Filters
total: 606
filtered: 583
Search results for: electrochemical cells
-
Determination of time dependence of coated metal electrical and electrochemical parameters during exposure using principal component analysis
PublicationThe use of the principal component analysis (PCA) permits the complex and quantitative analysis of the time dependence of electrical and electrochemical parameters of coated metal obtained by fitting impedance data. So far, changes in electrical and electrochemical parameters during exposure were analyzed independently. In this way, some of the information contained in the relationship between changes in parameters over time are...
-
Degradation of implantable materials – in vivo and in vitro research
PublicationThe article concerns the biological and electrochemical degradation of metallic implants in vivo and in vitro studies. The in vivo research dealt with degradation of plates used to join bones, as well as endoprostheses. The most common damages were: metalosis, breaking in the microstructure changes, breaking in area of holes, as well as plastic deformation throughout the length of an implant. The material used for the research...
-
Effectiveness of a dual surface modification of metallic interconnects for application in energy conversion devices
PublicationA dual surface modification of an SOFC metallic interconnect with a Gd2O3 layer and an MnCo2O4 coating was evaluated. The tested samples were oxidized for 7000 h in air at 1073 K. Oxidation products were characterized using XRD, SEM-EDS, and confocal Raman imaging, and ASR was measured. The effect of gadolinium segregation at grain boundaries in Cr2O3 was evaluated using S/TEM-EDS. Area specific-resistance was measured and fuel...
-
Tuning of the finesse coefficient of optoelectronic devices
PublicationOptoelectronic devices attracted considerable attention in many branches of science and technology, which can be attributed to their unique properties. Many of them use optical cavities which parameters can be adopted to specific requirements. This thesis investigates the introduction of diamond structures (nitrogen-doped diamond film, boron-doped diamond film, undoped diamond sheet) to optical cavities to tune their finesse coefficient....
-
Impact of blending with polystyrene on the microstructural and electrochemical properties of SiOC ceramic
PublicationIn this work, we present the electrochemical behavior and microstructural analysis of silicon oxycarbide (SiOC) ceramics influenced by an addition of polystyrene (PS). Polymer-derived ceramics were obtained by pyrolysis (1000°C, Ar atmosphere) of different polysiloxanes prepared by sol–gel synthesis. This method is very effective to obtain desired composition of final ceramic. Two alkoxysilanes phenylthriethoxysilane and diphenyldimethoxysilane...
-
Evaluation of the Commercial Electrochemical Gas Sensors for the Monitoring of CO in Ambient Air
PublicationAir pollution is a growing concern of civilized world, which has a significant impact on human health and the environment. Recent studies highlight that the exposure to polluted air can increase the incidence of diseases and deteriorate the quality of life. Hence, it is necessary to develop tools for real-time air quality monitoring. For air pollution monitoring a wide range of stationary gas and particulate analysers can be used....
-
A Probe into the Corrosion Behavior of a WE43B Magnesium Alloy in a Simulated Body Fluid using Dynamic Electrochemical Impedance Spectroscopy
PublicationWE43B is one of the newest Mg alloys with practical application in biomedical implant technology. This work attempts to scrutinize the corrosion characteristics of WE43B alloy in a simulated body fluid (SBF) at a typical body temperature. The dynamic-electrochemical impedance spectroscopy with the capacity to track changes on surfaces in a dynamic corrosive system is used in combination with other classical techniques namely, linear...
-
An electrochemical biosensor for the determination of hormone Human Chorionic Gonadotropin (hCG) in human serum
PublicationThis work describes the modification of a gold electrode to create an electrochemical biosensor capable of detecting human chorionic gonadotropin (hCG). The biosensor was obtained by modifying the gold electrode with cysteamine and oligopeptide (PPLRINRHILTR). The modification steps of the gold electrode were confirmed by cyclic voltammetry (CV) and impedance electrochemical spectroscopy (EIS) measurements. The conducted EIS experiments...
