Filters
total: 630
filtered: 561
Search results for: NEURAL NETWORKS
-
Thermal Image Processing for Respiratory Estimation from Cubical Data with Expandable Depth
PublicationAs healthcare costs continue to rise, finding affordable and non-invasive ways to monitor vital signs is increasingly important. One of the key metrics for assessing overall health and identifying potential issues early on is respiratory rate (RR). Most of the existing methods require multiple steps that consist of image and signal processing. This might be difficult to deploy on edge devices that often do not have specialized...
-
Diagnosing wind turbine condition employing a neural network to the analysis of vibroacoustic signals
PublicationIt is important from the economic point of view to detect damage early in the wind turbines before failures occur. For this purpose, a monitoring device was built that analyzes both acoustic signals acquired from the built-in non-contact acoustic intensity probe, as well as from the accelerometers, mounted on the internal devices in the nacelle. The signals collected in this way are used for long-term training of the autoencoder...
-
Semantic segmentation training using imperfect annotations and loss masking
PublicationOne of the most significant factors affecting supervised neural network training is the precision of the annotations. Also, in a case of expert group, the problem of inconsistent data annotations is an integral part of real-world supervised learning processes, well-known to researchers. One practical example is a weak ground truth delineation for medical image segmentation. In this paper, we have developed a new method of accurate...
-
Monitoring Regenerative Heat Exchanger in Steam Power Plant by Making Use of the Recurrent Neural Network
PublicationArtificial Intelligence algorithms are being increasingly used in industrial applications. Their important function is to support operation of diagnostic systems. This paper pesents a new approach to the monitoring of a regenerative heat exchanger in a steam power plant, which is based on a specific use of the Recurrent Neural Network (RNN). The proposed approach was tested using real data. This approach can be easily adapted to...
-
A method of self-testing of analog circuits based on fully differential op-amps with theTCBF classifier
PublicationA new approach of self-testing of analog circuits based on fully differential op-amps of mixed-signal systems controlled by microcontrollers is presented. It consists of a measurement procedure and a fault diagnosis procedure. We measure voltage samples of a time response of a tested circuit on a stimulation of a unit step function given at the common-mode reference voltage input of the op-amp. The fault detection and fault localization...
-
Design of Microstrip UWB Balun Using Quasi-TEM Approach Aided by the Artificial Neural Network
PublicationThe design procedure for UWB balun realized in the microstrip technology is proposed in the paper. The procedure applies Artificial Neural Network which corrects the dimensions of the approximate design found by appropriate scaling of the dimensions of the prototype. The scale coefficients for longitudinal and transverse dimensions of microstrip lines are determined from electromagnetic modeling based on transmission line equations....
-
The role of EMG module in hybrid interface of prosthetic arm
PublicationNearly 10% of all upper limb amputations concern the whole arm. It affects the mobility and reduces the productivity of such a person. These two factors can be restored by using prosthetics. However, the complexity of human arm makes restoring its basic functions quite difficult. When the osseointegration and/or targeted muscle reinnervation (TMR) are not possible, different modalities can be used to control the prosthesis. In...
-
Previous Opinions is All You Need - Legal Information Retrieval System
PublicationWe present a system for retrieving the most relevant legal opinions to a given legal case or question. To this end, we checked several state-of-the-art neural language models. As a training and testing data, we use tens of thousands of legal cases as question-opinion pairs. Text data has been subjected to advanced pre-processing adapted to the specifics of the legal domain. We empirically chose the BERT-based HerBERT model to perform...
-
Fast Approximate String Search for Wikification
PublicationThe paper presents a novel method for fast approximate string search based on neural distance metrics embeddings. Our research is focused primarily on applying the proposed method for entity retrieval in the Wikification process, which is similar to edit distance-based similarity search on the typical dictionary. The proposed method has been compared with symmetric delete spelling correction algorithm and proven to be more efficient...
-
Prediction of metal deformation due to line heating; an alternative method of mechanical bending, based on artificial neural network approach
PublicationLine heating is one of the alternative methods of forming metals and this kind of forming uses the heating torch as a source of heat input. During the process, many parameters are considered like the size of the substrate, thickness, cooling method, source power intensity, the travel speed of the power source, the sequence of heating, and so on. It is important to analyze the factors affecting the...
