Filtry
wszystkich: 443
Wyniki wyszukiwania dla: NUMERICAL PREDICTION
-
Corrigendum to “Experimental analysis on the risk of vortex ventilation and the free surface ventilation of marine propellers”
PublikacjaThe paper presents a discussion of the ventilation inception and air drawing prediction of ships propellers, aiming to predict under what conditions ventilation will happen, and the actual physical mechanism of the ventilation.
-
Global Surrogate Modeling by Neural Network-Based Model Uncertainty
PublikacjaThis work proposes a novel adaptive global surrogate modeling algorithm which uses two neural networks, one for prediction and the other for the model uncertainty. Specifically, the algorithm proceeds in cycles and adaptively enhances the neural network-based surrogate model by selecting the next sampling points guided by an auxiliary neural network approximation of the spatial error. The proposed algorithm is tested numerically...
-
Trim Optimisation - Theory and Practice
PublikacjaForce Technology has been working intensively with trim optimisation tests for almost last 10 years. Focus has primarily been put on the possible power savings and exhaust gases reduction. This paper describes the trim optimisation process for a large cargo vessel. The physics behind changed propulsive power is described and the analyses in order to elaborate the optimum trimmed conditions are presented. Different methods for prediction...
-
Elimination of clicks from archive speech signals using sparse autoregressive modeling
PublikacjaThis paper presents a new approach to elimination of impulsivedisturbances from archive speech signals. The proposedsparse autoregressive (SAR) signal representation is given ina factorized form - the model is a cascade of the so-called formantfilter and pitch filter. Such a technique has been widelyused in code-excited linear prediction (CELP) systems, as itguarantees model stability. After detection of noise pulses usinglinear...
-
New semi-causal and noncausal techniques for detection of impulsive disturbances in multivariate signals with audio applications
PublikacjaThis paper deals with the problem of localization of impulsive disturbances in nonstationary multivariate signals. Both unidirectional and bidirectional (noncausal) detection schemes are proposed. It is shown that the strengthened pulse detection rule, which combines analysis of one-step-ahead signal prediction errors with critical evaluation of leave-one-out signal interpolation errors, allows one to noticeably improve detection results...
-
Sampling-based novel heterogeneous multi-layer stacking ensemble method for telecom customer churn prediction
PublikacjaIn recent times, customer churn has become one of the most significant issues in business-oriented sectors with telecommunication being no exception. Maintaining current customers is particularly valuable due to the high degree of rivalry among telecommunication companies and the costs of acquiring new ones. The early prediction of churned customers may help telecommunication companies to identify the causes of churn and design...
-
Traffic Noise Analysis Applied to Automatic Vehicle Counting and Classification
PublikacjaProblems related to determining traffic noise characteristics are discussed in the context of automatic dynamic noise analysis based on noise level measurements and traffic prediction models. The obtained analytical results provide the second goal of the study, namely automatic vehicle counting and classification. Several traffic prediction models are presented and compared to the results of in-situ noise level measurements. Synchronized...
-
TOWARDS EXPLAINABLE CLASSIFIERS USING THE COUNTERFACTUAL APPROACH - GLOBAL EXPLANATIONS FOR DISCOVERING BIAS IN DATA
PublikacjaThe paper proposes summarized attribution-based post-hoc explanations for the detection and identification of bias in data. A global explanation is proposed, and a step-by-step framework on how to detect and test bias is introduced. Since removing unwanted bias is often a complicated and tremendous task, it is automatically inserted, instead. Then, the bias is evaluated with the proposed counterfactual approach. The obtained results...
-
Intelligent Decision Forest Models for Customer Churn Prediction
PublikacjaCustomer churn is a critical issue impacting enterprises and organizations, particularly in the emerging and highly competitive telecommunications industry. It is important to researchers and industry analysts interested in projecting customer behavior to separate churn from non‐churn consumers. The fundamental incentive is a firm’s intent desire to keep current consumers, along with the exorbitant expense of gaining new ones....
