Filters
total: 1067
filtered: 975
Search results for: MECHANICAL PROPERTIES WELDED JOINTS
-
Influence of Heat Treatment Temperature on Fatigue Toughness in Medium-Carbon High-Strength Steels
PublicationCurrent research has demonstrated that the tempering temperature affects the martensitic transformation of medium-carbon high-strength steels. This temperature plays an important role in the final microstructure, percentage ratios of martensite to ferrite phases and, consequently, in the mechanical properties and the fatigue response. So far, the relationship between the martensitic tempering temperature and the cyclic deformation...
-
Thermoplastic elastomer filaments and their application In 3D printig
PublicationThe paper provides an overview on the materials used in the 3D printing technology (the Polish and foreign market) with a particular focus on flexible filaments and their possible application in the industry. There are described the techniques of 3D printing and modern filaments available on the market. There is observed the increase of interest in the production of products from filaments based on thermoplastic elastomers (TPE),...
-
Pin Angle Thermal Effects on Friction Stir Welding of AA5058 Aluminum Alloy: CFD Simulation and Experimental Validation
PublicationThe friction stir welding (FSW) of tool pin geometry plays a critical role in the final properties of the produced joint. The tool pin geometry directly affects the generation of heat and the flow of internal materials during the FSW process. The effects of the FSW tool pin angle on heat generation and internal flow have not been quantitatively investigated in detail. In this manuscript, a validated Computational Fluid Dynamic...
-
Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives
PublicationIn this overview, we focused on the bacterial cellulose (BC) applications, described in recently published scientific papers, in the field of skin regenerative medicine and wound care industry. Bacterial cellulose was proven to be biocompatible with living tissues. Moreover, its mechanical properties and porous structure are considered to be suitable for biomedical applications. It is due to the fact that porous structure of bacterial...
-
Polyester sail technical woven fabric behaviour under uniaxial and biaxial tensile tests
PublicationThe paper is focused on the identification of mechanical properties of a sail technical woven fabric (yacht sailcloth polyester) style 480 AP with MTO (Medium Tempered Optimized) finish. The non-linear elastic behaviour of the fabric applied for sails is investigated under uniaxial and biaxial tensile tests. Comparison of non-linear elastic parameters with others polyester coated fabrics is made. This paper is intended to be an...
-
Sea bottom structure investigation by means of acoustic methods
PublicationThe main aim of the paper is the result of experimental investigations of the seabed in the Gulf of Gdańsk arried out using parametric echosounder as a main measuring tool. Examination of the surface's upper layer of the seabed, especially is acoustic properties, reflecting most often transsmision and reflection properties of the incident elastic wave, could be a valuable material for determination of the stratification, and the...
-
The Green Approach to the Synthesis of Bio-Based Thermoplastic Polyurethane Elastomers with Partially Bio-Based Hard Blocks
PublicationBio-based polymeric materials and green routes for their preparation are current issues of many research works. In this work, we used the diisocyanate mixture based on partially bio-based diisocyanate origin and typical petrochemical diisocyanate for the preparation of novel bio-based thermoplastic polyurethane elastomers (bio-TPUs). We studied the influence of the diisocyanate mixture composition on the chemical structure, thermal,...
-
Hyaluronan-Chondroitin Sulfate Anomalous Crosslinking Due to Temperature Changes
PublicationGlycosaminoglycans are a wide class of biopolymers showing great lubricating properties due to their structure and high affinity to water. Two of them, hyaluronic acid and chondroitin sulfate, play an important role in articular cartilage lubrication. In this work, we present results of the all-atom molecular dynamics simulations of both molecules placed in water-based solution. To mimic changes of the physiological conditions,...
-
Graphene-based Silicone rubber Nanocomposites: Preparation, Characterization, and Properties
PublicationThis study aims to understand better the mechanical, thermal, and tribological behavior of silicone rubber nanocomposites. Graphite, exfoliated graphite, reduced graphene oxide, ionic liquid modified graphene oxide, silane-modified graphene oxide, fumed silica, and other fillers were used in this study. Adding graphene-based fillers to the silicone rubber matrix substantially improves the nanocomposite's mechanical, thermal, and...
