Search results for: IMAGE SEGMENTATION, COMPUTER VISION, DEEP LEARNING - Bridge of Knowledge

Search

Search results for: IMAGE SEGMENTATION, COMPUTER VISION, DEEP LEARNING

Search results for: IMAGE SEGMENTATION, COMPUTER VISION, DEEP LEARNING

  • Convolutional Neural Networks for C. Elegans Muscle Age Classification Using Only Self-Learned Features

    Nematodes Caenorhabditis elegans (C. elegans) have been used as model organisms in a wide variety of biological studies, especially those intended to obtain a better understanding of aging and age-associated diseases. This paper focuses on automating the analysis of C. elegans imagery to classify the muscle age of nematodes based on the known and well established IICBU dataset. Unlike many modern classification methods, the proposed...

    Full text available to download

  • BETWEEN IDEA AND INTERPRETATION - DESIGN PROCESS AUGMENTATION

    Publication

    - Year 2018

    The following paper investigates the idea of reducing the human digital intervention to a minimum during the advanced design process. Augmenting the outcome attributes beyond the designer's capabilities by computational design methods, data collection, data computing and digital fabrication, altogether imitating the human design process. The primary technical goal of the research was verification of restrictions and abilities used...

  • Playback detection using machine learning with spectrogram features approach

    Publication

    - Year 2017

    This paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...

    Full text available to download

  • How to Sort Them? A Network for LEGO Bricks Classification

    Publication

    LEGO bricks are highly popular due to the ability to build almost any type of creation. This is possible thanks to availability of multiple shapes and colors of the bricks. For the smooth build process the bricks need to properly sorted and arranged. In our work we aim at creating an automated LEGO bricks sorter. With over 3700 different LEGO parts bricks classification has to be done with deep neural networks. The question arises...

    Full text available to download

  • Virtual Whiteboard: A gesture-controlled pen-free tool emulating school whiteboard

    Publication

    In the paper the so-called Virtual Whiteboard is presented which may be an alternative solution for modern electronic whiteboards based on electronic pens and sensors. The presented tool enables the user to write, draw and handle whiteboard contents using his/her hands only. An additional equipment such as infrared diodes, infrared cameras or cyber gloves is not needed. The user's interaction with the Virtual Whiteboard computer...

  • Multiclass AdaBoost Classifier Parameter Adaptation for Pattern Recognition

    The article presents the problem of parameter value selection of the multiclass ``one against all'' approach of an AdaBoost algorithm in tasks of object recognition based on two-dimensional graphical images. AdaBoost classifier with Haar features is still used in mobile devices due to the processing speed in contrast to other methods like deep learning or SVM but its main drawback is the need to assembly the results of binary...

    Full text to download in external service

  • A Triplet-Learnt Coarse-to-Fine Reranking for Vehicle Re-identification

    Publication

    - Year 2020

    Vehicle re-identification refers to the task of matching the same query vehicle across non-overlapping cameras and diverse viewpoints. Research interest on the field emerged with intelligent transportation systems and the necessity for public security maintenance. Compared to person, vehicle re-identification is more intricate, facing the challenges of lower intra-class and higher inter-class similarities. Motivated by deep...

    Full text to download in external service

  • Data Acquisition and Processing for GeoAI Models to Support Sustainable Agricultural Practices

    Publication
    • A. G. Pereira
    • A. Ojo
    • C. Edward
    • L. Porwol

    - Year 2020

    There are growing opportunities to leverage new technologies and data sources to address global problems related to sustainability, climate change, and biodiversity loss. The emerging discipline of GeoAI resulting from the convergence of AI and Geospatial science (Geo-AI) is enabling the possibility to harness the increasingly available open Earth Observation data collected from different constellations of satellites and sensors...

    Full text available to download

  • Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models

    Publication
    • R. Yurt
    • H. Torpi
    • P. Mahouti
    • A. Kizilay
    • S. Kozieł

    - IEEE Access - Year 2023

    This work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...

    Full text available to download

  • Architectural Modifications to Enhance Steganalysis with Convolutional Neural Networks

    Publication

    This paper investigates the impact of various modifications introduced to current state-of-the-art Convolutional Neural Network (CNN) architectures specifically designed for the steganalysis of digital images. Usage of deep learning methods has consistently demonstrated improved results in this field over the past few years, primarily due to the development of newer architectures with higher classification accuracy compared to...