-
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublikacjaComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
An algorithm for selecting a machine learning method for predicting nitrous oxide emissions in municipal wastewater treatment plants
PublikacjaThis study presents an advanced algorithm for selecting machine learning (ML) models for nitrous oxide (N2O) emission prediction in wastewater treatment plants (WWTPs) employing the activated sludge process. The examined ML models comprised multivariate adaptive regression spline (MARS), support vector machines (SVM), and extreme gradient boosting (XGboost). The study explores the concept that involves new criteria to select the...
-
EVALUATION OF THE NO2CONCENTRATION PREDICTION POSSIBILITYBASED ON STATIC AND DYNAMIC RESPONSES OF TGS SENSORSAT CHANGING HUMIDITY LEVELS
PublikacjaThe commercially available metal-oxide TGS sensors are widely used in many applications due to thefact that they are inexpensive and considered to be reliable. However, they are partially selective and theirresponses are influenced by various factors,e.g. temperature or humidity level. Therefore, it is importanttodesign a proper analysis system of the sensor responses. In this paper, the results of examinations of eightcommercial...
-
Computational collective intelligence for enterprise information systems
PublikacjaCollective intelligence is most often understood as a kind of intelligence which arises on the basis of a group (collective) of autonomous unites (people, systems) which is taskoriented. There are two important aspects of an intelligent collective: The cooperation aspect and the competition aspect (Levy 1997). The first of them means the possibility for integrating the decisions made by the collective members for creating the decision of...
-
Mobilenet-V2 Enhanced Parkinson's Disease Prediction with Hybrid Data Integration
PublikacjaThis study investigates the role of deep learning models, particularly MobileNet-v2, in Parkinson's Disease (PD) detection through handwriting spiral analysis. Handwriting difficulties often signal early signs of PD, necessitating early detection tools due to potential impacts on patients' work capacities. The study utilizes a three-fold approach, including data augmentation, algorithm development for simulated PD image datasets,...
-
Robust Parameter Estimation and Output Prediction for Reactive Carrier-Load Nonlinear Dynamic Networks
PublikacjaIn this paper an extension of on-line model simplification technique for a class of networked systems, namely reactive carrier-load nonlinear dynamic networked system (RCLNDNS), kept within point-parametric model (PPM) framework is addressed. The PPM is utilised to acquire a piece wise constant time-varying parameter linear structure for the RCLNDNS suitable for the on-line one step ahead prediction that may be applied to monitoring...
-
Category-Based Workload Modeling for Hardware Load Prediction in Heterogeneous IaaS Cloud
PublikacjaThe paper presents a method of hardware load prediction using workload models based on application categories and high-level characteristics. Application of the method to the problem of optimization of virtual machine scheduling in a heterogeneous Infrastructure as a Service (IaaS) computing cloud is described.
-
Multi-Criteria Knowledge-Based Recommender System for Decision Support in Complex Business Processes
PublikacjaIn this paper, we present a concept of a multi-criteria knowledge-based Recommender System (RS) designed to provide decision support in complex business process (BP) scenarios. The developed approach is based on the knowledge aspects of Stylistic Patterns, Business Sentiment and Decision-Making Logic extracted from the BP unstructured texts. This knowledge serves as an input for a multi-criteria RS algorithm. The output is prediction...
-
Electricity demand prediction by multi-agent system with history-based weighting
PublikacjaEnergy and load demand forecasting in short-horizons, over an interval ranging from one hour to one week, is crucial for on-line scheduling and security functions of power system. Many load forecasting methods have been developed in recent years which are usually complex solutions with many adjustable parameters. Best-matching models and their relevant parameters have to be determined in a search procedure. We propose a hybrid...