-
Właściwości niskotemperaturowe betonów asfaltowych o wysokim module sztywności (AC-WMS) w badaniach trzypunktowego zginania
PublicationArtykuł przedstawia właściwości niskotemperaturowe betonów asfaltowych o wysokim module sztywności. Przedstawione wyniki zostały uzyskane w dwóch badaniach zginania trzypunktowego próbek belkowych: ze stałą prędkością przemieszczenia oraz pod stałym obciążeniem. Obie te metody są od dawna stosowane na Politechnice Gdańskiej do oceny właściwości niskotemperaturowych betonów asfaltowych. Badaniu poddano pięć betonów asfaltowych –...
-
Polyurethane-based aerogels: Preparation, properties, and applications
PublicationPolyurethane aerogels (PUAs) are interesting materials because of their high porosity, low density, and low thermal conductivity, which result in their application as thermal insulations. PUAs are mainly synthesized using di- and polyisocyanates, diols or polyols, catalysts (tertiary amines and organometallic), and solvents (which are used as reaction medium, purifying of obtained semiproducts). Preparation procedure involves several...
-
An attempt to mechanistically explain the viscoelastic behavior of transparent epoxy/starch-modified ZnO nanocomposite coatings
PublicationThe effects of bare and starch-modified ZnO (ZnO-St) nanoparticles on viscoelastic and mechanical properties are studied by dynamic mechanical and tensile analyses. Transparent epoxy-based nanocomposite films are prepared by incorporating bare or starch-modified ZnO particles into the epoxy matrix. The results demonstrated that ZnO particles hindered the curing reactions and hence the final properties of the cured epoxy. As a result,...
-
Growth and Isolation of Large Area Boron‐Doped Nanocrystalline Diamond Sheets: A Route toward Diamond‐on‐Graphene Heterojunction
PublicationMany material device applications would benefit from thin diamond coatings, but current growth techniques, such as chemical vapor deposition (CVD) or atomic layer deposition require high substrate and gas‐phase temperatures that would destroy the device being coated. The development of freestanding, thin boron‐doped diamond nanosheets grown on tantalum foil substrates via microwave plasma‐assisted CVD is reported. These diamond...
-
PVA-Based Films with Strontium Titanate Nanoparticles Dedicated to Wound Dressing Application
PublicationBioactive materials may be applied in tissue regeneration, and an example of such materials are wound dressings, which are used to accelerate skin healing, especially after trauma. Here, we proposed a novel dressing enriched by a bioactive component. The aim of our study was to prepare and characterize poly(vinyl alcohol) films modified with strontium titanate nanoparticles. The physicochemical properties of films were studied,...
-
Fabrication of toughened plastic using styrene butadiene rubber-poly (methyl methacrylate) interpenetrating polymer networks
PublicationA standard set of interpenetrating polymeric networks (IPNs) has been contrived using an elastomerstyrene butadiene rubber and a thermoplastic poly (methyl methacrylate) through sequential polymerization protocol. This low-cost material can be hopefully engaged as a toughened plastic with cocontinuous morphology. Different morphological protocols including Raman imaging are effectively utilized to envisage the effect of blend ratio...
-
Mathematical Modelling of a Seismic Isolation System to Protect Structures During Damaging Earthquakes
PublicationThe present study aims to determine the effectiveness of a nonlinear mathematical model in simulating complex mechanical behaviour of a seismic isolation system to protect structures during strong and damaging earthquakes. In order to construct the Polymeric Bearings considered in this research, a specially prepared flexible polyurethane elastomer with increased damping properties has been used. The usefulness of the proposed mathematical...