-
Accurate Lightweight Calibration Methods for Mobile Low-Cost Particulate Matter Sensors
PublicationMonitoring air pollution is a critical step towards improving public health, particularly when it comes to identifying the primary air pollutants that can have an impact on human health. Among these pollutants, particulate matter (PM) with a diameter of up to 2.5 μ m (or PM2.5) is of particular concern, making it important to continuously and accurately monitor pollution related to PM. The emergence of mobile low-cost PM sensors...
-
Application of autoencoder to traffic noise analysis
PublicationThe aim of an autoencoder neural network is to transform the input data into a lower-dimensional code and then to reconstruct the output from this code representation. Applications of autoencoders to classifying sound events in the road traffic have not been found in the literature. The presented research aims to determine whether such an unsupervised learning method may be used for deploying classification algorithms applied to...
-
Deep learning-enabled integration of renewable energy sources through photovoltaics in buildings
PublicationInstalling photovoltaic (PV) systems in buildings is one of the most effective strategies for achieving sustainable energy goals and reducing carbon emissions. However, the requirement for efficient energy management, the fluctuating energy demands, and the intermittent nature of solar power are a few of the obstacles to the seamless integration of PV systems into buildings. These complexities surpass the capabilities of rule-based...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublicationRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Machine Learning Techniques in Concrete Mix Design
PublicationConcrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which...
-
Reactivation of seizure‐related changes to interictal spike shape and synchrony during postseizure sleep in patients
PublicationOBJECTIVE: Local field potentials (LFPs) arise from synchronous activation of millions of neurons, producing seemingly consistent waveform shapes and relative synchrony across electrodes. Interictal spikes (IISs) are LFPs associated with epilepsy that are commonly used to guide surgical resection. Recently, changes in neuronal firing patterns observed in the minutes preceding seizure onset were found to be reactivated during postseizure...
-
Intelligent turbogenerator controller based on artifical neural network
PublicationThe paper presents a desing of an intelligent controller based on neural network (ICNN). The ICNN ensures at the same time two fundamental functions : the maintaining of generator voltage at the desired value and the damping of the electromechanical oscillations. Its performance is evaluted on a single machine infinite bus power system through computer simulations. The dynamic and transient operation of the proposed controller...
-
Artificial neural network prophecy of ion exchange process for Cu (II) eradication from acid mine drainage
PublicationThe removal of heavy metal ions from wastewater was found to be significant when the cation exchange procedure was used effectively. The model of the cation exchange process was built using an artificial neural network (ANN). The acid mine drainage waste’s Cu(II) ion was removed using Indion 730 cation exchange resin. Experimental data from 252 cycles were recorded. In a column study, 252 experimental observations validated the...
-
KEMR-Net: A Knowledge-Enhanced Mask Refinement Network for Chromosome Instance Segmentation
PublicationThis article proposes a mask refinement method for chromosome instance segmentation. The proposed method exploits the knowledge representation capability of Neural Knowledge DNA (NK-DNA) to capture the semantics of the chromosome’s shape, texture, and key points, and then it uses the captured knowledge to improve the accuracy and smoothness of the masks. We validate the method’s effectiveness on our latest high-resolution chromosome...
-
Comparison of image pre-processing methods in liver segmentation task
PublicationAutomatic liver segmentation of Computed Tomography (CT) images is becoming increasingly important. Although there are many publications in this field there is little explanation why certain pre-processing methods were utilised. This paper presents a comparison of the commonly used approach of Hounsfield Units (HU) windowing, histogram equalisation, and a combination of these methods to try to ascertain what are the differences...
-
Performance analysis of an rfid-based 3d indoor positioning system combining scene analysis and neural network methods
PublicationThe main purpose of this research is to improve localization accuracy of an active Radio Frequency Identification, RFID tag, in 3D indoor space. The paper presents a new RFID based 3D Indoor Positioning System which shows performance improvement. The proposed positioning system combines two methods: the Scene Analysis technique and Artificial Neural Network. The results of both simulation using Log-Distance Path Loss Model and...
