Filters
total: 433
filtered: 272
-
Catalog
Chosen catalog filters
Search results for: artificial intelligence.
-
Love your mistakes!—they help you adapt to change. How do knowledge, collaboration and learning cultures foster organizational intelligence?
PublicationPurpose: The study aims to determine how the acceptance of mistakes is related to adaptability to change in a broad organizational context. Therefore it explores how knowledge, collaboration, and learning culture (including “acceptance of mistakes”) might help organizations overcome their resistance to change. Methodology: The study uses two sample groups: students aged 18–24 (330 cases) and employees aged >24 (326 cases) who work...
-
Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance
PublicationMachine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience...
-
Insights in microbiotechnology: 2022.Editorial
PublicationThis Research Topic serves as an invaluable resource for readers interested in staying updated with the latest progress and developments in the field of microbiotechnology. It spotlights the innovative research conducted by up-and-coming experts in the field, specifically emphasizing the transforming abilities of microorganisms that greatly influence the scientific community. The advent of multi-omic technologies has revolutionized microbiotechnology,...
-
General concept of reduction process for big data obtained by interferometric methods
PublicationInterferometric sonar systems apply the phase content of the sonar signal to measure the angle of a wave front returned from the seafloor or from a target. It collect a big data – datasets that are so large or complex that traditional data processing application software is inadequate to deal with them. The recording a large number of data is associated with the difficulty of their efficient use. So data have to be reduced. The main...
-
Metaheurystyki sztucznej inteligencji w wybranych grach komputerowych
PublicationW pracy omówiono trzy metaheurystyki sztucznej inteligencji, które mogą stać się źródłem inspiracji dla projektantów gier komputerowych. Pokazano, w jaki sposób zastosowano algorytm mrówkowy, algorytm genetyczny i algorytm tabu search w grach komputerowych zaprojektowanych przez studentów Politechniki Gdańskiej. W szczególności, odniesiono się do problematyki wyznaczania trajektorii przemieszczających się obiektów...
-
Team research project – evolution from faculty activity to university study standard
PublicationThe article will describe the idea of a university-wide team student project as a tool of modern academic teaching in the era of widespread use of artificial intelligence tools. The problem of contemporary teaching is the emerging tools for automatic content generation, including didactic and scientific content. The question arises how to verify students' qualifications and learning outcomes. The solution may be students' group...
-
Data Domain Adaptation in Federated Learning in the Breast Mammography Image Classification Problem
PublicationWe are increasingly striving to introduce modern artificial intelligence techniques in medicine and elevate medical care, catering to both patients and specialists. An essential aspect that warrants concurrent development is the protection of personal data, especially with technology's advancement, along with addressing data disparities to ensure model efficacy. This study assesses various domain adaptation techniques and federated...
-
Data Acquisition in a Manoeuver Auto-negotiation System
PublicationTypical approach to collision avoidance systems with artificial intelligence support is that such systems assume a central communication and management point (such as e.g. VTS station), usually located on shore. This approach is, however, not applicable in case of an open water encounter. Thus, recently a new approach towards collision avoidance has been proposed, assuming that all ships in the encounter, either restricted or open...
-
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
PublicationThis work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...
-
Algorithmic Human Resources Management - Perspectives and Challenges
PublicationTheoretical background: Technology – most notably processes of digitalisation, the use of artificial intelligence, machine learning, big data and prevalence of remote work due to pandemic – changes the way organizations manage human resources. One of the increasing trends is the use of so-called “algorithmic management”. It is notably different than previous e-HRM or HRIS (human resources information systems) applications, as it...
-
Sensors and Sensor’s Fusion in Autonomous Vehicles
PublicationAutonomous vehicle navigation has been at the center of several major developments, both in civilian and defense applications. New technologies such as multisensory data fusion, big data processing, and deep learning are changing the quality of areas of applications, improving the sensors and systems used. New ideas such as 3D radar, 3D sonar, LiDAR, and others are based on autonomous vehicle revolutionary development. The Special...
-
Deep Learning: A Case Study for Image Recognition Using Transfer Learning
PublicationDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Deep Learning
PublicationDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
How digital technology affects working conditions in globally fragmented production chains: Evidence from Europe
PublicationThis paper uses a sample of over 9 million workers from 22 European countries to study the intertwined relationship between digital technology, cross-border production links and working conditions. We compare the social consequences of technological change exhibited by three types of innovation: computerisation (software), automation (robots) and artificial intelligence (AI). To fully quantify work-related wellbeing, we propose...