    Full text to download in external service

  • Detecting Objects of Various Categories in Optical Remote Sensing Imagery Using Neural Networks

    Publication

    - Year 2024

    The effective detection of objects in remote sensing images is of great research importance, so recent years have seen a significant progress in deep learning techniques in this field. However, despite much valuable research being conducted, many challenges still remain. A lot of research projects focus on detecting objects of a single category (class), while correctly detecting objects of different categories is much harder. The...

    Full text to download in external service

  • Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio

    Publication

    - IEEE INTELLIGENT SYSTEMS - Year 2024

    The purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...

    Full text to download in external service

  • Autonomous port management based AGV path planning and optimization via an ensemble reinforcement learning framework

    Publication

    - OCEAN & COASTAL MANAGEMENT - Year 2024

    The rapid development of shipping trade pushes automated container terminals toward the direction of intelligence, safety and efficiency. In particular, the formulation of AGV scheduling tasks and the safety and stability of transportation path is an important part of port operation and management, and it is one of the basic tasks to build an intelligent port. Existing research mainly focuses on collaborative operation between...

    Full text to download in external service

  • Keystroke Dynamics Patterns While Writing Positive and Negative Opinions

    Publication

    This paper deals with analysis of behavioural patterns in human–computer interaction. In the study, keystroke dynamics were analysed while participants were writing positive and negative opinions. A semi-experiment with 50 participants was performed. The participants were asked to recall the most negative and positive learning experiences (subject and teacher) and write an opinion about it. Keystroke dynamics were captured and...

    Full text available to download

  • Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design

    Publication

    - Materials - Year 2023

    The design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...

    Full text available to download

  • SpamVis: A Visual Interactive System for Spam Review Detection

    Publication

    - Year 2024

    In recent times, the number of spam reviews through various online platforms has emerged as a prime challenge, profoundly impacting businesses and consumers. These fake reviews not only distort clients’ perceptions of products and services but also erode trust within the digital ecosystem. Despite the advent of machine learning (ML) techniques for identifying spam reviews, comparing text, and pinpointing groups of spammers, there...

    Full text available to download

  • Digital fingerprinting for color images based on the quaternion encryption scheme

    In this paper we present a new quaternion-based encryption technique for color images. In the proposed encryption method, images are written as quaternions and are rotated in a three-dimensional space around another quaternion, which is an encryption key. The encryption process uses the cipher block chaining (CBC) mode. Further, this paper shows that our encryption algorithm enables digital fingerprinting as an additional feature....

    Full text to download in external service

  • Equal Baseline Camera Array—Calibration, Testbed and Applications

    Publication

    - Applied Sciences-Basel - Year 2021

    This paper presents research on 3D scanning by taking advantage of a camera array consisting of up to five adjacent cameras. Such an array makes it possible to make a disparity map with a higher precision than a stereo camera, however it preserves the advantages of a stereo camera such as a possibility to operate in wide range of distances and in highly illuminated areas. In an outdoor environment, the array is a competitive alternative...

    Full text available to download

  • Model-Based Adaptive Machine Learning Approach in Concrete Mix Design

    Publication

    Concrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...

    Full text available to download

  • Karol Flisikowski dr inż.

    Karol Flisikowski works as Associate Professor at the Department of Statistics and Econometrics, Faculty of Management and Economics, Gdansk University of Technology. He is responsible for teaching descriptive and mathematical statistics (in Polish and English), as well as scientific research in the field of social statistics. He has been a participant in many national and international conferences, where he has presented the results...

  • Identification of the Contamination Source Location in the Drinking Water Distribution System Based on the Neural Network Classifier

    Publication

    The contamination ingression to the Water Distribution System (WDS) may have a major impact on the drinking water consumers health. In the case of the WDS contamination the data from the water quality sensors may be efficiently used for the appropriate disaster management. In this paper the methodology based on the Learning Vector Quantization (LVQ) neural network classifier for the identification of the contamination source location...

    Full text to download in external service

  • Robust-adaptive dynamic programming-based time-delay control of autonomous ships under stochastic disturbances using an actor-critic learning algorithm

    Publication

    This paper proposes a hybrid robust-adaptive learning-based control scheme based on Approximate Dynamic Programming (ADP) for the tracking control of autonomous ship maneuvering. We adopt a Time-Delay Control (TDC) approach, which is known as a simple, practical, model free and roughly robust strategy, combined with an Actor-Critic Approximate Dynamic Programming (ACADP) algorithm as an adaptive part in the proposed hybrid control...