-
Numerical modelling of 3D printout using line (1D) elements
PublicationA proposition of some numerical modelling of the 3D printout is presented in the paper. The proposed model is composed of some 1D elements. The resulting numerical model of the infill consist of beam, spring and rigid elements. Obtained results confirm correctness of the proposed modelling method. Two methods of estimation of the spring parameters are proposed in the paper. In the first method, mechanical properties of the connecting...
-
Electrophoretically Deposited Chitosan/Eudragit E 100/AgNPs Composite Coatings on Titanium Substrate as a Silver Release System
PublicationDue to the possibility of bacterial infections occurring around peri-implant tissues, it is necessary to provide implant coatings that release antibacterial substances. The scientific goal of this paper was to produce by electrophoretic deposition (EPD) a smart, chitosan/Eudragit E 100/silver nanoparticles (chit/EE100/AgNPs) composite coating on the surface of titanium grade 2 using different deposition parameters, such as the...
-
ASCORBIC ACID IN POLYURETHANE SYSTEMS FOR TISSUE ENGINEERING
PublicationThe introduction of the paper was devoted to the main items of tissue engineering (TE) and the way of porous structure obtaining as scaffolds. Furthermore, the significant role of the scaffold design in TE was described. It was shown, that properly designed polyurethanes (PURs) find application in TE due to the proper physicochemical, mechanical and biological properties. Then the use of L-ascorbic acid (L-AA) in PUR systems for...
-
Enriched buckling for beam-lattice metamaterials
PublicationWe discuss two examples of beam-lattice metamaterials which show attractive mechanical properties concerning their enriched buckling. The first one considers pantographic beams and the nonlinear solution is traced out numerically on the base of a Hencky’s model and an algorithm based on Riks’ arc-length scheme. The second one concerns a beam-lattice with sliders and the nonlinear solution is discussed in analytic way and, finally,...
-
EXPERIMENTS AND SIMULATIONS FOR LAPAROSCOPICVENTRAL HERNIA REPAIR IMPROVEMENT
PublicationThe authors conducted a wide experimental and numerical study in order to determine effective approaches in the laparoscopic VH repair. At first the study covered identification of mechanical properties of the abdominal fascia, implants, tacks and transabdominalsutures. Basis on these data, the one and two-dimensional mathematical models were formulated and a number of numerical static and dynamic analyses were carried out. Then...
-
Fabrication of polyurethane and polyurethane based composite fibers by the electrospinning technique for soft tissue engineering of cardiovascular system
PublicationElectrospinning is the unique technique, which provides forming of polymeric scaffolds for soft tissue engineering, which include tissue scaffolds for soft tissues of cardiovascular system. Such artificial soft tissues of cardiovascular system may possess mechanical properties comparable to native vascular tissues. Electrospinning technique gives the opportu nity to form fibres with nm- to μm-scale in diameter. The arrangement...
-
Towards understanding the role of peroxide initiators on compatibilization efficiency of thermoplastic elastomers highly filled with reclaimed GTR
PublicationThermoplastic elastomers based on recycled high density polyethylene (rHDPE) and styrene-butadiene-styrene (SBS) block copolymer were highly filled with reclaimed ground tire rubber (RR). The impact of various organic peroxides (dicumyl peroxide (DCP), benzoyl peroxide (BP) and di-tert-butyl peroxide (DB)), applied as free-radical initiators, on the processing, structure and performance properties of rHDPE/SBS/RR blends was investigated....
-
Assessment of the application of CEM III with exposed aggregate as an alternative to CEM I for road pavements
PublicationThe article presents a results of study on the impact of replacing CEM I SR3/NA by CEMIII/A LH/HSR/NAon the mechanical properties and durability of pavement concrete with exposed aggregate. Was used granite aggregate and washed sand. Water/cement () ratio in the tested concretes constituted 0.35 and 0.4 and part of the cement was replaced with a 5% addition of natural pozzolana – zeolite. Compressive strength tests were performed...
