Filters
total: 929
filtered: 767
-
Catalog
Chosen catalog filters
Search results for: electrochemical synthesis
-
Photoinduced K+ Intercalation into MoO3/FTO Photoanode—the Impact on the Photoelectrochemical Performance
PublicationIn this work, thin layers of MoO3 were tested as potential photoanodes for water splitting. The influence of photointercalation of alkali metal cation (K+) into the MoO3 structure on the photoelectrochemical properties of the molybdenum trioxide films was investigated for the first time. MoO3 thin films were synthesized via thermal annealing of thin, metallic Mo films deposited onto the FTO substrate using a magnetron sputtering...
-
The influence of dynamic load changes on temporary impedance in hydrogen fuel cells, selection and validation of the electrical equivalent circuit
PublicationTo achieve optimal performance of a fuel cell, a reliable monitoring and diagnostic method is required. The currently utilized methods give limited information or they are impossible to use under dynamic working conditions. To obtain comprehensive information about the fuel cell operation we utilized novel dynamic electrochemical impedance spectroscopy. Impedance measurements in dynamic mode were performed on a hydrogen fuel cell,...
-
Nickel-nanodiamond coatings electrodeposited from tartrate electrolyte at ambient temperature
PublicationIn this study, nanocrystalline Ni and Ni-diamond coatings were obtained by electrodeposition from tartrate electrolyte at ambient temperature aiming at improving corrosion and wear properties of the material. The created surfaces were investigated with regard to microhardness, adhesion, wear- and corrosion-resistance. The various methods such as atomic force microscopy, scanning electron microscopy, electrochemical impedance spectroscopy...
-
Effect of TiO2 Concentration on Microstructure and Properties of Composite Cu–Sn–TiO2 Coatings Obtained by Electrodeposition
PublicationIn this work, Cu–Sn–TiO2 composite coatings were electrochemically obtained from a sulfate bath containing 0–10 g/L of TiO2 nanoparticles. The effect of TiO2 particles on kinetics of cathodic electrodeposition has been studied by linear sweep voltammetry and chronopotentiometry. As compared to the Cu–Sn alloy, the Cu–Sn–TiO2 composite coatings show rougher surfaces with TiO2 agglomerates embedded in the metal matrix. The highest...
-
Determination of Odour Interactions in Gaseous Mixtures Using Electronic Nose Methods with Artificial Neural Networks
PublicationThis paper presents application of an electronic nose prototype comprised of eight sensors, five TGS-type sensors, two electrochemical sensors and one PID-type sensor, to identify odour interaction phenomenon in two-, three-, four- and five-component odorous mixtures. Typical chemical compounds, such as toluene, acetone, triethylamine, α-pinene and n-butanol, present near municipal landfills and sewage treatment plants were subjected...
-
An integral-differential method for impedance determination of the hydrogen oxidation process in the presence of carbon monoxide in the proton exchange membrane fuel cell
PublicationThe impedance of a proton exchange membrane fuel cell powered by hydrogen contaminated with carbon monoxide, ranging from 150 to 300 ppb, is measured and discussed. The tested range of CO concentration complied with the fuel standard specified in the ISO standards. Studies of influence of CO contamination on operation of PEMFC are crucial for further development and commercialization of fuel cells for automotive applications. Based...
-
Biocompatibility and bioactivity of load-bearing metallic implants
PublicationThe main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation;...
-
Sorbents modified by deep eutectic solvents in microextraction techniques
PublicationIn recent years, considerable attention has been directed towards the employment of green solvents, specifically deep eutectic solvents (DES), in liquid phase microextraction techniques. However, comprehensive and organized knowledge regarding the modification of sorbent surface structures with DES remains limited. Therefore, this paper reviews the application of DES in modifying and improving the properties of sorbents for microextraction...
-
Tuning the work function of graphite nanoparticles via edge termination
PublicationGraphite nanoparticles are important in energy materials applications such as lithium-ion batteries (LIBs), supercapacitors and as catalyst supports. Tuning the work function of the nanoparticles allows local control of lithiation behaviour in LIBs, and the potential of zero charge of electrocatalysts and supercapacitors. Using large scale density functional theory (DFT) calculations, we find that the surface termination of multilayer...