    Full text available to download

  • Artificial Intelligence Aided Architectural Design

    Publication

    Tools and methods used by architects always had an impact on the way building were designed. With the change in design methods and new approaches towards creation process, they became more than ever before crucial elements of the creation process. The automation of architects work has started with computational functions that were introduced to traditional computer-aided design tools. Nowadays architects tend to use specified tools...

    Full text available to download

  • A Novel Approach of Using Selected Unconventional Geodesic Methods of Estimation on VTS Areas

    Publication

    - MARINE GEODESY - Year 2019

    The Vessel Traffic Service (VTS) systems belong to the fundamental tools used in ensuring a high level of safety across sea basins with heavy traffic, where the presence of navigational hazards poses a great risk of collision or a ship running aground. In order to determine the mutual location of ships, VTS systems obtain information from different facilities, such as coastal radar stations, AIS, and vision systems. Fixing a ship’s...

    Full text to download in external service

  • The Brick Face of Modernism and Architecture of Gustav Oelsner

    There are many reasons that make the work of Gustav Oelsner worth to present. One of the reasons is comparison of two different ways of development of two cities, Gdynia (an exhibition of work of Gustav Oelsner was presented in Gdynia in April and May of 2011) and Altona, were Oelsner created his architecture. These two cities has grown at the side of their big neighbours, Gdansk and Hamburg. They are harbour cities and their...

    Full text available to download

  • Adam Władziński

    People

    Adam Władziński, a PhD Candidate at Gdansk University of Technology, specializes in Biomedical Engineering with a focus on machine learning for image processing and blockchain technology. Holding a BEng and MSc in Electronics, Adam Władziński has developed a keen interest in applying advanced computational techniques to biological systems. During their master’s program, Adam Władziński explored laser spectroscopy, building a database...

  • Orken Mamyrbayev Professor

    People

    1.  Education: Higher. In 2001, graduated from the Abay Almaty State University (now Abay Kazakh National Pedagogical University), in the specialty: Computer science and computerization manager. 2.  Academic degree: Ph.D. in the specialty "6D070300-Information systems". The dissertation was defended in 2014 on the topic: "Kazakh soileulerin tanudyn kupmodaldy zhuyesin kuru". Under my supervision, 16 masters, 1 dissertation...

  • Application of Wavelet Transform and Fractal Analysis for Esophageal pH-Metry to Determine a New Method to Diagnose Gastroesophageal Reflux Disease

    In this paper, a new method for analysing gastroesophageal reflux disease (GERD) is shown. This novel method uses wavelet transform (WT) and wavelet-based fractal analysis (WBFA) on esophageal pH-metry measurements. The esophageal pH-metry is an important diagnostic tool supporting the physician’s work in diagnosing some forms of reflux diseases. Interpreting the results of 24-h pH-metry monitoring is time-consuming, and the conclusions...

    Full text available to download

  • BP-EVD: Forward Block-Output Propagation for Efficient Video Denoising

    Denoising videos in real-time is critical in many applications, including robotics and medicine, where varying light conditions, miniaturized sensors, and optics can substantially compromise image quality. This work proposes the first video denoising method based on a deep neural network that achieves state-of-the-art performance on dynamic scenes while running in real-time on VGA video resolution with no frame latency. The backbone...

    Full text to download in external service

  • Justyna Szostak dr inż.

    I Gdańsk University of Technology: Chair of the Rector’s Internationalization Committee (October 2020 - Present) Erasmus + Coordinator for students and staff members, Faculty of Applied Physics and Mathematics (Mar 2017 - Present) Dean's Proxy for Internationalization, Faculty of Applied Physics and Mathematics (October 2020 - Present) Coordinator of the International Relations Office of the Faculty of Applied Physics and...

  • Voice command recognition using hybrid genetic algorithm

    Publication

    Abstract: Speech recognition is a process of converting the acoustic signal into a set of words, whereas voice command recognition consists in the correct identification of voice commands, usually single words. Voice command recognition systems are widely used in the military, control systems, electronic devices, such as cellular phones, or by people with disabilities (e.g., for controlling a wheelchair or operating a computer...