-
The Use of an Autoencoder in the Problem of Shepherding
PublicationThis paper refers to the problem of shepherding clusters of passive agents consisting of a large number of objects by a team of active agents. The problem of shepherding and the difficulties that arise with the increasing number of data describing the location of agents have been described. Several methods for reducing the dimensionality of data are presented. Selected autoencoding method using a Restricted Boltzmann Machine is...
-
Vehicle classification based on soft computing algorithms
PublicationExperiments and results regarding vehicle type classification are presented. Three classes of vehicles are recognized: sedans, vans and trucks. The system uses a non-calibrated traffic camera, therefore no direct vehicle dimensions are used. Various vehicle descriptors are tested, including those based on vehicle mask only and those based on vehicle images. The latter ones employ Speeded Up Robust Features (SURF) and gradient images...
-
Neural network based algorithm for hand gesture detection in a low-cost microprocessor applications
PublicationIn this paper the simple architecture of neural network for hand gesture classification was presented. The network classifies the previously calculated parameters of EMG signals. The main goal of this project was to develop simple solution that is not computationally complex and can be implemented on microprocessors in low-cost 3D printed prosthetic arms. As the part of conducted research the data set EMG signals corresponding...
-
LSTM-based method for LOS/NLOS identification in an indoor environment
PublicationDue to the multipath propagation, harsh indoor environment significantly impacts transmitted signals which may adversely affect the quality of the radiocommunication services, with focus on the real-time ones. This negative effect may be significantly reduced (e.g. resources management and allocation) or compensated (e.g. correction of position estimation in radiolocalisation) by the LOS/NLOS identification algorithm. This paper...
-
Developing a Low SNR Resistant, Text Independent Speaker Recognition System for Intercom Solutions - A Case Study
PublicationThis article presents a case study on the development of a biometric voice verification system for an intercom solution, utilizing the DeepSpeaker neural network architecture. Despite the variety of solutions available in the literature, there is a noted lack of evaluations for "text-independent" systems under real conditions and with varying distances between the speaker and the microphone. This article aims to bridge this gap....
-
The trajectories of the financial crisis of companies at risk of bankruptcy
PublicationThis article concerns the assessment of the trajectory of the collapse of enterprises in Central Europe. The author has developed a model of a Kohonen artificial neural network. This model was used to determine 6 different classes of risk and was allowed to graphically determine the 5- to 10-year trajectory of going bankrupt. The study used data on 140 companies listed on the Warsaw Stock Exchange. This population was divided into...
-
An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory
PublicationSentiment analysis is an automated approach which is utilized in process of analysing textual data to describe public opinion. The sentiment analysis has major role in creating impact in the day-to-day life of individuals. However, a precise interpretation of text still relies as a major concern in classifying sentiment. So, this research introduced Bidirectional Long Short Term Memory with Ranger AdaBelief Optimizer (Bi-LSTM RAO)...
-
Interpretable deep learning approach for classification of breast cancer - a comparative analysis of multiple instance learning models
PublicationBreast cancer is the most frequent female cancer. Its early diagnosis increases the chances of a complete cure for the patient. Suitably designed deep learning algorithms can be an excellent tool for quick screening analysis and support radiologists and oncologists in diagnosing breast cancer.The design of a deep learning-based system for automated breast cancer diagnosis is not easy due to the lack of annotated data, especially...
-
Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance
PublicationWastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...
-
Style Transfer for Detecting Vehicles with Thermal Camera
PublicationIn this work we focus on nighttime vehicle detection for intelligent traffic monitoring from the thermal camera. To train a Convolutional Neural Network (CNN) detector we create a stylized version of COCO (Common Objects in Context) dataset using Style Transfer technique that imitates images obtained from thermal cameras. This new dataset is further used for fine-tuning of the model and as a result detection accuracy on images...
-
Modeling and Simulation for Exploring Power/Time Trade-off of Parallel Deep Neural Network Training
PublicationIn the paper we tackle bi-objective execution time and power consumption optimization problem concerning execution of parallel applications. We propose using a discrete-event simulation environment for exploring this power/time trade-off in the form of a Pareto front. The solution is verified by a case study based on a real deep neural network training application for automatic speech recognition. A simulation lasting over 2 hours...