-
Rating Prediction with Contextual Conditional Preferences
PublikacjaExploiting contextual information is considered a good solution to improve the quality of recommendations, aiming at suggesting more relevant items for a specific context. On the other hand, recommender systems research still strive for solving the cold-start problem, namely where not enough information about users and their ratings is available. In this paper we propose a new rating prediction algorithm to face the cold-start...
-
ADAPTIVE PREDICTIONS OF THE EURO/ZŁOTY CURRENCY EXCHANGE RATE USING STATE SPACE WAVELET NETWORKS AND FORECAST COMBINATIONS
PublikacjaThe paper considers the forecasting of the euro/Polish złoty (EUR/PLN) spot exchange rate by applying state space wavelet network and econometric forecast combination models. Both prediction methods are applied to produce one-trading-day- ahead forecasts of the EUR/PLN exchange rate. The paper presents the general state space wavelet network and forecast combination models as well as their underlying principles. The state space...
-
Aerodynamic shape optimization by variable-fidelity computational fluid dynamics models: a review of recent progress
PublikacjaA brief review of some recent variable-fidelity aerodynamic shape optimization methods is presented.We discuss three techniques that—by exploiting information embedded in low-fidelity computationalfluid dynamics (CFD) models—are able to yield a satisfactory design at a low computational cost, usu-ally corresponding to a few evaluations of the original, high-fidelity CFD model to be optimized. Thespecific techniques considered here...
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublikacjaThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...
-
Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach
PublikacjaTreatment of municipal wastewater to meet the stringent effluent quality standards is an energy-intensive process and the main contributor to the costs of wastewater treatment plants (WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, and climate-based parameters on the daily consumption of EC by...
-
Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
PublikacjaOne of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was...
-
Evaluation of the prediction ability of air pollutants based on the electronic nose responses
PublikacjaElectronic noses are able to perform on-line measurements of the toxic volatile compounds in air. Due to their low cost and compact size they can be placed in the areas exposed to pollution, outside the laboratory. Those advantages, on the other side, force the need for development of the reliable sensors data analysis procedures. One of the most important issues connected with electronic noses is the lack of stability of the gas...
-
On joint order and bandwidth selection for identification of nonstationary autoregressive processes
PublikacjaWhen identifying a nonstationary autoregressive process, e.g. for the purpose of signal prediction or parametric spectrum estimation, two important decisions must be taken. First, one should choose the appropriate order of the autoregressive model, i.e., the number of autoregressive coefficients that will be estimated. Second, if identification is carried out using the local estimation technique, such as the localized version of...
-
Performance of Noise Map Service Working in Cloud Computing Environment
PublikacjaIn the paper a noise map service designated for the user interested in environmental noise subject is presented. It is based on cloud computing. Noise prediction algorithm and source model, developed for creating acoustic maps, are working in cloud computing environment. In the study issues related to noise modeling of sound propagation in urban spaces are discussed with a special focus on road noise. Examples of results obtained...
-
New generation of analytical tests based on the assessment of enzymatic and nuclear receptor activity changes induced by environmental pollutants
PublikacjaAnalytical methods show great potential in biological tests. The analysis of biological response that results from environmental pollutant exposure allows: (i) prediction of the risk of toxic effects and (ii) provision of the background for the development of markers of the toxicants presence. Bioanalytical tests based on changes in enzymatic activity and nuclear receptor action provide extremely high specificity and sensitivity....
-
Prediction of protein assemblies, the next frontier: The CASP14‐CAPRI experiment
PublikacjaWe present the results for CAPRI Round 50, the 4th joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of 12 targets, including 6 dimers, 3 trimers, and 3 higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly...
-
Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance
PublikacjaWastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...
-
Predicting bankruptcy with the use of macroeconomic variables
PublikacjaRegarding the current global financial crisis, the firms can expect the increased uncertainty of their existence. The relevant literature includes extensive studies on bankruptcy prediction. Studies show that the most popular method used for prediction of firms' failures are discriminant analyses (30,3% of all models), then logit and probit models (21,3%), which all three are parametric models. The nature, the structure of the...