-
RESEARCH ON ORGANIC COATINGS DESIGNED FOR UNDERWATER APPLICATIONS
PublicationUnderwater steel structures require periodic maintenance. In the case of vessels, anti-corrosion works are carried out in the shipyard, where very good conditions for applying organic protective coatings can be provided. Very good surface preparation can be obtained by the use of abrasive blasting. The well-prepared metal surface is free from impurities (particularly inorganic salts). Suitable conditions for the application and...
-
Nanotubular Oxide Layer Formed on Helix Surfaces of Dental Screw Implants
PublicationSurface modification is used to extend the life of implants. To increase the corrosion resistance and improve the biocompatibility of metal implant materials, oxidation of the Ti-13Nb- 13Zr titanium alloy was used. The samples used for the research had the shape of a helix with a metric thread, with their geometry imitating a dental implant. The oxide layer was produced by a standard electrochemical method in an environment of...
-
The Interplay between Endogenous and Foodborne Pro-Oxidants and Antioxidants in Shaping Redox Homeostasis
PublicationOxidative stress has been known about in biological sciences for several decades; however, the understanding of this concept has evolved greatly since its foundation. Over the past years, reactive oxygen species, once viewed as solely deleterious, have become recognized as intrinsic components of life. In contrast, antioxidants, initially believed to be cure-all remedies, have failed to prove their efficacy in clinical trials....
-
Molybdenum sulfide modified with nickel or platinum nanoparticles as an effective catalyst for hydrogen evolution reaction
PublicationIn this study, we investigate the catalytic performance of molybdenum sulfide (MoS2) modified with either nickel (Ni) or platinum (Pt) nanoparticles as catalysts for the hydrogen evolution reaction (HER). The MoS2 was prepared on the TiO2 nanotube substrates via a facile hydrothermal method, followed by the deposition by magnetron sputtering of Ni or Pt nanoparticles on the MoS2 surface. Structural and morphological characterization...
-
Local Structure and Stability of SEI in Graphite and ZFO Electrodes Probed by As K-edge Absorption Spectroscopy
PublicationThe evolution of the solid electrolyte interphase (SEI) during the first Li uptake in advanced Li-ion electrodes is studied by X-ray absorption spectroscopy (XAS). The As atoms present in the electrolyte solution were used as a local probe for monitoring the SEI growth on different electrodes. High-quality As K-edge spectra were collected in fluorescence mode for a set of graphite and carbon-coated ZnFe2O4 electrodes. XAS measurements...
-
Potentiometric Oxygen Sensor with Solid State Reference Electrode
PublicationThe concentration or the partial pressure of oxygen in an environment can be determined using different measuring principles. For high temperature measurements of oxygen, ceramic-based sensors are the most practical. They are simple in construction, exploration and maintenance. A typical oxygen potentiometric sensor consists of an oxygen ion conducting solid electrolyte and two electrodes deposited...
-
Ionic conductivity behavior by activated hopping conductivity (AHC) of barium aluminoborosilicate glass–ceramic system designed for SOFC sealing
PublicationNon-conducting BaO-B2O3-Al2O3-SiO2 parent glasses designed for solid oxide fuel cell (SOFC) sealing applications were prepared using the melt-quenching technique. The glass formation region was determined according to phase equilibrium relations and was found to be in the composition range 70BaO-(x)Al2O3-(10−x)B2O3-20SiO2 where 3.0 < x < 6.0 wt%. The conductivity values obtained conductivity ranged from 10−5 to 10−10 S/cm at temperatures...
-
High catalytic performance of laccase wired to naphthylated multiwall carbon nanotubes
PublicationThe direct electrical connection of laccase on the electrode surface is a key feature in the design of efficient and stable biocathodes. However, laccases can perform a direct electron transfer only when they are in the preferable orientation toward the electrode. Here we report the investigation of the orientation of Laccase from Amano on multi-walled carbon nanotube surface modified with naphthalene group. Naphthylated multi...