-
TOWARDS EXPLAINABLE CLASSIFIERS USING THE COUNTERFACTUAL APPROACH - GLOBAL EXPLANATIONS FOR DISCOVERING BIAS IN DATA
PublicationThe paper proposes summarized attribution-based post-hoc explanations for the detection and identification of bias in data. A global explanation is proposed, and a step-by-step framework on how to detect and test bias is introduced. Since removing unwanted bias is often a complicated and tremendous task, it is automatically inserted, instead. Then, the bias is evaluated with the proposed counterfactual approach. The obtained results...
-
Artificial Neural Network based fatigue life assessment of riveted joints in AA2024 aluminum alloy plates and optimization of riveted joints parameters
PublicationThe objective of this paper is to provide the fatigue life of riveted joints in AA2024 aluminum alloy plates and optimization of riveted joints parameters. At first, the fatigue life of the riveted joints in AA2024 aluminum alloy plates is obtained by experimental tests. Then, an artificial neural network is applied to estimate the fatigue life of riveted lap joints based on the number of lateral and longitudinal holes, punch pressure,...
-
Application of ANN and PCA to two-phase flow evaluation using radioisotopes
PublicationIn the two-phase flow measurements a method involving the absorption of gamma radiation can be applied among others. Analysis of the signals from the scintillation probes can be used to determine the number of flow parameters and to recognize flow structure. Three types of flow regimes as plug, bubble, and transitional plug – bubble flows were considered in this work. The article shows how features of the signals in the time and...
-
Adaptive Hounsfield Scale Windowing in Computed Tomography Liver Segmentation
PublicationIn computed tomography (CT) imaging, the Hounsfield Unit (HU) scale quantifies radiodensity, but its nonlinear nature across organs and lesions complicates machine learning analysis. This paper introduces an automated method for adaptive HU scale windowing in deep learning-based CT liver segmentation. We propose a new neural network layer that optimizes HU scale window parameters during training. Experiments on the Liver Tumor...
-
Architektury klasyfikatorów obrazów
PublicationKlasyfikacja obrazów jest zagadnieniem z dziedziny widzenia komputerowego. Polega na całościowej analizie obrazu i przypisaniu go do jednej lub wielu kategorii (klas). Współczesne rozwiązania tego problemu są w znacznej części realizowane z wykorzystaniem konwolucyjnych głębokich sieci neuronowych (convolutional neural network, CNN). W tym rozdziale opisano przełomowe architektury CNN oraz ewolucję state-of-the-art w klasyfikacji...
-
TensorHive: Management of Exclusive GPU Access for Distributed Machine Learning Workloads
PublicationTensorHive is a tool for organizing work of research and engineering teams that use servers with GPUs for machine learning workloads. In a comprehensive web interface, it supports reservation of GPUs for exclusive usage, hardware monitoring, as well as configuring, executing and queuing distributed computational jobs. Focusing on easy installation and simple configuration, the tool automatically detects the available computing...
-
Analysis of Denoising Autoencoder Properties Through Misspelling Correction Task
PublicationThe paper analyzes some properties of denoising autoencoders using the problem of misspellings correction as an exemplary task. We evaluate the capacity of the network in its classical feed-forward form. We also propose a modification to the output layer of the net, which we called multi-softmax. Experiments show that the model trained with this output layer outperforms traditional network both in learning time and accuracy. We...
-
MACHINE LEARNING APPLICATIONS IN RECOGNIZING HUMAN EMOTIONS BASED ON THE EEG
PublicationThis study examined the machine learning-based approach allowing the recognition of human emotional states with the use of EEG signals. After a short introduction to the fundamentals of electroencephalography and neural oscillations, the two-dimensional valence-arousal Russell’s model of emotion was described. Next, we present the assumptions of the performed EEG experiment. Detail aspects of the data sanitization including preprocessing,...
-
Driver fatigue detection method based on facial image analysis
PublicationNowadays, ensuring road safety is a crucial issue that demands continuous development and measures to minimize the risk of accidents. This paper presents the development of a driver fatigue detection method based on the analysis of facial images. To monitor the driver's condition in real-time, a video camera was used. The method of detection is based on analyzing facial features related to the mouth area and eyes, such as...