-
Enhanced electrochemical performance of SnS-PPy-carbon black composite with a locust bean gum as a binder as in anode in lithium-ion batteries
PublicationWater-soluble binders—locust bean gum (LBG) and carboxymethyl cellulose (CMC) were tested with the SnS anode modified by new conducting material polypyrrole—carbon black composite (PPyCB) and compared with the environmentally unfriendly widely used polyvinylidene fluoride (PVdF) as an organic binder. The electrochemical properties of tested electrodes were investigated by galvanostatic charging/discharging tests, cyclic voltammetry,...
-
Sensing the onset of epoxy coating degradation with combined Raman spectroscopy/atomic force microscopy/electrochemical impedance spectroscopy
PublicationThe paper presents the results of investigation on epoxy resin durability upon 12-week exposure to UV radiation. The aim was early determination of the onset of epoxy degradation and for this purpose an epoxy film on steel substrate systems were periodically inspected using Raman spectroscopy, atomic force microscopy and electrochemical impedance spectroscopy. The behaviour of examined polymer could be divided into three periods: immunity,...
-
Functional fluorine-doped tin oxide coating for opto-electrochemical label-free biosensors
PublicationSensors operating in multiple domains, such as optical and electrochemical, offer properties making biosensing more effective than those working in a single domain. To combine such domains in one sensing device, materials offering a certain set of properties are required. Fluorine-doped tin oxide (FTO) thin film is discussed in this work as functional optically for guiding lossy modes and simultaneously electrochemically, i.e....
-
Advancing electrochemical impedance analysis through innovations in the distribution of relaxation times method
PublicationElectrochemical impedance spectroscopy (EIS) is widely used in electrochemistry, energy sciences, biology, and beyond. Analyzing EIS data is crucial, but it often poses challenges because of the numerous possible equivalent circuit models, the need for accurate analytical models, the difficulties of nonlinear regression, and the necessity of managing large datasets within a unified framework. To overcome these challenges, non-parametric...
-
Electrochemical Production of Sodium Hypochlorite from Salty Wastewater Using a Flow-by Porous Graphite Electrode
PublicationThe production of sodium hypochlorite (NaOCl) from salty wastewater using an electrochemical cell has several advantages over other methods that often require hazardous chemicals and generate toxic waste, being more sustainable and environmentally friendly. However, the process of producing sodium hypochlorite using an electrochemical cell requires careful control of the operating conditions, such as the current density, flow rate,...
-
Self-Organized Nanotubular Oxide Layers on Ti and Ti Alloys
PublicationTo improve bioactivity of titanium and titanium, the implant surface modification by formation of self-organized TiO2 nanotube arrays with electrochemical techniques is presented. The influence of electrolyte composition and deposition parameters during anodization is characterized. The enhancement of phosphates deposition by titanium nanotubular structure is discussed. The calcium phosphate ceramics is shown to be uniformly deposited...
-
VOLTAMMETRIC DETERMINATION OF DEOXYRIBONUCLEIC ACID PRESENCE ON A CARBON ELECTRODE
PublicationThis paper presents a voltammetry as a useful method to analyse DNA from different species. This electrochemical method is well know and used in different analyses. The influence of an area of working electrode and the capacity component, is shown at equals and the measurement. In voltammetry DNA measurement the capacity component is very important and must be taken into consideration. All mathematical analyses were verify at laboratory.
-
Surface modifications of ti and its alloys
PublicationThis article reviews the various surface modification techniques pertaining to titanium and titanium alloys including physical treatment, mechanical treatment, and chemical and electrochemical treatment. The proper surface modification expands the use of titanium and its alloys in the biomedical field for long-term implants retaining the excellent properties of substrate material and improving the specific surface properties required...
-
Effects of mechanical stress on electrical arameters and noise of supercapacitors
PublicationResults of noise and electrical parameters measurements of prototype electrochemical double layer capacitors (EDLC) are reported at the presence of selected mechanical stress. This issue is of great importance due to future applications in wearable technology. The measurement results are compared, and we may conclude than flicker noise is more sensitive to any stress than other considered electrical parameters.
