Filters
total: 149
filtered: 142
Search results for: 2d space feature, speech analysis, deep learning, spectrogram, cepstrogram, chromagram
-
Expedited Machine-Learning-Based Global Design Optimization of Antenna Systems Using Response Features and Multi-Fidelity EM Analysis
PublicationThe design of antenna systems poses a significant challenge due to stringent per-formance requirements dictated by contemporary applications and the high com-putational costs associated with models, particularly full-wave electromagnetic (EM) analysis. Presently, EM simulation plays a crucial role in all design phases, encompassing topology development, parametric studies, and the final adjustment of antenna dimensions. The latter...
-
On the Use of Selected 4th Generation Nuclear Reactors in Marine Power Plants
PublicationThis article provides a review of the possibility of using different types of reactors to power ships. The analyses were carried out for three different large vessels: a container ship, a liquid gas carrier and a bulk carrier. A novelty of this work is the analysis of the proposal to adapt marine power plants to ecological requirements in shipping by replacing the conventional propulsion system based on internal combustion engines...
-
Spin and Orbital Effects on Asymmetric Exchange Interaction in Polar Magnets: M(IO3)2 (M = Cu and Mn)
PublicationMagnetic polar materials feature an astonishing range of physical properties, such as magnetoelectric coupling, chiral spin textures, and related new spin topology physics. This is primarily attributable to their lack of space inversion symmetry in conjunction with unpaired electrons, potentially facilitating an asymmetric Dzyaloshinskii–Moriya (DM) exchange interaction supported by spin–orbital and electron–lattice coupling. However,...
-
Data fusion of sparse, heterogeneous, and mobile sensor devices using adaptive distance attention
PublicationIn environmental science, where information from sensor devices are sparse, data fusion for mapping purposes is often based on geostatistical approaches. We propose a methodology called adaptive distance attention that enables us to fuse sparse, heterogeneous, and mobile sensor devices and predict values at locations with no previous measurement. The approach allows for automatically weighting the measurements according to a priori...
-
Melanoma skin cancer detection using mask-RCNN with modified GRU model
PublicationIntroduction: Melanoma Skin Cancer (MSC) is a type of cancer in the human body; therefore, early disease diagnosis is essential for reducing the mortality rate. However, dermoscopic image analysis poses challenges due to factors such as color illumination, light reflections, and the varying sizes and shapes of lesions. To overcome these challenges, an automated framework is proposed in this manuscript. Methods: Initially, dermoscopic...
-
Finding the Right Solvent: A Novel Screening Protocol for Identifying Environmentally Friendly and Cost-Effective Options for Benzenesulfonamide
PublicationThis study investigated the solubility of benzenesulfonamide (BSA) as a model compound using experimental and computational methods. New experimental solubility data were collected in the solvents DMSO, DMF, 4FM, and their binary mixtures with water. The predictive model was constructed based on the best-performing regression models trained on available experimental data, and their hyperparameters were optimized using a newly...
-
Techno‐economic evaluation of a natural deep eutectic solvent‐based biorefinery: Exploring different design scenarios
PublicationThis paper presents a comprehensive techno‐economic evaluation of an integrated natural deep eutectic solvent (NADES)‐based biorefinery – a 1 ton day−1 capacity design plant. The key parameters include payback period, net present value (NPV), and internal rate of return (IRR). These were compared with the parameters of conventional biorefineries. The ‘n th plant’ results clearly revealed that the single product‐based biorefinery...
-
How to teach architecture? – Remarks on the edge of Polish transformation processes after 1989
PublicationThe political changes in Poland after 1989 have resulted in a whole range of dynamic processes including the transformation of space. Until that time the established institutional framework for spatial, urban and architectural planning policy was based on uniform provisions of the so-called planned economy. The same applied to the training of architects, which was based on a unified profile of education provided at the state’s...