-
Fault Diagnostics in PEMFC Stacks by Evaluation of Local Performance and Cell Impedance Analysis
PublicationStarvation, flooding, and dry‐out phenomena occur in polymer electrolyte membrane fuel cells (PEMFCs), due to heterogeneous local conditions, material inhomogeneity, and uneven flow distribution across the single cell active area and in between the individual cells. The impact of the load level and air feed conditions on the performance was identified for individual single cells within a 10‐cell stack. Analysis of the current density...
-
Corrosion Properties of Dissimilar AA6082/AA6060 Friction Stir Welded Butt Joints in Different NaCl Concentrations
PublicationA solid-state friction stir welding method which is increasingly used in the marine and shipbuilding industry, has been developed to produce welds with high mechanical properties. In seawater, the oxide layer of aluminium is attacked by Cl− ions resulting in its disruption and formation of pitting corrosion. It is particularly important to determine the electrochemical properties of the produced welds and to evaluate the efect...
-
Structural and electronic properties of diamond-composed heterostructures
PublicationDiamond is a promising material for 21st century electronics due to its high thermal and electronic conductivity, biocompatibility, chemical stability, high wear resistance, and possibility of doping. However, the semiconductor properties of diamond, especially free-standing films, have not been fully explored. Nor have their integration with polymers and fragile materials and their applications as electronic components. In this...
-
Energetics of formation and stability in high pressure steam of barium lanthanide cobaltite double perovskites
PublicationThis study concerns energetics of formation and the stability in high water partial pressure of BaLnCo2O6−δ, (Ln = La, Pr, Nd, and Gd) (BLnC) and BaGd1−xLaxCo2O6−δ, where x = 0.2, 0.5, and 0.7 (BGLC) double perovskite cobaltites. Those materials are extensively studied due to their potential applications as a positrode in electrochemical devices. Therefore, their stability under such conditions is a key issue. All investigated...
-
The Effect of Sodium Tetrafluoroborate on the Properties of Conversion Coatings Formed on the AZ91D Magnesium Alloy by Plasma Electrolytic Oxidation
PublicationMagnesium and its alloys are widely used in many areas because of their light weight, excellent dimensional stability, and high strength-to-weight ratio. However, the material exhibits poor wear and corrosion resistance, which limits its use. Plasma electrolytic oxidation (PEO) is an effective surface modification method for producing ceramic oxide layers on Mg and their alloys. The influence of the additions of sodium tetrafluoroborate...
-
Mechanochemically synthesized Mn3O4@β-cyclodextrin mediates efficient electron transfer process for peroxymonosulfate activation
PublicationThe rational surface engineering of heterogeneous catalysts is of great significance in advanced oxidation processes (AOPs) for eliminating refractory contaminants but remains challenging. In this study, β-cyclodextrin modified Mn3O4 (Mn3O4@β-CD) was prepared through a mechanochemical approach for peroxymonosulfate (PMS) activation, which achieved efficient bisphenol A (BPA) removal via electron transfer process (ETP). The reactive...
-
SrCe0.9In0.1O3-δ-based reversible symmetrical Protonic Ceramic Cell
PublicationIn-doped SrCe0.9In0.1O3-δ (SCI) perovskite-type oxide is utilized as the solid electrolyte, as well as a component, together with SrFe0.75Mo0.25O3-δ (SFM) compound, in the composite-type electrodes to construct symmetrical Protonic Ceramic Fuel Cells (PCFC). With good mutual stability of SCI and SFM at high temperatures in water vapor-containing reducing and oxidizing conditions, as well as sufficient ionic conductivity with high...
-
The impedance of hydrogen oxidation reaction in a proton exchange membrane fuel cell in the presence of carbon monoxide in hydrogen stream
PublicationEvaluation of performance of a proton exchange membrane fuel cell, which is affected by carbon monoxide that pollutes the hydrogen stream, was presented. This influence was studied for carbon monoxide concentration of 125–325 ppb, which are close to values specified in ISO 14687:2019 standard. Performed studies provided crucial information for further development of fuel cell as an energy source for automotive application. Impedance...