-
A new index for statistical analyses and prediction of travelling ionospheric disturbances
PublikacjaTravelling Ionospheric Disturbances (TIDs) are signatures of atmospheric gravity waves (AGWs) observed in changes in the electron density. The analysis of TIDs is relevant for studying coupling processes in the thermosphere–ionosphere system. A new TID index is introduced, which is based on an easy extension of the commonly used approach for TID detection. This TID activity index, which can be applied for individual Global Navigation...
-
Impact of AlphaFold on structure prediction of protein complexes: The CASP15‐CAPRI experiment
PublikacjaWe present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody–antigen complexes, and 7 large assemblies. On average 70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups...
-
Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
PublikacjaNowadays, Buckling-Restrained Brace Frames (BRBFs) have been used as lateral force-resisting systems for low-, to mid-rise buildings. Residual Interstory Drift (RID) of BRBFs plays a key role in deciding to retrofit buildings after seismic excitation; however, existing formulas have limitations and cannot effectively help civil engineers, e.g., FEMA P-58, which is a conservative estimation method. Therefore, there is a need to...
-
Implementation of Extended Kalman Filter with Optimized Execution Time for Sensorless Control of a PMSM Using ARM Cortex-M3 Microcontroller
PublikacjaThis paper addresses the implementation and optimization of an Extended Kalman Filter (EKF) for the Permanent Magnet Synchronous Motor (PMSM) sensorless control using an ARM Cortex-M3 microcontroller. A various optimization levels based on arithmetic calculation reduction was implemented in ARM Cortex-M3 microcontroller. The execution time of EKF estimator was reduced from 260.4 μs to 37.7 μs without loss of accuracy. To further...
-
The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process
PublikacjaThis paper presents the application of artificial neural networks and decision trees for the prediction of odor properties of post-fermentation sludge from a biological-mechanical wastewater treatment plant. The input parameters were concentrations of popular compounds present in the sludge, such as toluene, p-xylene, and p-cresol, and process parameters including the concentration of volatile fatty acids, pH, and alkalinity in...
-
Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review
PublikacjaBackground: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016...
-
On Noncausal Identification of Nonstationary Multivariate Autoregressive Processes
PublikacjaThe problem of identification of nonstationary multivariate autoregressive processes using noncausal local estimation schemes is considered and a new approach to joint selection of the model order and the estimation bandwidth is proposed. The new selection rule, based on evaluation of pseudoprediction errors, is compared with the previously proposed one, based on the modified Akaike’s final prediction error criterion.
-
Survival time prognosis under a Markov model of cancer development
PublikacjaIn this study we look at a breast cancer data set of women from Pomerania region collected in year 1987-1992 in the Medical University of Gdańsk. We analyze the clinical risk factors in conjunction with Markov model of cancer development. We evaluate Artificial Neural Network (ANN) survival time prediction via a simulation study.
-
ColorNephroNet: Kidney tumor malignancy prediction using medical image colorization
PublikacjaRenal tumor malignancy classification is one of the crucial tasks in urology, being a primary factor included in the decision of whether to perform kidney removal surgery (nephrectomy) or not. Currently, tumor malignancy prediction is determined by the radiological diagnosis based on computed tomography (CT) images. However, it is estimated that up to 16% of nephrectomies could have been avoided because the tumor that had been...
-
Things You Might Not Know about the k-Nearest Neighbors Algorithm
PublikacjaRecommender Systems aim at suggesting potentially interesting items to a user. The most common kind of Recommender Systems is Collaborative Filtering which follows an intuition that users who liked the same things in the past, are more likely to be interested in the same things in the future. One of Collaborative Filtering methods is the k Nearest Neighbors algorithm which finds k users who are the most similar to an active user...