-
Interrelationship between total volatile organic compounds emissions, structure and properties of natural rubber/polycaprolactone bio-blends cross-linked with peroxides
PublicationNatural rubber/polycaprolactone (NR/PCL) bio-based blends with different organic peroxides were prepared using an internal batch mixer and subsequently cross-linked at 170°C. Two types of commonly used organic peroxides, dicumyl peroxide and di(tert-butylperoxyisopropyl)benzene peroxide, were applied as free-radical initiator. Cross-linking efficiency of NR/PCL blends were investigated using oscillating disc rheometer measurements,...
-
Novel Biomass-Based Polymers: Synthesis, Characterization, and Application
PublicationA wide range of polymers were prepared from biomass-derivatives, using different polymerization mechanisms. Well-defined, fully hydroxy-functional polyesters based on aliphatic diols were synthesized, using either conventional metal-based catalysts or the organic superbase 1,5,7-triazabicyclododecene (TBD). Unsaturated polyesters were also made, offering additional functionality to these biobased resins. Metal-catalyzed or enzymatic...
-
Application of the X-ray micro computed tomography to the analysis of the structure of polymeric materials
PublicationIn this paper the application of X-ray micro-computed tomography (micro-CT) as a non-destructive testing method of polymeric materials is presented. Increasing applicability of polymers in variedend-use industries such as automotive, building and construction, consumer goods, and packaging is propelling the growth of the global polymer processing market. However, controlling of the polymer structure is one of the most important...
-
Reviewing the recent developments of using graphene-based nanosized materials in membrane separations
PublicationAccording to the potentialities of graphene-based materials and their unique physicochemical properties. Such 2D nanomaterials are likely to be the most implemented within the improvement of the selective separations of polymer membranes, together with enhanced physicochemical properties (such as hydrophilicity/hydrophobicity, transport of molecules, mechanical and thermal features, among others). Hence, this review compiles and...
-
Effect of MAO coatings on cavitation erosion and tribological properties of 5056 and 7075 aluminum alloys
PublicationTwo ceramic coatings have been applied on 5056 and 7075 aluminum alloy by microarc oxidation (MAO) technology. The mass losses, surface morphologies and the phase constituents of the MAO coatings before and after cavitation tests were examined by means of digital scales, scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. In order to assess the impact of the mechanical properties of the surface layer on...
-
Graphene Production and Biomedical Applications: A Review
PublicationGraphene is a two-dimensional nanomaterial composed of carbon atoms with sp2 hybrid orbitals. Both graphene and graphene-based composite have gained broad interest among researchers because of their outstanding physiochemical, mechanical, and biological properties. Graphene production techniques are divided into top-down and bottom-up synthesis methods, of which chemical vapor deposition (CVD) is the most popular. The biomedical...
-
π-Conjugated Donor-acceptor Polyelectrolytes: Toward Artificial Photosynthesis
PublicationGreat advances have been made in the development of conjugated polyelectrolytes (CPEs), which provide tunable properties including water solubility and processability, main-chain exciton and charge transport, variable energy light absorption and fluorescence, non-covalent interactions, and formation of tertiary structures via self-assembly.[1] These characteristics allow CPEs to be considered for use in various optoelectronic applications,...
-
Experimental and numerical evaluation of mechanical behaviour of composite structural insulated panels
PublicationComposite structural insulated panels (CSIPs) are novel prefabricated elements for structural applications. Panels under consideration are made from glass-fibre reinforced magnesia cement boards as facesheets and expanded polystyrene foam (EPS) as a core. Quasi-static full-scale and model bending tests under monotonic loading were performed to recognize mechanical properties of CSIPs in flexure. In addition, tensile, compressive,...
-
Application of lightweight cement composite with foamed glass aggregate in shell structures
PublicationThe purpose of the paper is to investigate the abilities of applying Granulated Expanded Glass Aggregate (GEGA) as a natural volume substitute of aggregate as a component of lightweight concrete. The GEGA aggregates used in the experiments were made of confused glass waste. In order to achieve satisfactory strength of concrete Granulated Ash Aggregate (GAA) was added as well. To produce specimens three grain sizes of aggregates...