-
Effect of interconnect coating procedure on solid oxide fuel cell performance
PublicationChromium (Cr) species vaporizing from chromia-forming alloy interconnects is known as a source of degradation in solid oxide fuel cell (SOFC) stacks called “cathode poisoning”. (Mn,Co)3O4 spinel coatings offer good protection against Cr evaporation during operation. In this study, Crofer 22 APU steel interconnects were electrophoretically deposited in different mediums to obtain high packing of green coating layer. The optimized...
-
Advances and Trends in Non-Conventional, Abrasive and Precision Machining 2021
PublicationIn the modern, rapidly evolving industrial landscape, the quest for machining and production processes consistently delivering superior quality and precision is more pronounced than ever. This necessity and imperative are driven by the increasing complexity in the design and manufacturing of mechanical components, an evolution in lockstep with the swift advancements in material science. The real challenge of this evolution lies...
-
Vitamin B9 as a new eco-friendly corrosion inhibitor for copper in 3.5% NaCl solution
PublicationFolic acid salt (sodium folate) was studied as an eco-friendly and non-toxic copper corrosion inhibitor in 3.5% NaCl solution. Electrochemical impedance spectroscopy, polarization resistance and weight-loss measurements show that the inhibitor efficiency increases with concentration (the highest value- approx. 96% was reported for the solution containing 16 mM sodium folate after 24 h). EIS data and Tafel plots indicate that sodium...
-
The influence of the fuel spray nozzle geometry on the exhaust gas composition from the marine 4-stroke diesel engine
PublicationThe paper presents experimental research on a 4-stroke, 3-cylinder, turbocharged AL25/30 Diesel engine. Research consisted in investigating the effect of the geometry of the fuel injectors on the exhaust gas composition from the engine. During measurements, the engine was operated with a regulator characteristic of a load range from 40 kW to 280 kW, made by electric water resistance. The engine was mechanically coupled to the electric...
-
Structural and electrical properties of Cr-doped SrTiO 3 porous materials
PublicationSeries of single-phase materials with assumed formula SrTi1−xCrxO3 (where x = 0, 1, 4, 6 mol.%) were obtained by sol-gel method. The structure and microstructure of materials were characterised by X-ray diffraction and scanning electron microscopy methods. Moreover, the study of electrical properties and evaluation of chemical stability in CO2/H2O atmosphere was performed by electrochemical impedance spectroscopy and thermogravimery...
-
New ceramic materials derived from pyrolyzed poly(1,2-dimethylsilazane) and starch as a potential anode for Li-ion batteries
PublicationNewmaterialswere obtained by pyrolysis of starch (S) and poly(1,2-dimethylsilazane) (PSN) (weight ratio: PSN/S 30/70) at temperature a) 500 °C, b) 700 °C and c) 900 °C. Ceramic materials were characterized by infrared spectroscopy, TGA, Raman spectroscopy and SEM. New Si\O and shifted Si\C stretching vibration modes emerged confirming direct interaction between silicon originating fromsilazane and oxygen coming fromstarch. The...
-
Fabrication of anti-corrosion nitrogen doped graphene oxide coatings by electrophoretic deposition
PublicationThis work assesses anti-corrosion properties of graphene and N-doped graphene coatings deposited on copper by an electrophoretic method. Graphene oxide (GO) precursor was synthesized by an improved Hummers' method, whereas N-doping was performed hydrothermally in the presence of ammonia. After nitrogenation, doped graphene oxide samples (NGO) contained a reduced amount of oxygen and about 9% w/w nitrogen as pyridinic, pyrrole,...
-
Galvanostatic impedance measurements for the efficient adsorption isotherm construction in corrosion inhibitor studies
PublicationWe present an approach towards an accurate and time-efficient adsorption isotherm determination to evaluate the corrosion inhibitor interaction in electrolytic environments. The approach is based on dynamic impedance spectroscopy measurements in galvanostatic mode (g-DEIS). The studied corrosion inhibitor is continuously injected between the secondary cell and the corrosion cell. The efficiency corresponding to instantaneous inhibitor...
-
Nanostructure of the laser-modified transition metal nanocomposites for water splitting
PublicationAlthough hydrogen is considered by many to be the green fuel of the future, nowadays it is primarily produced through steam reforming, which is a process far from ecological. Therefore, emphasis is being put on the development of electrodes capable of the efficient production of hydrogen and oxygen from water. To make the green alternative possible, the solution should be cost-efficient and well processable, generating less waste...