-
Pose-Invariant Face Detection by Replacing Deep Neurons with Capsules for Thermal Imagery in Telemedicine
PublikacjaAbstract— The aim of this work was to examine the potential of thermal imaging as a cost-effective tool for convenient, non- intrusive remote monitoring of elderly people in different possible head orientations, without imposing specific behavior on users, e.g. looking toward the camera. Illumination and pose invariant head tracking is important for many medical applications as it can provide information, e.g. about vital signs, sensory...
-
An Ontology-based Contextual Pre-filtering Technique for Recommender Systems
PublikacjaContext-aware Recommender Systems aim to provide users with the most adequate recommendations for their current situation. However, an exact context obtained from a user could be too specific and may not have enough data for accurate rating prediction. This is known as the data sparsity problem. Moreover, often user preference representation depends on the domain or the specific recommendation approach used. Therefore, a big effort...
-
Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
PublikacjaPredicting the Maximum Interstory Drift Ratio (M-IDR) of Steel Moment-Resisting Frames (SMRFs) is a useful tool for designers to approximately evaluate the vulnerability of SMRFs. This study aims to explore supervised Machine Learning (ML) algorithms to build a surrogate prediction model for SMRFs to reduce the need for complex modeling. For this purpose, twenty well-known ML algorithms implemented in Python software are trained...
-
The analysis of soil resistance during screw displacement pile installation
PublikacjaThe analysis of soil resistances during screw displacement pile installation based on model and field tests. The investigations were carried out as a part of research project, financed by the Polish Ministry of Science and Higher Education. A proposal of empirical method for prediction of rotation resistance (torque) during screw auger penetration in non-cohesive subsoil based on CPT result.
-
Robust output prediction of differential – algebraic systems – application to drinking water distribution system
PublikacjaThe paper presents the recursive robust output variable prediction algorithm, applicable for systems described in the form of nonlinear algebraic-differential equations. The algorithm bases on the uncertainty interval description, the system model, and the measurements. To improve the algorithm efficiency, nonlinear system models are linearised along the nominal trajectory. The effectiveness of the algorithm is demonstrated on...
-
Study on the accuracy of axle load spectra used for pavement design
PublikacjaWeigh-in-Motion (WIM) systems are used in order to reduce the number of overloaded vehicles. Data collected from WIM provide characteristics of vehicle axle loads that are crucial for pavement design as well as for the development of pavement distress prediction models. The inaccuracy of WIM data lead to erroneous estimation of traffic loads and in consequence inaccurate prediction of pavement distress process. The objective of...
-
Sensing Direction of Human Motion Using Single-Input-Single-Output (SISO) Channel Model and Neural Networks
PublikacjaObject detection Through-the-Walls enables localization and identification of hidden objects behind the walls. While numerous studies have exploited Channel State Information of Multiple Input Multiple Output (MIMO) WiFi and radar devices in association with Artificial Intelligence based algorithms (AI) to detect and localize objects behind walls, this study proposes a novel non-invasive Through-the-Walls human motion direction...
-
CORPORATE BANKRUPTCY PREDICTION IN POLAND AGAINST THE BACKGROUND OF FOREIGN EXPERIENCE
PublikacjaIn highly developed countries, research in the field of bankruptcy risk prediction has been conducted for many years. For example, in the United States, which can be considered a pioneering country, the first publications appeared in the early twentieth century. In Poland, due to political and economic reasons, the interest in this issue dates back to the early 1990s. For this reason, this publication attempts to answer the following...
-
CORPORATE BANKRUPTCY PREDICTION IN POLAND AGAINST THE BACKGROUND OF FOREIGN EXPERIENCE
PublikacjaIn highly developed countries, research in the field of bankruptcy risk prediction has been conducted for many years. For example, in the United States, which can be considered a pioneering country, the first publications appeared in the early twentieth century. In Poland, due to political and economic reasons, the interest in this issue dates back to the early 1990s. For this reason, this publication attempts to answer the following...