-
Biomechanical causes for failure of the Physiomesh/Securestrap system
PublicationThis study investigates the mechanical behavior of the Physiomesh/Securestrap system, a hernia repair system used for IPOM procedures associated with high failure rates. The study involved conducting mechanical experiments and numerical simulations to investigate the mechanical behavior of the Physiomesh/Securestrap system under pressure load. Uniaxial tension tests were conducted to determine the elasticity modulus of the Physiomesh...
-
Multi-layered tissue head phantoms for noninvasive optical diagnostics
PublicationExtensive research in the area of optical sensing for medical diagnostics requires development of tissue phantoms with optical properties similar to those of living human tissues. Development and improvement of in vivo optical measurement systems requires the use of stable tissue phantoms with known characteristics, which are mainly used for calibration of such systems and testing their performance over time. Optical and mechanical...
-
Mechanical Behavior of Bi-Layer and Dispersion Coatings Composed of Several Nanostructures on Ti Substrate
PublicationThree coatings suitable for biomedical applications, including the dispersion coating composed of multi-wall carbon nanotubes (MWCNTs), MWCNTs/TiO2 bi-layer coating, and MWCNTs-Cu dispersion coating, were fabricated by electrophoretic deposition (EPD) on Ti Grade II substrate. Optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and nanoindentation were applied to study topography, chemical, and...
-
Effect of Laser Treatment on Intrinsic Mechanical Stresses in Titanium and Some of Its Alloys
PublicationLaser surface treatment conducted at different power levels is an option to modify titanium bone implants to produce nano- and microtopography. However, such processing can lead to excess mechanical stress within the surface layer. This research aims to calculate the level of such residual stresses after the surface processing of Ti grade IV, Ti15Mo, and Ti6Al7Nb alloys with an Nd:YAG laser. Light and scanning electron microscopies...
-
Zirconia ceramics with additions of Alumina for advanced tribological and biomedical applications
PublicationThe results of an investigation on slip cast and sintered Y2O3 (3 wt%)- stabilized ZrO2 with additions of 5, 10, 15 wt% Al2O3 are reported. The surface roughness, porosity and density of the samples were measured. The hardness HRc and Hv, fracture toughness K1C, and friction coefficients were also measured using standard methods. The structural properties of the samples were observed by Scanning Electron Microscopy (SEM). The surface...
-
Increasing the lifetime of engineering structures through the use of composite laggings
PublicationThe use of composite laggings prevents concrete (chemical and biological) corrosion. Columns coated with composite or reinforced composite are more resistant to negative environmental impact on concrete or steel. The mechanical properties of the reinforced casing also cause that these types of columns are more resistant to lateral forces. The applied casing limits carbonization of concrete and cyclical freezing and thawing with...
-
Application of muscle model to the musculoskeletal modeling
PublicationThe purpose of this paper is to investigate new fusiform muscle models. Each of these models treats a muscle as a system composedof parts characterized by different mechanical properties. These models explain the influence of differences in the stiffness of lateral parts and the degree of muscle model discretization. Each muscle model is described by a system of differential equations and a single integro-differential equation....
-
ANALYSIS OF THE PUNCHING FAILURE MECHANISM IN WORKING PLATFORMS
PublicationPaper presents an analysis of the shear failure mechanism which occurs from the punching of a working platform layer in relation to its thickness, grain size arrangement and mechanical properties, taking into consideration the interaction with soft subgrade. The study is based on the observations of performance of natural scale structures (Streefkerk) and the results of model investigations numerically represented with the use...
-
The use of GFRP tubes as load-bearing jackets in concrete-composite columns
PublicationThe paper presents the fields of applications of polymer composites in building structures. The use of composite glass fibre tubes is discussed in more detail. The laboratory methods used to test the mechanical properties of these pipes are presented. An original research program is presented, including six concrete-filled glass fibre tubes. The cylinders and columns made in this way were tested for their axial load capacity. Conclusions...