-
Instance segmentation of stack composed of unknown objects
PublicationThe article reviews neural network architectures designed for the segmentation task. It focuses mainly on instance segmentation of stacked objects. The main assumption is that segmentation is based on a color image with an additional depth layer. The paper also introduces the Stacked Bricks Dataset based on three cameras: RealSense L515, ZED2, and a synthetic one. Selected architectures: DeepLab, Mask RCNN, DEtection TRansformer,...
-
Estimation of the Ultimate Strength of FRP Strips-to-Masonry Substrates Bond
PublicationFiber-Reinforced Polymers (FRP) were developed as a new method over the past decades due to their many beneficial mechanical properties, and they are commonly applied to strengthen masonry structures. In this paper, the Artificial Neural Network (ANN), K-fold Cross-Validation (KFCV) technique, Multivariate Adaptive Regression Spline (MARS) method, and M5 Model Tree (M5MT) method were utilized to predict the ultimate strength of...
-
LSA Is not Dead: Improving Results of Domain-Specific Information Retrieval System Using Stack Overflow Questions Tags
PublicationThe paper presents the approach to using tags from Stack Overflow questions as a data source in the process of building domain-specific unsupervised term embeddings. Using a huge dataset of Stack Overflow posts, our solution employs the LSA algorithm to learn latent representations of information technology terms. The paper also presents the Teamy.ai system, currently developed by Scalac company, which serves as a platform that...
-
Biotrickling filtration of n-butanol vapors: process monitoring using electronic nose and artificial neural network
PublicationBiotrickling filtration is one of the techniques used to reduce odorants in the air. It is based on the aerobic degradation of pollutants by microorganisms located in the filter bed. The research presents the possibility of using the electronic nose prototype combined with artificial neural network for biofiltration process monitoring in terms of reduction in n-butanol concentration and odour intensity of treated air. The study...
-
Method for Clustering of Brain Activity Data Derived from EEG Signals
PublicationA method for assessing separability of EEG signals associated with three classes of brain activity is proposed. The EEG signals are acquired from 23 subjects, gathered from a headset consisting of 14 electrodes. Data are processed by applying Discrete Wavelet Transform (DWT) for the signal analysis and an autoencoder neural network for the brain activity separation. Processing involves 74 wavelets from 3 DWT families: Coiflets,...
-
Dynamic Bankruptcy Prediction Models for European Enterprises
PublicationThis manuscript is devoted to the issue of forecasting corporate bankruptcy. Determining a firm’s bankruptcy risk is one of the most interesting topics for investors and decision-makers. The aim of the paper is to develop and to evaluate dynamic bankruptcy prediction models for European enterprises. To conduct this objective, four forecasting models are developed with the use of four different methods—fuzzy sets, recurrent and...
-
Deep learning for recommending subscription-limited documents
PublicationDocuments recommendation for a commercial, subscription-based online platform is important due to the difficulty in navigation through a large volume and diversity of content available to clients. However, this is also a challenging task due to the number of new documents added every day and decreasing relevance of older contents. To solve this problem, we propose deep neural network architecture that combines autoencoder with...
-
Towards Cancer Patients Classification Using Liquid Biopsy
PublicationLiquid biopsy is a useful, minimally invasive diagnostic and monitoring tool for cancer disease. Yet, developing accurate methods, given the potentially large number of input features, and usually small datasets size remains very challenging. Recently, a novel feature parameterization based on the RNA-sequenced platelet data which uses the biological knowledge from the Kyoto Encyclopedia of Genes and Genomes, combined with a classifier...
-
MACHINE LEARNING SYSTEM FOR AUTOMATED BLOOD SMEAR ANALYSIS
PublicationIn this paper the authors propose a decision support system for automatic blood smear analysis based on microscopic images. The images are pre-processed in order to remove irrelevant elements and to enhance the most important ones - the healthy blood cells (erythrocytes) and the pathologic (echinocytes). The separated blood cells are analyzed in terms of their most important features by the eigenfaces method. The features are the...