decyzji oraz ewolucyjny proces powstawania takich systemów.
-
Adaptive Hounsfield Scale Windowing in Computed Tomography Liver Segmentation
PublicationIn computed tomography (CT) imaging, the Hounsfield Unit (HU) scale quantifies radiodensity, but its nonlinear nature across organs and lesions complicates machine learning analysis. This paper introduces an automated method for adaptive HU scale windowing in deep learning-based CT liver segmentation. We propose a new neural network layer that optimizes HU scale window parameters during training. Experiments on the Liver Tumor...
-
Widzenie komputerowe oparte na mnogości widoków
PublicationArtykuł poświęcony jest tematowi tworzenia map głębokości na podstawie obrazów z wielu kamer. Zwykle mapy głębokości oparte na widzeniu stereoskopowym wyznaczane są na podstawie obrazów z dwóch kamer. Artykuł przedstawia możliwości wykorzystania większej liczby kamer w celu zwiększenia dokładności map głębokości. Badania przedstawione w artykule ukierunkowane są na zastosowanie w autonomicznych robotach, będących w stanie samodzielnie...
-
Integration of natural and artificial intelligence in production systems
PublicationIntegration processes play an increasingly important role in modern economy, and seriously co-decide about the effectiveness of the company. Integration phase occurs in the system life cycle by preceding the final stages of its implementation and activation. In turn, used in software engineering (SE) iteration-evolutionary models, such as spiral model make that the integration activities can occur in varying degrees in all phases...
-
INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY
PublicationIn recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...
-
Application of case based reasoning to hybrid expert system for electronic filter design
PublicationPrzedstawiono koncepcję i przykład praktycznej realizacji obiektowo zorientowanego hybrydowego systemu ekspertowego wykorzystującego rozumowanie sytuacyjne. System wykorzystuje algorytmy najbliższego sąsiada i sztuczne sieci neuronowe. System został przetestowany jako klasyfikator decyzyjny w projektowaniu filtrów elektronicznych. W budowie systemu został wykorzystany obiektowy system CLIPS, rozszerzony o wiele dodatkowych funkcji...
-
An evaluation of effectiveness of fuzzy logic model in predicting the business bankruptcy
PublicationW artykule sprawdzono skuteczność pojedynczego modelu logiki rozmytej w prognozowaniu ryzyka upadłości przedsiębiorstw w Polsce. W badaniach wykorzystano wartości 14 wskaźników finansowych oraz ich dynamikę zmiany między pierwszym a drugim, drugim a trzecim oraz trzecim a czwartym rokiem objętymi analizą. We wnioskach omówiono różnicę w skutecznościach modelu uzyskanego na wartościach statycznych oraz dynamicznych wskaźników finansowych....
-
Unsupervised Learning for Biomechanical Data Using Self-organising Maps, an Approach for Temporomandibular Joint Analysis
PublicationWe proposed to apply a specific machine learning technique called Self-Organising Maps (SOM) to identify similarities in the performance of muscles around human temporomandibular joint (TMJ). The performance was assessed by measuring muscle activation with the use of surface electromyography (sEMG). SOM algorithm used in the study was able to find clusters of data in sEMG test results. The SOM analysis was based on processed sEMG...
-
Deep learning techniques for biometric security: A systematic review of presentation attack detection systems
PublicationBiometric technology, including finger vein, fingerprint, iris, and face recognition, is widely used to enhance security in various devices. In the past decade, significant progress has been made in improving biometric sys- tems, thanks to advancements in deep convolutional neural networks (DCNN) and computer vision (CV), along with large-scale training datasets. However, these systems have become targets of various attacks, with...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublicationThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
Evaluation of Facial Pulse Signals Using Deep Neural Net Models
PublicationThe reliable measurement of the pulse rate using remote photoplethysmography (PPG) is very important for many medical applications. In this paper we present how deep neural networks (DNNs) models can be used in the problem of PPG signal classification and pulse rate estimation. In particular, we show that the DNN-based classification results correspond to parameters describing the PPG signals (e.g. peak energy in the frequency...
-
Monitoring the BTEX Volatiles during 3D Printing with Acrylonitrile Butadiene Styrene (ABS) Using Electronic Nose and Proton Transfer Reaction Mass Spectrometry
PublicationWe describe a concept study in which the changes of concentration of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and styrene within a 3D printer enclosure during printing with different acrylonitrile butadiene styrene (ABS) filaments were monitored in real-time using a proton transfer reaction mass spectrometer and an electronic nose. The quantitative data on the concentration of the BTEX compounds, in particular...
-
Upadłość przedsiębiorstw a wykorzystanie sztucznej inteligencji
PublicationMonografia jest jedną z nielicznych publikacji, która ukazuje problematykę upadłości przedsiębiorstw zarówno z punktu widzenia prawa jak i ekonomii. Dodatkowo autorzy znaczną część tego opracowania poświęcili problematyce prognozowania zagrożenia przedsiębiorstw upadłością, ze szczególnym uwzględnienim takich metod jak sztuczne sieci neuronowe oraz liniowa wielowymiarowa analiza dyskryminacyjna.
-
Perception of Pathologists in Poland of Artificial Intelligence and Machine Learning in Medical Diagnosis—A Cross-Sectional Study
Publication -
Paweł Burdziakowski dr inż.
PeoplePaweł Burdziakowski, PhD, is a professional in low-altitude aerial photogrammetry and remote sensing, marine and aerial navigation. He is also a licensed flight instructor and software developer. His main areas of interest are digital photogrammetry, navigation of unmanned platforms and unmanned systems, including aerial, surface, underwater. He conducts research in algorithms and methods to improve the quality of spatial measurements...
-
Comparative Analysis of Text Representation Methods Using Classification
PublicationIn our work, we review and empirically evaluate five different raw methods of text representation that allow automatic processing of Wikipedia articles. The main contribution of the article—evaluation of approaches to text representation for machine learning tasks—indicates that the text representation is fundamental for achieving good categorization results. The analysis of the representation methods creates a baseline that cannot...
-
Survey on fuzzy logic methods in control systems of electromechanical plants
PublicationРассмотрены алгоритмы управления электромеханическими системами с использованием теории нечеткой логики, приводятся основные положения их синтеза, рассматриваются методы анализа их устойчивости на основе нечетких функций Ляпунова. Эти алгоритмы чаще всего реализуются в виде различных регуляторов, применение которых целесообразно в системах, математическая модель которых не известна, не детерминирована или является строго нелинейной,...
-
Machine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects
PublicationMachine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects Hammed A. Mojeed & Rafal Szlapczynski Conference paper First Online: 14 September 2023 161 Accesses Part of the Lecture Notes in Computer Science book series (LNAI,volume 14125) Abstract Software development project requires proper planning to mitigate risk and...
-
Evolutionary Planning of Safe Ship Tracks in Restricted Visibility
PublicationThe paper presents the continuation of the author's research on ship track planning by means of Evolutionary Algorithms (EA). The presented method uses EA to search for an optimal set of safe tracks for all ships involved in an encounter. Until now the method assumed good visibility – compliance with standard rules of the Convention on the International Regulations for Preventing Collisions at Sea (COLREGS, 1972). However, in restricted...
-
Application of autoencoder to traffic noise analysis
PublicationThe aim of an autoencoder neural network is to transform the input data into a lower-dimensional code and then to reconstruct the output from this code representation. Applications of autoencoders to classifying sound events in the road traffic have not been found in the literature. The presented research aims to determine whether such an unsupervised learning method may be used for deploying classification algorithms applied to...