    Full text available to download

  • Secure Quaternion Feistel Cipher for DICOM Images

    An improved and extended version of a quaternion-based lossless encryption technique for digital image and communication on medicine (DICOM) images is proposed. We highlight and address several security flaws present in the previous version of the algorithm originally proposed by Dzwonkowski et al. (2015). The newly proposed secure quater- nion Feistel cipher (S-QFC) algorithm...

    Full text to download in external service

  • High-quality academic teachers in business school. The case of The University of Gdańsk, Poland

    Publication

    The Bologna process, the increasing number of higher education institutions, the mass education and the demographic problems make the quality of education and quality of the academic teachers a subject of wide public debate and concern. The aim of the paper is to identify the most preferred characteristics of a teacher working at a business school. The research problem was: What should a high-quality business school academic teacher...

    Full text to download in external service

  • Experience-Oriented Intelligence for Internet of Things

    Publication

    - CYBERNETICS AND SYSTEMS - Year 2017

    The Internet of Things (IoT) has gained significant attention from industry as well as academia during the past decade. The main reason behind this interest is the capabilities of the IoT for seamlessly integrating classical networks and networked objects, and hence allows people to create an intelligent environment based on this powerful integration. However, how to extract useful information from data produced by IoT and facilitate...

    Full text available to download

  • Sensors and System for Vehicle Navigation

    Publication

    - SENSORS - Year 2022

    In recent years, vehicle navigation, in particular autonomous navigation, has been at the center of several major developments, both in civilian and defense applications. New technologies, such as multisensory data fusion, big data processing, or deep learning, are changing the quality of areas of applications, improving the sensors and systems used. Recently, the influence of artificial intelligence on sensor data processing and...

    Full text available to download

  • Leveraging Activation Maps for Improved Acoustic Events Detection and Classification

    Publication

    This paper presents a novel approach to enhance the accuracy of deep learning models for acoustic event detection and classification in real-world environments. We introduce a method that leverages activation maps to identify and address model overfitting, combined with an expert-knowledge-based event detection algorithm for data pre-processing. Our approach significantly improved classification performance, increasing the F1 score...

    Full text to download in external service

  • A pilot study to assess an in-process inspection method for small diameter holes produced by Direct Metal Laser Sintering

    Publication

    Purpose The purpose of this research is to evaluate the geometric quality of small diameter holes in parts printed by DMLS technology. An in-process optical inspection method is proposed and assessed during a pilot study. The influence of the theoretical hole diameter assumed in a CAD system and the sample thickness (hole length) on the hole clearance was analysed. Design/methodology/approach The samples made of two different...

    Full text available to download

  • Longitudinal drug synergy assessment using convolutional neural network image-decoding of glioblastoma single-spheroid cultures

    Publication
    • A. Giczewska
    • K. Pastuszak
    • M. Houweling
    • U. K. Abdul
    • N. Faaij
    • L. Wedekind
    • D. Noske
    • T. Würdinger
    • A. Supernat
    • B. Westerman

    - Neuro-Oncology Advances - Year 2023

    Abstract Background In recent years, drug combinations have become increasingly popular to improve therapeutic outcomes in various diseases, including difficult to cure cancers such as the brain cancer glioblastoma. Assessing the interaction between drugs over time is critical for predicting drug combination effectiveness and minimizing the risk of therapy resistance. However, as viability readouts of drug combination experiments...

    Full text available to download

  • OOA-modified Bi-LSTM network: An effective intrusion detection framework for IoT systems

    Publication
    • S. S. Narayana Chintapalli
    • S. Prakash Singh
    • J. Frnda
    • B. P. Divakarachar
    • V. L. Sarraju
    • P. Falkowski-Gilski

    - Heliyon - Year 2024

    Currently, the Internet of Things (IoT) generates a huge amount of traffic data in communication and information technology. The diversification and integration of IoT applications and terminals make IoT vulnerable to intrusion attacks. Therefore, it is necessary to develop an efficient Intrusion Detection System (IDS) that guarantees the reliability, integrity, and security of IoT systems. The detection of intrusion is considered...

    Full text available to download

  • IoT Based Intelligent Pest Management System for Precision Agriculture

    Publication

    - Scientific Reports - Year 2024

    Despite seemingly inexorable imminent risks of food insecurity that hang over the world, especially in developing countries like Pakistan where traditional agricultural methods are being followed, there still are opportunities created by technology that can help us steer clear of food crisis threats in upcoming years. At present, the agricultural sector worldwide is rapidly pacing towards technology-driven Precision Agriculture...