-
Electronic nose algorithm design using classical system identification for odour intensity detection
PublicationThe two elements considered crucial for constructing an efficient environmental odour intensity monitoring systems are sensors and algorithms typically addressed to as electronic nose sensor (e-nose). Due to operational complexity of biochemical sensors developed in human bodies algorithms based on computational methods of artificial intelligence are typically considered superior to classical model based approaches in development...
-
Pedestrian detection in low-resolution thermal images
PublicationOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
A note on the affective computing systems and machines: a classification and appraisal
PublicationAffective computing (AfC) is a continuously growing multidisciplinary field, spanning areas from artificial intelligence, throughout engineering, psychology, education, cognitive science, to sociology. Therefore, many studies have been devoted to the aim of addressing numerous issues, regarding different facets of AfC solutions. However, there is a lack of classification of the AfC systems. This study aims to fill this gap by reviewing...
-
Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks
PublicationDeep Neural Networks (DNN) are state of the art algorithms for image classification. Although significant achievements and perspectives, deep neural networks and accompanying learning algorithms have some important challenges to tackle. However, it appears that it is relatively easy to attack and fool with well-designed input samples called adversarial examples. Adversarial perturba-tions are unnoticeable for humans. Such attacks...
-
Addressing Challenges in AI-based Systems Development: A Proposal of Adapted Requirements Engineering Process
Publication[Context] Present-day IT systems are more and more dependent on artificial intelligence (AI) solutions. Developing AI-based systems means facing new challenges, not known for more conventional systems. Such challenges need to be identified and addressed by properly adapting the existing development and management processes. [Objective] In this paper, we focus on the requirements engineering (RE) area of IT projects and aim to propose...
-
AI-Driven Sustainability in Agriculture and Farming
PublicationIn this chapter, we discuss the role of artificial intelligence (AI) in promoting sustainable agriculture and farming. Three main themes run through the chapter. First, we review the state of the art of smart farming and explore the transformative impact of AI on modern agricultural practices, focusing on its contribution to sustainability. With this in mind, our analysis focuses on topics such as data collection and storage, AI...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublicationFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Automatic Rhythm Retrieval from Musical Files
PublicationThis paper presents a comparison of the effectiveness of two computational intelligence approaches applied to the task of retrieving rhythmic structure from musical files. The method proposed by the authors of this paper generates rhythmic levels first, and then uses these levels to compose rhythmic hypotheses. Three phases: creating periods, creating simplified hypotheses and creating full hypotheses are examined within this study....
-
Communication as a Factor Limiting University-Business Cooperation
PublicationObjective - Despite the broad extent of the scientific activity dealing with university-business cooperation, Poland has yet to develop a satisfactory cooperation strategy that takes business needs into account. This issue is still relevant due to the need for continuous improvement and resulting benefits aimed at improving enterprise competitiveness. Methodology/Technique - Authors of this article attempt to select an overriding...
-
Project-Based Collaborative Research and Training Roadmap for Manufacturing Based on Industry 4.0
PublicationThe importance of the economy being up to date with the latest developments, such as Industry 4.0, is more evident than ever before. Successful implementation of Industry 4.0 principles requires close cooperation of industry and state authorities with universities. A paradigm of such cooperation is described in this paper stemming from university partners with partly overlapping and partly complementary areas of expertise in manufacturing....
-
What is the future of digital education in the higher education sector? An overview of trends with example applications at Gdańsk Tech, Poland
PublicationUniversities worldwide recognise the need to adapt to changes in society, the economy and the way young people prefer to learn. Additionally, the impetus to improve the digital approach in higher education intensifies as educational institutions have to remain competitive with commercial providers of education. Following the latest technological trends and implementing strategies to develop new digital solutions helps to improve...
-
Mixed-use buildings as the basic unit that shapes the housing environment of smart cities of the future
PublicationThe contemporary approach to creating the residential function is confronted with the trend of increasing the volume of buildings and expectations regarding the future urban environment focused on sustainable development. This paper presents an overview of the residential structure in the context of defined thematic scopes. Namely, it is a systemic approach to the problem of designing mixed-use buildings which create a modern residential...