-
Application of BDD thin film electrode for electrochemical decomposition of heterogeneous aromatic compounds
PublicationThe aim of the presented study is to investigate the applicability of electrochemical oxidation of aromatic compounds containing heteroatoms, e.g. waste from production of pesticides or pharmaceutics, at a borondoped diamond (BDD) electrode. The BDD electrodes were synthesized by microwave plasma enhanced chemical vapour deposition (MW PE CVD). Investigation of the electrode surface by optical microscopy and scanning electron microscopy...
-
Materials Design for the Titanium Scaffold Based Implant
PublicationThe main objective of here presented research is a design the scaffold/porous titanium(Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime andbioactivity behaviour for load-bearing implants. The development of such material is proposed bymaking a number of consecutive tasks. Modelling the mechanical, biomechanical and biologicalbehavior of porous titanium structure and an elaboration of results...
-
The influence of nanostructures size on V2O5 electrochemical properties as cathode materials for lithium ion battery
PublicationIn this paper, V2O5 nanostructures with a size depending on the annealing temperature are successfully synthesized by a sol-gel method. The crystal structure and morphology of samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), selected area electron diffraction (SEAD) and scanning electron microscopy (SEM), respectively. Electrochemical testing such...
-
Materials Design for the Titanium Scaffold Based Implant
PublicationThe main objective of here presented research is a design the scaffold/porous titanium(Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime andbioactivity behaviour for load-bearing implants. The development of such material is proposed bymaking a number of consecutive tasks. Modelling the mechanical, biomechanical and biologicalbehavior of porous titanium structure and an elaboration of results...
-
Graphene oxide, reduced graphene oxide and composite thin films NO2 sensing properties
PublicationA graphene oxide (GO), reduced graphene oxide (RGO) and poly(3,4-ethylenedioxytiophene)- reduced graphene oxide (PEDOT-RGO composite) gas sensors were successfully fabricated using an electrodeposition method. The electrodeposition was carried out in aqueous GO dispersions. In order to obtain RGO and PEDOT-RGO, the electrochemical reduction of GO and PEDOT-GO was carried out in 0.1 M KCl at constant potential of −0.85 V. The GO, RGO...
-
Corrosion degradation of spacers – examination of changes in bone cement coating.
PublicationSpacer is a special implant used at the time of infection after endoprosthetic surgery. It consists of a metal core and bone cement coating with an antibiotic. In the human body spacers are exposed to degradation processes. This paper looks at the effect of corrosion on spacers. Electrochemical corrosion tests were performer on titanium pins with bone cement coating in two solutions: Ringer’s solution and artificial...
-
Modified Manganese Phosphate Conversion Coating on Low-Carbon Steel
PublicationConversion coatings are one of the primary types of galvanic coatings used to protect steel structures against corrosion. They are created through chemical reactions between the metal surface and the environment of the phosphating. This paper investigates the impact that the addition of new metal cations to the phosphating reaction environment has on the quality of the final coating. So far, standard phosphate coatings have contained...
-
Effect of ionic liquids on surface and photocatalytic properties of selected semiconducttors
PublicationThe main aim of this doctoral dissertation was to explain the role of ionic liquids in shaping the morphology of selected semiconductors, thereby enhancing the photocatalytic activity. In order to achieve this goal, the following research steps were taken: (i) developing synthesis methods of selected semiconductors, with particular emphasis on the electrochemical oxidation method; (ii) understanding the influence of the selected...
-
Programmable dynamically changing RC model for evaluation of Dynamic EIS methods and instrumentation
PublicationThe paper concerns the RC equivalent circuit of electrochemical cell with the impedance changed during the experiment. The model was constructed using the digital potentiometers controlled by the microcontroller. This solution allows to control the model impedance by the software means. By creating adequate changes of the impedance spectrum as a time function, the different impedance measurement method can be tested to find out...