-
Metal–Organic Frameworks (MOFs) for Cancer Therapy
PublicationMOFs exhibit inherent extraordinary features for diverse applications ranging from catalysis, storage, and optics to chemosensory and biomedical science and technology. Several procedures including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasound techniques have been used to synthesize MOFs with tailored features. A continued attempt has also been directed towards functionalizing MOFs via “post-synthetic...
-
Spectacular Oxygen Evolution Reaction Enhancement Through Laser Processing of the Nickel-Decorated Titania Nanotubes
PublicationThe selective, laser-induced modification of the nickel-decorated titania nanotubes provides remarkable enhancement toward oxygen evolution reaction. Particularly, the irradiation of the laterally spaced crystalline TiO2 nanotubes, results in the formation of the tight closure over irradiated end, preserving their hollow interior. The shape of the absorbance spectra is modulated along with applied energy, and the new absorption...
-
Structure and transport properties of triple-conducting BaxSr1−xTi1−yFeyO3−δ oxides
PublicationIn this work, BaxSr1−xTi1−yFeyO3−δ perovskite-based mixed conducting ceramics (for x = 0, 0.2, 0.5 and y = 0.1, 0.8) were synthesized and studied. The structural analysis based on the X-ray diffraction results showed significant changes in the unit cell volume and Fe(Ti)–O distance as a function of Ba content. The morphology of the synthesized samples studied by means of scanning electron microscopy has shown different microstructures...
-
Tuning of eg electron occupancy of MnCo2O4 spinel for oxygen evolution reaction by partial substitution of Co by Fe at octahedral sites
PublicationTo study the effect of partial Co substitution by Fe in the B site of MnCo2O4 spinel on its physicochemical and electrochemical properties, a series of MnCo2-xFexO4 powders (x=0.125; 0.250; 0.500; 0.750; 1.000) were synthesized by means of the sol-gel method. The produced powders were characterized by powder X ray diffraction (pXRD), scanning and transmission electron microscopy (SEM & TEM) coupled with energy dispersive spectroscopy...
-
Spectacular Oxygen Evolution Reaction Enhancement through Laser Processing of the Nickel‐Decorated Titania Nanotubes
PublicationThe selective, laser‐induced modification of the nickel‐decorated titania nanotubes provides remarkable enhancement toward oxygen evolution reaction. Particularly, the irradiation of the laterally spaced crystalline TiO2 nanotubes, results in the formation of the tight closure over irradiated end, preserving their hollow interior. The shape of the absorbance spectra is modulated along with applied energy, and the new absorption...
-
Actual field corrosion rate of offshore structures in the Baltic Sea along depth profile from water surface to sea bed
PublicationThe paper presents the results of field electrochemical investigations on the corrosion rate of carbon steel in seawater of the Baltic Sea at the location of the Baltic Beta production rig. The measurements were conducted throughout the year in seawater at different depths from the sea surface to the sea bed (about 75 m). The results revealed corrosion aggressiveness of the seawater along the entire depth profile. There was...
-
Laser-assisted modification of titanium dioxide nanotubes in a tilted mode as surface modification and patterning strategy
PublicationElectrochemical anodization is regarded as a facile and easily scalable fabrication method of titania nanotubes (TiO2NTs). However, due to the extended duration of calcination and further modifications, much faster alternatives are highly required. As a response to growing interest in laser modification of nanotube arrays, a comprehensive investigation of pulsed-laser irradiation and its effect onto TiO2NT properties has been carried out....
-
Photosensitive and pH-dependent activity of pyrazine-functionalized carbazole derivative as promising antifungal and imaging agent
PublicationCarbazole skeleton plays a significant role as a structural scaffold of many pharmacologically active compounds. Pyrazine-functionalized carbazole derivative was constructed by coupling 2-amino-5-bromo-3-methylaminepyrazine (ABMAP) into 3 and 6 positions of the carbazole ring. Multi-experimental methods were used, e.g., potentiometric, spectroscopic (ATR, UV, XRD powder,1H and13C NMR), electrochemical (cyclic voltammetry), and...