-
Digital Innovations and Smart Solutions for Society And Economy: Pros and Cons
PublicationRecent developments in artificial intelligence (AI) may involve significant potential threats to personal data privacy, national security, and social and economic stability. AI-based solutions are often promoted as “intelligent” or “smart” because they are autonomous in optimizing various processes. Be-cause they can modify their behavior without human supervision by analyzing data from the environ-ment, AI-based systems may be...
-
From Knowledge based Vision Systems to Cognitive Vision Systems: A Review
PublicationComputer vision research and applications have their origins in 1960s. Limitations in computational resources inherent of that time, among other reasons, caused research to move away from artificial intelligence and generic recognition goals to accomplish simple tasks for constrained scenarios. In the past decades, the development in machine learning techniques has contributed to noteworthy progress in vision systems. However,...
-
Spatial Visualization Based on Geodata Fusion Using an Autonomous Unmanned Vessel
PublicationThe visualization of riverbeds and surface facilities on the banks is crucial for systems that analyze conditions, safety, and changes in this environment. Hence, in this paper, we propose collecting, and processing data from a variety of sensors—sonar, LiDAR, multibeam echosounder (MBES), and camera—to create a visualization for further analysis. For this purpose, we took measurements from sensors installed on an autonomous, unmanned...
-
Viability of decisional DNA in robotics
PublicationThe Decisional DNA is an artificial intelligence system that uses prior experiences to shape future decisions. Decisional DNA is written in the Set Of Experience Knowledge Structure (SOEKS) and is capable of capturing and reusing a broad range of data. Decisional DNA has been implemented in several fields including Alzheimer’s diagnosis, geothermal energy and smart TV. Decisional DNA is well suited to use in robotics due to the...
-
APPLICATION OF APRIORI ALGORITHM IN THE LAMINATION PROCESS IN YACHT PRODUCTION
PublicationThe article specifies the dependence of defects occurring in the lamination process in the production of yachts. Despite great knowledge about their genesis, they cannot be completely eliminated. Authentic data obtained through cooperation with one of the Polish yacht shipyards during the years 2013–2017 were used for the analysis. To perform a simulation, the sample size was observed in 1450 samples, consisting of 6 models of...
-
Machine Learning and Electronic Noses for Medical Diagnostics
PublicationThe need for noninvasive, easy-to-use, and inexpensive methods for point-of-care diagnostics of a variety of ailments motivates researchers to develop methods for analyzing complex biological samples, in particular human breath, that could aid in screening and early diagnosis. There are hopes that electronic noses, that is, devices based on arrays of semiselective or nonselective chemical sensors, can fill this niche. Electronic...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublicationRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Autonomous port management based AGV path planning and optimization via an ensemble reinforcement learning framework
PublicationThe rapid development of shipping trade pushes automated container terminals toward the direction of intelligence, safety and efficiency. In particular, the formulation of AGV scheduling tasks and the safety and stability of transportation path is an important part of port operation and management, and it is one of the basic tasks to build an intelligent port. Existing research mainly focuses on collaborative operation between...
-
A Survey on the Datasets and Algorithms for Satellite Data Applications
PublicationThis survey compiles insights and describes datasets and algorithms for applications based on remote sensing. The goal of this review is twofold: datasets review for particular groups of tasks and high-level steps of data flow between satellite instruments and end applications from an implementation and development perspective. The article outlines the generalized data processing pipelines, taking into account the variations in...
-
Social media for e-learning of citizens in smart city
PublicationThe rapid development of social media can be applied for citizens’ e-learning in a smart city. Big cities have to cope with several open issues like a growing population or a traffic congestion. Especially, a home and public space is supposed to be used in more efficient way. Sustainable homes and buildings can be planned with using some modern techniques. Even currently, there is a huge problem with a lack of key resources like...
-
Automatic Watercraft Recognition and Identification on Water Areas Covered by Video Monitoring as Extension for Sea and River Traffic Supervision Systems
PublicationThe article presents the watercraft recognition and identification system as an extension for the presently used visual water area monitoring systems, such as VTS (Vessel Traffic Service) or RIS (River Information Service). The watercraft identification systems (AIS - Automatic Identification Systems) which are presently used in both sea and inland navigation require purchase and installation of relatively expensive transceivers...