-
Catalytic impact of alloyed Al on the corrosion behavior of Co50Ni23Ga26Al1.0 magnetic shape memory alloy and catalysis applications for efficient electrochemical H2 generation
PublicationThe electrochemical and corrosion behaviour of Co50Ni23Ga27-xAlx (x = 0 and 1.0 wt%) magnetic shape memory alloys (MSMAs) was studied in 0.5 M NaCl solutions using various electrochemical techniques. Results showed remarkable activation of the tested MSMA toward pitting corrosion upon alloying it with Al. XPS examination confirmed the activation influence of alloyed Al. It proved that the presence of Al in the alloy's matrix weakens...
-
Thermally tuneable optical and electrochemical properties of Au-Cu nanomosaic formed over the host titanium dimples
PublicationAu-Cu nanostructures offer unique optical and catalytic properties unlike the monometallic ones resulting from the specific interaction. Among others, they have the ability to exhibit surface plasmon resonance, electrochemical activity towards the oxygen and hydrogen evolution reaction (OER, HER) as well as improved photoresponse in relation to monometalic but those properties depend highly on the substrate where bimetallic structures...
-
Experimental and Quantum Chemical Evaluation of 8-Hydroxyquinoline as a Corrosion Inhibitor for Copper in 0.1 M HCl
PublicationThe corrosion inhibition properties of 8-hydroxyquinoline (8-HQ) in 0.1 M HCl for copper have been investigated by using experimental (electrochemical impedance spectroscopy (EIS), dynamic electrochemical impedance spectroscopy (DEIS), and potentiodynamic polarization) and theoretical methods complemented by surface morphological examination with the aid of scanning electron microscopy (SEM) and electron dispersive X-ray spectroscopy...
-
Electrochemical synthesis and characterization of nanocomposites based on poly(3,4-ethylenedioxythiophene) and functionalized carbon nanotubes
PublicationThis work is focused on new composite materials consisting of poly(3,4-ethylenedioxythiophene) (pEDOT) and functionalized multi-walled carbon nanotubes synthesized electrochemically. Three types of composites were synthesized: the first one containing carbon nanotubes with carboxyl groups (covalent functionalization), the second one containing oxidized carbon nanotubes ox-MWCNTs (with different oxygen-rich polar groups) (covalent...
-
Study on surface termination of boron-doped diamond electrodes under anodic polarization in H2SO4 by means of dynamic impedance technique
PublicationAnodic oxidation is a popular way to modify termination bonds at boron doped diamond electrodes altering their electrochemical and physicochemical properties. Our studies, performed with dynamic electrochemical impedance spectroscopy technique, supported with X-ray photoelectron spectroscopy and ellipsometry analysis prove its utility in continuous on-line monitoring of impedance changes on the electrode surface under polarization...
-
Enhanced photocatalytic properties of lanthanide-TiO2 nanotubes: An experimental and theoretical study
PublicationA series of Er-, Yb-, Ho-, Tb-, Gd-, Pr-TiO2 nanotubes (RE-NTs) was prepared via an electrochemical method. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis absorption, scanning electron microscopy (SEM) and luminescent spectroscopy. The experiments demonstrated that toluene in the gas phase was successfully degraded under visible light (LEDs λmax = 465...
-
Laser-assisted approach for improved performance of Au-Ti based glucose sensing electrodes
PublicationThis paper focuses on the synthesis route and electrochemical properties of electrocatalytic material based on gold nanoparticles (NPs) embedded in a structured titanium template obtained via optimized anodization, chemical etching and laser processing. SEM inspection reveals the presence of Au NPs (60–90 nm in diameter) sited in the titanium foil cavities. Performed electrochemical measurements enable nomination of the set of working...
-
Electrochemical performance of Co3O4/CeO2 electrodes in H2S/H2O atmospheres in a proton-conducting ceramic symmetrical cell with BaZr0.7Ce0.2Y0.1O3 solid electrolyte
PublicationThe electrochemical performance of Co3O4/CeO2 mixed oxide materials as electrodes, when exposed to H2S/H2O atmospheres, was examined employing a proton conducting symmetrical cell, with BaZr0.7Ce0.2Y0.1O3 (BZCY72) as the solid electrolyte. The impact of temperature (700–850 °C) and H2S concentration (0–1 v/v%) in steam-rich atmospheres (90 v/v% H2O) on the overall cell performance was thoroughly assessed by means of electrochemical...