-
Multifrequency Nanoscale Impedance Microscopy (m-NIM): A novel approach towards detection of selective and subtle modifications on the surface of polycrystalline boron-doped diamond electrodes
PublicationIn this paper, we describe the modification of Nanoscale Impedance Microscopy (NIM), namely, a combination of contact-mode atomic force microscopy with local impedance measurements. The postulated approach is based on the application of multifrequency voltage perturbation instead of standard frequency-by-frequency analysis, which among others offers more time-efficient and accurate determination of the resultant impedance spectra...
-
Combination of air-dispersion cathode with sacrificial iron anode generating Fe2+Fe3+2O4 nanostructures to degrade paracetamol under ultrasonic irradiation
PublicationIn the present study, ultrasound (US) was coupled with an electrochemical process (ECP) consisting of a novel cathode of carbon cloth (CC)-carbon black (CB) as the nano-composite air-dispersion cathode (NADC) for the degradation of paracetamol (APAP) in an aquatic medium. The NADC favored in situ production of H2O2 by the cathodic reduction. The implementation of iron sacrificial anode instead of dimensionally stable anodes resulted...
-
Fabrication and Significant Photoelectrochemical Activity of Titania Nanotubes Modified with Thin Indium Tin Oxide Film
PublicationOrdered titanium dioxide nanotubes (TiO2NTs) modified with indium tin oxide (ITO) films were obtained via magnetron sputtering, in which ITO plate was used as a target, onto the as-anodized titania support followed by the calcination process. The morphology of fabricated material with deposited oxide was investigated using scanning electron microscopy. Raman and UV–Vis spectroscopies were utilized to characterize crystalline phase...
-
Structural and electrical transport properties of Pr-doped SrTi0.93Co0.07O3-δ a novel SOEC fuel electrode materials
PublicationSolid Oxide Electrolyzer Cells (SOECs) are very promising electrochemical devices for the production of syngas (H2/CO) by H2O and CO2 co-electrolysis. The structure, microstructure and electrical properties of the fuel electrode material play a crucial role in the performance of the whole cell and efficiency of electrocatalytic reduction of steam into hydrogen. In the present work, a novel Co and Pr co-doped SrTiO3-δ material attracted...
-
Photocatalytical properties of maze-like MoO3 microstructures prepared by anodization of Mo plate
PublicationIn this work, we present a simple method of the formation of MoO3 microstructures via an electrochemical anodization of Mo plate carried out under varied conditions. The morphology, composition and structure of samples were investigated by SEM, EDX, XRD and Raman spectroscopy. The band gap energy was estimated using the Kubelka–Munk function and was found to be 2.87 eV. Finally, the photocatalytic activities of MoO3 samples were...
-
Flexible dye-sensitized solar cells based on Ti/TiO2 nanotubes photoanode and Pt-free and TCO-free counter electrode system
PublicationFlexible dye-sensitized solar cells (DSSCs) are getting more attention compared to standard glass covered DSSCs due to their unique commercial applications (e.g. tents or sail surfaces) and the possibility of rolling up into a small, portable device. In this work, titania nanotubes (TiO2 NT) modified with titania nanoparticles (TiO2 NP) were photoelectrochemically characterized as an anode for flexible dye-sensitized solar cells....
-
A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond
PublicationAccording to the World Health Organization (WHO), almost 2 billion people each year are infected worldwide with flu-like pathogens including influenza. This is a contagious disease caused by viruses belonging to the family Orthomyxoviridae. Employee absenteeism caused by flu infection costs hundreds of millions of dollars every year. To successfully treat influenza virus infections, detection of the virus during the initial development...
-
The Morphology, Structure, Mechanical Properties and Biocompatibility of Nanotubular Titania Coatings before and after Autoclaving Process
PublicationThe autoclaving process is one of the sterilization procedures of implantable devices. Therefore, it is important to assess the impact of hot steam at high pressure on the morphology, structure, and properties of implants modified by nanocomposite coatings. In our works, we focused on studies on amorphous titania nanotubes produced by titanium alloy (Ti6Al4V) electrochemical oxidation in the potential range 5–60 V. Half of the...