-
Automatic classification and mapping of the seabed using airborne LiDAR bathymetry
PublicationShallow coastal areas are among the most inhabited areas and are valuable for biodiversity, recreation and the economy. Due to climate change and sea level rise, sustainable management of coastal areas involves extensive exploration, monitoring, and protection. Current high-resolution remote sensing methods for monitoring these areas include bathymetric LiDAR. Therefore, this study presents a novel methodological approach to assess...
-
Instrument detection and pose estimation with rigid part mixtures model in video-assisted surgeries
PublicationLocalizing instrument parts in video-assisted surgeries is an attractive and open computer vision problem. A working algorithm would immediately find applications in computer-aided interventions in the operating theater. Knowing the location of tool parts could help virtually augment visual faculty of surgeons, assess skills of novice surgeons, and increase autonomy of surgical robots. A surgical tool varies in appearance due to...
-
Rapid Design Centering of Multi-Band Antennas Using Knowledge-Based Inverse Models and Response Features
PublicationAccounting for manufacturing tolerances as well as uncertainties concerning operating conditions and material parameters is one of the important yet often neglected aspects of antenna development. Appropriate quantification of uncertainties allows for estimating the fabrication yield but also to carry out robust design (e.g., yield maximization). For reliability reasons, statistical analysis should be executed at the accuracy level...
-
Sensors and System for Vehicle Navigation
PublicationIn recent years, vehicle navigation, in particular autonomous navigation, has been at the center of several major developments, both in civilian and defense applications. New technologies, such as multisensory data fusion, big data processing, or deep learning, are changing the quality of areas of applications, improving the sensors and systems used. Recently, the influence of artificial intelligence on sensor data processing and...
-
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
PublicationThis work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...
-
Exploring the Solubility Limits of Edaravone in Neat Solvents and Binary Mixtures: Experimental and Machine Learning Study
PublicationThis study explores the edaravone solubility space encompassing both neat and binary dissolution media. Efforts were made to reveal the inherent concentration limits of common pure and mixed solvents. For this purpose, the published solubility data of the title drug were scrupulously inspected and cured, which made the dataset consistent and coherent. However, the lack of some important types of solvents in the collection called...
-
A benchmark for particle shape dependence
PublicationParticle shape is a major parameter for the space-filling and strength properties of granular materials. For a systematic investigation of shape effect, a numerical benchmark test was set up within a collaborative group using different numerical methods and particles of various shape characteristics such as elongation, angularity and nonconvexity. Extensive 2D shear simulations were performed in this framework and the shear strength...
-
Model-Based Adaptive Machine Learning Approach in Concrete Mix Design
PublicationConcrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...
-
Neural network agents trained by declarative programming tutors
PublicationThis paper presents an experimental study on the development of a neural network-based agent, trained using data generated using declarative programming. The focus of the study is the application of various agents to solve the classic logic task – The Wumpus World. The paper evaluates the effectiveness of neural-based agents across different map configurations, offering a comparative analysis to underline the strengths and limitations...
-
Precise Identification of Different Cervical Intraepithelial Neoplasia (CIN) Stages, Using Biomedical Engineering Combined with Data Mining and Machine Learning
PublicationCervical cancer (CC) is one of the most common female cancers worldwide. It remains a significant global health challenge, particularly affecting women in diverse regions. The pivotal role of human papillomavirus (HPV) infection in cervical carcinogenesis underscores the critical importance of diagnostic strategies targeting both HPV infection and cervical...
-
University Students’ Research on Artificial Intelligence and Knowledge Management. A Review and Report of Multi-case Studies
PublicationLeading technologies are very attractive for students preparing their theses as the completion of their studies. Such an orientation of students connected with professional experiences seems to be a crucial motivator in the research in the management and business areas where these technologies condition the development of professional activities. The goal of the paper is the analysis of students’ thesis topics defended in the last...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublicationIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Smartphones as tools for equitable food quality assessment
PublicationBackground: The ubiquity of smartphones equipped with an array of sophisticated sensors, ample processing power, network connectivity and a convenient interface makes them a promising tool for non-invasive, portable food quality assessment. Combined with the recent developments in the areas of IoT, deep learning algorithms and cloud computing, they present an opportunity for advancing wide-spread, equitable and sustainable food...