-
Impedance evaluation of coatings from biobased material
PublicationThe authors propose a modification of sodium caseinate edible coating for foodstuff protection. The aim was to improve the film’s barrier properties. It was achieved by the addition of propolis, which is a natural, environmentally friendly product known from its intrinsic sealing action. In the next step, propolis-admixed sodium caseinate films were exposed to elevated temperature for 10 min. This approach was meant to improve...
-
High-temperature Co-electrolysis of CO2/H2O and direct methanation over Co-impregnated SOEC. Bimetallic synergy between Co and Ni
PublicationTo study the synergy between the transition metals for enhancing the electrochemical and chemical activity, a series of SOECs were modified with a small amount of Co ions, namely 1.8, 3.6, and 5.4 wt% in the reduced state. The addition of βCD into the precursor solution allowed for extremely fine dispersion of Co species across the Ni-YSZ cermet structure. The sample containing 3.6 wt% Co reached an outstanding over 2.5-times-higher...
-
Experimental and computational analysis of SnSx encapsulated into carbonized chitosan as electrode material for potassium ion batteries
PublicationTin sulphide compounds (SnSx, x = 1, 2) are potential anode materials for potassium-ion batteries (PIBs) due to their characteristic layered structure, high theoretical capacity, non-toxicity and low production cost. However, they suffer from significant volume changes resulting in poor performance of such anodes. In this work incorporation of SnSx into the carbon structure was expected to overcome these disadvantages. Two SnS-based...
-
Measurement of sub-nanometer molecular layers with ISFET without a reference electrode dependency
PublicationA new method of detection and measurement with sub-nanometer resolution of layers adsorbed or bonded to the ISFET's gate dielectric was presented. The sensitivity of this method is high enough to detect even partial mono-layer covering. The transconductance measurement of the ISFET provides independence of the output signal from pH changes and the driving electrode electrochemical potential instabilities. The stable reference electrode...
-
Quantum dots in gas sensing a review
PublicationAir pollution becomes an increasing problem in the recent years. There is a need to develop more sensitive gas sensors. Much effort has been performed to develop different types of gas sensors, such as electrochemical sensors or polymer sensors. One of the most promising approaches to improve sensors performance is the application of the nanostructures as sensing materials. State of the art of quantum...
-
Hybrid electrode materials for fast performance devices
PublicationEnergy storage devices such as Electrochemical Double Layer Capacitors and other types of the electrochemical capacitors require chemically stable, non-soluble, electrochemically active electrode materials compatible with appropriate electrolytes. Factors which determine their applicability are derived from so called electrochemical window of electroltes, nature of charge accumulation and their kinetics. On the other hand technological...
-
Visible light activity of pulsed layer deposited BiVO4/MnO2 films decorated with gold nanoparticles: The evidence for hydroxyl radicals formation
PublicationThin films containing BiVO4 and MnO2 deposited on FTO and modified by Au nanoparticles were studied towards their photoelectrochemical and photocatalytical activities in an aqueous electrolyte. Electrodes were prepared by the pulsed laser deposition (PLD) method. The surfactant-free ablation process was used for preparation of the gold nanoparticles (GNP) water suspension. Obtained layers of varied thicknesses (27–115 nm) were...
-
Ordered titanium templates functionalized by gold films for biosensing applications – Towards non-enzymatic glucose detection
PublicationRecently, metal nanostructures evoke much interest due to application potential in highly sensitive detectors in biochemistry and medical diagnostics. In this work we report on preparation and characteristics of thin (1–100 nm) Au films deposited onto highly ordered structured titanium templates for SERS (Surface Enhanced Raman Spectroscopy) and electrochemical sensing. The Ti templates are formed by selective removal of TiO2 nanotubes...