-
UAV measurements and AI-driven algorithms fusion for real estate good governance principles support
PublicationThe paper introduces an original method for effective spatial data processing, particularly important for land administration and real estate governance. This approach integrates Unmanned Aerial Vehicle (UAV) data acquisition and processing with Artificial Intelligence (AI) and Geometric Transformation algorithms. The results reveal that: (1) while the separate applications of YOLO and Hough Transform algorithms achieve building detection...
-
Limitation of Floating-Point Precision for Resource Constrained Neural Network Training
PublicationInsufficient availability of computational power and runtime memory is a major concern when it comes to experiments in the field of artificial intelligence. One of the promising solutions for this problem is an optimization of internal neural network’s calculations and its parameters’ representation. This work focuses on the mentioned issue by the application of neural network training with limited precision. Based on this research,...
-
Global energy transition: From the main determinants to economic challenges regions
PublicationDynamic global energy transition has been accelerating for the last decade. Interestingly, the energy transition is multidimensional and concerns both the dimensions of technique/ technology and the economic, social, institu-tional, and legal spheres (Shuguang et al., 2022; Tzeremes et al., 2022; Ram-zan et al., 2022; Tzeremes et al., 2022). The literature also points to the signif-icant impact of the digitization of the global...
-
Sensing Direction of Human Motion Using Single-Input-Single-Output (SISO) Channel Model and Neural Networks
PublicationObject detection Through-the-Walls enables localization and identification of hidden objects behind the walls. While numerous studies have exploited Channel State Information of Multiple Input Multiple Output (MIMO) WiFi and radar devices in association with Artificial Intelligence based algorithms (AI) to detect and localize objects behind walls, this study proposes a novel non-invasive Through-the-Walls human motion direction...
-
The impact of the AC922 Architecture on Performance of Deep Neural Network Training
PublicationPractical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...
-
Optimisation of turbine shaft heating process under steam turbine run-up conditions
PublicationAn important operational task for thermal turbines during run-up and run-down is to keep the stresses in the structural elements at a right level. This applies not only to their instantaneous values, but also to the impact of them on the engine lifetime. The turbine shaft is a particularly important element. The distribution of stresses depends on geometric characteristics of the shaft and its specific locations. This means a groove manufactured...
-
Machine learning approach to packaging compatibility testing in the new product development process
PublicationThe paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the entire period of its shelf life and consumer use. This kind of testing...
-
How high-tech solutions support the fight against IUU and ghost fishing: a review of innovative approaches, methods, and trends
PublicationIllegal, Unreported, and Unregulated fishing is a major threat to human food supply and marine ecosystem health. Not only is it a cause of significant economic loss but also its effects have serious long-term environmental implications, such as overfishing and ocean pollution. The beginning of the fight against this problem dates since the early 2000s. From that time, a number of approaches and methods have been developed and reported....
-
Comparison and Analysis of Service Selection Algorithms
PublicationIn Service Oriented Architecture, applications are developed by integration of existing services in order to reduce development cost and time. The approach, however, requires algorithms that select appropriate services out of available, alternative ones. The selection process may consider both optimalization requirements, such as maximalization of performance, and constraint requirements, such minimal security or maximum development...
-
Spectrum-based modal parameters identification with Particle Swarm Optimization
PublicationThe paper presents the new method of the natural frequencies and damping identification based on the Artificial Intelligence (AI) Particle Swarm Optimization (PSO) algorithm. The identification is performed in the frequency domain. The algorithm performs two PSO-based steps and introduces some modifications in order to achieve quick convergence and low estimation error of the identified parameters’ values for multi-mode systems....
-
To Survive in a CBRN Hostile Environment: Application of CAVE Automatic Virtual Environments in First Responder Training
PublicationThis paper is of a conceptual nature and focuses on the use of a specific virtual reality environment in civil-military training. We analyzed the didactic potential of so-called CAVE automatic virtual environments for First Responder training, a type of training that fills the gap between First Aid training and the training received by emergency medical technicians. Since real training involves live drills based on unexpected situations,...
-
Metal–Organic Frameworks (MOFs) for Cancer Therapy
PublicationMOFs exhibit inherent extraordinary features for diverse applications ranging from catalysis, storage, and optics to chemosensory and biomedical science and technology. Several procedures including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasound techniques have been used to synthesize MOFs with tailored features. A continued attempt has also been directed towards functionalizing MOFs via “post-synthetic...
-
Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
PublicationBreast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private...