    Full text available to download

  • Automatic classification and mapping of the seabed using airborne LiDAR bathymetry

    Publication
    • Ł. Janowski
    • P. Tysiąc
    • R. Wróblewski
    • M. Rucińska
    • A. Kubowicz- Grajewska

    - ENGINEERING GEOLOGY - Year 2022

    Shallow coastal areas are among the most inhabited areas and are valuable for biodiversity, recreation and the economy. Due to climate change and sea level rise, sustainable management of coastal areas involves extensive exploration, monitoring, and protection. Current high-resolution remote sensing methods for monitoring these areas include bathymetric LiDAR. Therefore, this study presents a novel methodological approach to assess...

    Full text available to download

  • Hackathon HackVision

    Events

    04-11-2022 10:00 - 04-11-2022 18:00

    Już 4 listopada o 10:00 na Politechnice Gdańskiej (aula w budynku Wydziału Inżynierii Mechanicznej i Okrętownictwa – nr 40) rozpocznie się hackathon Hackvision – wydarzenie skierowane do studentów i doktorantów.

  • Computed aided system for separation and classification of the abnormal erythrocytes in human blood

    Publication

    - Year 2017

    The human peripheral blood consists of cells (red cells, white cells, and platelets) suspended in plasma. In the following research the team assessed an influence of nanodiamond particles on blood elements over various periods of time. The material used in the study consisted of samples taken from ten healthy humans of various age, different blood types and both sexes. The markings were leaded by adding to the blood unmodified...

    Full text to download in external service

  • Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets

    Publication

    - Informatica - Year 2021

    This paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...

    Full text available to download

  • Enabling Deeper Linguistic-based Text Analytics – Construct Development for the Criticality of Negative Service Experience

    Publication

    - IEEE Access - Year 2019

    Significant progress has been made in linguistic-based text analytics particularly with the increasing availability of data and deep learning computational models for more accurate opinion analysis and domain-specific entity recognition. In understanding customer service experience from texts, analysis of sentiments associated with different stages of the service lifecycle is a useful starting point. However, when richer insights...

    Full text available to download

  • Age Prediction from Low Resolution, Dual-Energy X-ray Images Using Convolutional Neural Networks

    Age prediction from X-rays is an interesting research topic important for clinical applications such as biological maturity assessment. It is also useful in many other practical applications, including sports or forensic investigations for age verification purposes. Research on these issues is usually carried out using high-resolution X-ray scans of parts of the body, such as images of the hands or images of the chest. In this...

    Full text available to download

  • Classification of Covid-19 using Differential Evolution Chaotic Whale Optimization based Convolutional Neural Network

    Publication

    - Scalable Computing: Practice and Experience - Year 2024

    COVID-19, also known as the Coronavirus disease-2019, is an transferrable disease that spreads rapidly, affecting countless individuals and leading to fatalities in this worldwide pandemic. The precise and swift detection of COVID-19 plays a crucial role in managing the pandemic's dissemination. Additionally, it is necessary to recognize COVID-19 quickly and accurately by investigating chest x-ray images. This paper proposed a...

    Full text available to download

  • Neural network agents trained by declarative programming tutors

    Publication

    This paper presents an experimental study on the development of a neural network-based agent, trained using data generated using declarative programming. The focus of the study is the application of various agents to solve the classic logic task – The Wumpus World. The paper evaluates the effectiveness of neural-based agents across different map configurations, offering a comparative analysis to underline the strengths and limitations...

    Full text to download in external service

  • Autoencoder application for anomaly detection in power consumption of lighting systems

    Publication

    - IEEE Access - Year 2023

    Detecting energy consumption anomalies is a popular topic of industrial research, but there is a noticeable lack of research reported in the literature on energy consumption anomalies for road lighting systems. However, there is a need for such research because the lighting system, a key element of the Smart City concept, creates new monitoring opportunities and challenges. This paper examines algorithms based on the deep learning...

    Full text available to download

  • A Review of Emotion Recognition Methods Based on Data Acquired via Smartphone Sensors

    Publication

    In recent years, emotion recognition algorithms have achieved high efficiency, allowing the development of various affective and affect-aware applications. This advancement has taken place mainly in the environment of personal computers offering the appropriate hardware and sufficient power to process complex data from video, audio, and other channels. However, the increase in computing and communication capabilities of smartphones,...

    Full text available to download