-
Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route toward High Rates of Electrochemical Biosensing
PublicationIn this study, we have demonstrated the fabrication of novel materials called boron-doped carbon nanowalls (B:CNWs), which are characterized by remarkable electrochemical properties such as high standard rate constant (k°), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)6]3–/4– redox system, and low surface resistivity. The B:CNW samples were deposited by the microwave plasma-assisted...
-
Electrochemical synthesis of 2D copper coordination-polymers: Layer-stacking deviation induced by the solvent and its effect on the adsorptive properties
PublicationA 2D Cu-based Metal-Organic Framework (MOF), namely copper-terephthalate (Cu(1,4-BDC)), was successfully synthesized by electrochemical method for effective methylene blue (MB) sorption from aqueous solutions. The composition, morphology, and the presence of functional groups in the obtained material were verified by Fourier Transform Infrared spectroscopy (FTIR), Powder X-Ray Diffraction (PXRD), Thermal (TGA), and Elemental (EA)...
-
Electrochemical determination of nitroaromatic explosives at boron-doped diamond/graphene nanowall electrodes: 2,4,6-trinitrotoluene and 2,4,6-trinitroanisole in liquid effluents
PublicationThe study is devoted to the electrochemical detection of trace explosives on boron-doped diamond/graphene nanowall electrodes (B:DGNW). The electrodes were fabricated in a one-step growth process using chemical vapour deposition without any additional modifications. The electrochemical investigations were focused on the determination of the important nitroaromatic explosive compounds, 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitroanisole...
-
ANTIOXIDANT POWER SERIES (APS) AS A TOOL FOR RATIONAL DESIGN AND ASSESSMENT OF HEALTH PROMOTING PROPERTIES OF FUNCTONAL FOODS BASED ON ANTIOXIDANT PHYTOCHEMICALS
PublicationOver past decades, plantborne antioxidants dominated so called "translational research" in the area of food, nutrition, and disease prevention. Among consumers and producers, such phytochemicals are synonyms of nutriceuticals. Popularity and commercial success of antioxidants stems from mechanistic studies suggesting the involvement of reactive oxygen species in etiology of chronic diseases. However, epidemiology failed to provide...
-
Tuning of the Electrochemical Properties of Transparent Fluorine-doped Tin Oxide Electrodes by Microwave Pulsed-plasma Polymerized Allylamine
PublicationWe report here the dry, one-step, and low-temperature modification of FTO surfaces using pulsed plasma polymerization of allylamine (PPAAm). PPAAm/FTO surfaces were characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and contact angles to understand the morphological, structural, and optical properties. FTO were coated with a very thin layer of adherent cross-linked, pinhole-, and additive-free allylamine...
-
Band Gap Engineering toward Semimetallic Character of Quinone-Rich Polydopamine
PublicationSemiconductor|melanin interfaces have received increasingly more attention in the fields of photocatalysis and applied electrochemistry because of their facile synthesis, unique electrical properties, and strong capability toward photosensitization. In this work, we describe the electropolymerization of quinone-rich polydopamine (PDA) on the surface of hydrogenated TiO2 nanotubes with enhanced photoactivity in the visible spectrum....
-
The comparison of antioxidant properties and nutrigenomic redox-related activities of vitamin C, C-vitamers, and other common ascorbic acid derivatives
PublicationThe term ‘vitamin C’ describes a group of compounds with antiscorbutic activity of L-ascorbic acid (AA). Despite AA’s omnipresence in plant-derived foods, its derivatives have also been successfully implemented in the food industry as antioxidants, including the D-isomers, which lack vitamin C activity. This study aimed to determine the relationship between redox-related activities for five derivatives of AA using electrochemical,...
-
Method of sacrificial anode transistor-driving in cathodic protection system
PublicationA magnesium anode driving system has been proposed. A PNP driving transistor has been used. Electrochemical testing in 3%NaCl, results and comparison of the driving system and classic direct anode to cathode connection are presented. The driving system reduced the protection current and stabilized the working conditions of the anode. Higher anode efficiency was achieved. Overprotection and hydrogen embrittlement threats were prevented...