-
Identyfikacja instrumentu muzycznego z nagrania fonicznego za pomocą sztucznych sieci neuronowych
PublicationCelem rozprawy jest zbadanie algorytmów do identyfikacji instrumentów występujących w sygnale polifonicznym z wykorzystaniem sztucznych sieci neuronowych. W części teoretycznej przywołano podstawy przetwarzania sygnałów fonicznych w kontekście ekstrakcji parametrów sygnałów wykorzystywanych w treningu sieci neuronowych. Dodatkowo dokonano analizy rozwoju metod uczenia maszynowego z uwzględnieniem podziału na sieci neuronowe pierwszej,...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublicationNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
The High Quality Business School Academic Teacher of the 21st Century – Polish Students’ Perspective
PublicationThe literature shows that the success and competence of future managers depend on the quality of their academic teachers. Moreover high quality study requires high quality lecturing/teaching that creates an environment in which deep learning outcomes are made possible for students. The aim was to identify the characteristics of the academic teacher working at business schools, according to the expectations of Polish students...
-
CNN-CLFFA: Support Mobile Edge Computing in Transportation Cyber Physical System
PublicationIn the present scenario, the transportation Cyber Physical System (CPS) improves the reliability and efficiency of the transportation systems by enhancing the interactions between the physical and cyber systems. With the provision of better storage ability and enhanced computing, cloud computing extends transportation CPS in Mobile Edge Computing (MEC). By inspecting the existing literatures, the cloud computing cannot fulfill...
-
Explainable machine learning for diffraction patterns
PublicationSerial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...
-
On Computationally-Efficient Reference Design Acquisition for Reduced-Cost Constrained Modeling and Re-Design of Compact Microwave Passives
PublicationFull-wave electromagnetic (EM) analysis has been playing a major role in the design of microwave components for the last few decades. In particular, EM tools allow for accurate evaluation of electrical performance of miniaturized structures where strong cross-coupling effects cannot be adequately quantified using equivalent network models. However, EM-based design procedures (parametric optimization, statistical analysis) generate...
-
Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach
PublicationTreatment of municipal wastewater to meet the stringent effluent quality standards is an energy-intensive process and the main contributor to the costs of wastewater treatment plants (WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, and climate-based parameters on the daily consumption of EC by...
-
Remote measurement of building usable floor area - Algorithms fusion
PublicationRapid changes that are taking place in the urban environment have significant impact on urban growth. Most cities and urban regions all over the world compete to increase resident and visitor satisfaction. The growing requirements and rapidity of introducing new technologies to all aspects of residents' lives force cities and urban regions to implement "smart cities" concepts in their activities. Real estate is one of the principal...
-
Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces
PublicationPopularity of metasurfaces has been continuously growing due to their attractive properties including the ability to effectively manipulate electromagnetic (EM) waves. Metasurfaces comprise optimized geometries of unit cells arranged as a periodic lattice to obtain a desired EM response. One of their emerging application areas is the stealth technology, in particular, realization of radar cross section (RCS) reduction. Despite...
-
Deep learning-based waste detection in natural and urban environments
PublicationWaste pollution is one of the most significant environmental issues in the modern world. The importance of recycling is well known, both for economic and ecological reasons, and the industry demands high efficiency. Current studies towards automatic waste detection are hardly comparable due to the lack of benchmarks and widely accepted standards regarding the used metrics and data. Those problems are addressed in this article by...
-
Comparative study on the effectiveness of various types of road traffic intensity detectors
PublicationVehicle detection and speed measurements are crucial tasks in traffic monitoring systems. In this work, we focus on several types of electronic sensors, operating on different physical principles in order to compare their effectiveness in real traffic conditions. Commercial solutions are based on road tubes, microwave sensors, LiDARs, and video cameras. Distributed traffic monitoring systems require a high number of monitoring...