-
The Physicochemical and Antibacterial Properties of Chitosan-Based Materials Modified with Phenolic Acids Irradiated by UVC Light
PublicationThis paper concerns the physicochemical properties of chitosan/phenolic acid thin films irradiated by ultraviolet radiation with wavelengths between 200 and 290 nm (UVC) light. We investigated the preparation and characterization of thin films based on chitosan (CTS) with tannic (TA), caffeic (CA) and ferulic acid (FA) addition as potential food‐packaging materials. Such materials were then exposed to the UVC light (254 nm) for...
-
An in situ technique for the assessment of adhesive properties of a joint under load
PublicationSlow crack propagation in adhesive bonded joints has been characterised using an asymmetric wedge test. Crack position was evaluated from strain gauge measurements, both in the debonded partof the joint and in the bonded zone. Test temperature was changed during loading, giving insight into bond evolution. The technique allows accurate, and virtually continuous, determination of crack position to be made, and therefore the evaluation...
-
Synthesis, structure and properties of novel poly(hydroxyurethane)s obtained by non-isocyanate route
PublicationNon-isocyanate polyurethanes (NIPUs) can be synthesized by polyaddition of five-membered bis(cyclic carbonate)s and primary diamines. NIPUs are an alternative for the commonly used (in the form of foams, elastomers, coatings or fibers) in the industry polyurethanes obtained using toxic and moisture sensitive diisocyanates, polyols and low-molecular weight chain extenders. The main aim of this work was to synthesize non-isocyanate...
-
Electrodeposited Biocoatings, Their Properties and Fabrication Technologies: A Review
PublicationCoatings deposited under an electric field are applied for the surface modification of biomaterials. This review is aimed to characterize the state-of-art in this area with an emphasis on the advantages and disadvantages of used methods, process determinants, and properties of coatings. Over 170 articles, published mainly during the last ten years, were chosen, and reviewed as the most representative. The most recent developments...
-
Electrophoretic Deposition and Characteristics of Chitosan–Nanosilver Composite Coatings on a Nanotubular TiO2 Layer
PublicationThe surface treatment of titanium implants has been applied mainly to increase surface bioactivity and, more recently, to introduce antibacterial properties. To this end, composite coatings have been investigated, particularly those based on hydroxyapatite. The present research was aimed at the development of another coating type, chitosan–nanosilver, deposited on a Ti13Zr13Nb alloy. The research comprised characterization of the...
-
Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology
PublicationThe possibility of using additive manufacturing (AM) in the medicine area has created new opportunities in health care. This has contributed to a sharp increase in demand for 3D printers, their systems and materials that are adapted to strict medical requirements. We described herein a medical-grade thermoplastic polyurethane (S-TPU) which was developed and then formed into a filament for Fused Deposition Modeling (FDM) 3D printers...
-
Rigid polyurethane foams modified with selected layered silicate nanofillers
PublicationThe aim of this study was to investigate the effect of three different nanofillers on the properties of rigid polyurethane foams, which were prepared by a one-step, laboratory-scale method from a two-component system at the ratio of NCO groups to OH groups equaled to 2. The reaction mixture consisted of the proper amounts of the commercial oligoether polyol, catalysts, water, nanoclays, and polymeric diphenylmethane diisocyanate....
-
Preparation and characterization of porous scaffolds from chitosan-collagen-gelatin composite
PublicationNovel porous scaffolds composed of chitosan, collagen and gelatin were prepared and characterized. For preparing scaffolds gelatin and collagen isolated from fish skins with various physicochemical properties were used. In order to reduce preparation solubility glutaraldehyde in the amount of 1%, w/w relative to the total biopolymers weight in solution was used. All obtained biomaterials showed a homogeneous porosity. Protein polymer...