-
A Survey on the Datasets and Algorithms for Satellite Data Applications
PublicationThis survey compiles insights and describes datasets and algorithms for applications based on remote sensing. The goal of this review is twofold: datasets review for particular groups of tasks and high-level steps of data flow between satellite instruments and end applications from an implementation and development perspective. The article outlines the generalized data processing pipelines, taking into account the variations in...
-
Numerical Issues and Approximated Models for the Diagnosis of Transmission Pipelines
PublicationThe chapter concerns numerical issues encountered when the pipeline flow process is modeled as a discrete-time state-space model. In particular, issues related to computational complexity and computability are discussed, i.e., simulation feasibility which is connected to the notions of singularity and stability of the model. These properties are critical if a diagnostic system is based on a discrete mathematical model of the flow...
-
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublicationDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...
-
Automatic recognition of males and females among web browser users based on behavioural patterns of peripherals usage
PublicationPurpose The purpose of this paper is to answer the question whether it is possible to recognise the gender of a web browser user on the basis of keystroke dynamics and mouse movements. Design/methodology/approach An experiment was organised in order to track mouse and keyboard usage using a special web browser plug-in. After collecting the data, a number of parameters describing the users’ keystrokes, mouse movements and clicks...
-
Real-Time Facial Features Detection from Low Resolution Thermal Images with Deep Classification Models
PublicationDeep networks have already shown a spectacular success for object classification and detection for various applications from everyday use cases to advanced medical problems. The main advantage of the classification models over the detection models is less time and effort needed for dataset preparation, because classification networks do not require bounding box annotations, but labels at the image level only. Yet, after passing...
-
Cost-Efficient Globalized Parameter Optimization of Microwave Components through Response-Feature Surrogates and Nature-Inspired Metaheuristics
PublicationDesign of contemporary microwave devices predominantly utilizes computational models, including both circuit simulators, and full-wave electromagnetic (EM) evaluation. The latter constitutes the sole generic way of rendering accurate assessment of the system outputs that considers phenomena such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final tuning of microwave device parameters...
-
Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks
PublicationThe importance of surrogate modeling techniques has been gradually increasing in the design of antenna structures over the recent years. Perhaps the most important reason is a high cost of full-wave electromagnetic (EM) analysis of antenna systems. Although imperative in ensuring evaluation reliability, it entails considerable computational expenses. These are especially pronounced when carrying out EM-driven design tasks such...
-
Medium-sized cyclic bis(anisylphosphonothioyl)- disulfanes and their corresponding cyclic sulfane-structures and most characteristic reactions
PublicationCyclic 8-, 9-, 10-, and 12-membered bis(anisylphosphonothioyl)disulfanes were synthesized. Next, structurally related 7 to 9-membered cis and trans sulfanes were isolated as a result of sulfur atom extrusion from the parent cyclic disulfanes. The results of the desulfurization of the disulfanes were compared to the results obtained for desulfurization of the respective bis(anisylphosphodithioates). Cyclic disulfanes predominantly...
-
Silent Signals The Covert Network Shaping the Future
PublicationSilent Signals The Covert Network Shaping the Future In a world dominated by information flow and rapid technological advancements, the existence of hidden networks and unseen influences has never been more relevant. "Silent Signals: The Covert Network Shaping the Future" delves deep into the mysterious and often opaque world of covert communication networks. This influential work sheds light on the silent...
-
Architektura a dekonstrukcja. Przypadek Petera Eisenmana i Bernarda Tschumiego
PublicationArchitecture and Deconstruction Case of Peter Eisenman and Bernard Tschumi Introduction Towards deconstruction in architecture Intensive relations between philosophical deconstruction and architecture, which were present in the late 1980s and early 1990s, belong to the past and therefore may be described from a greater than...