Search results for: MACHINE TOOLS
-
Revisiting the estimation of cutting power with different energetic methods while sawing soft and hard woods on the circular sawing machine: a Central European case
PublicationIn the classical approaches, used in Central Europe in practice, cutting forces and cutting power in sawing processes of timber are commonly computed by means of the specific cutting resistance kc. It needs to be highlighted that accessible sources in handbooks and the scientific literature do not provide any data about wood provenance, nor about cutting conditions, in which cutting resistance has been empirically determined. In...
-
Chemical, Physical, and Mechanical Properties of 95-Year-Old Concrete Built-In Arch Bridge
PublicationThis research aimed to determine the durability and strength of an old concrete built-in arch bridge based on selected mechanical, physical, and chemical properties of the concrete. The bridge was erected in 1925 and is located in Jagodnik (northern Poland). Cylindrical specimens were taken from the side ribs connected to the top plate using a concrete core borehole diamond drill machine. The properties of the old concrete were...
-
A Critical Reanalysis of Uncontrollable Washboarding Phenomenon in Metal Band Sawing
PublicationThe article analyzes the cutting process of hard bars. Investigations conducted in industrial conditions demonstrated the presence of surface errors in the machined workpieces in the form of washboard patterns. The purpose of this study was to analyze the results of cutting on band sawing machines with different band saw blades. The cutting processes were conducted on three different horizontal band sawing machine types. Analyzed...
-
Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various Machine learning techniques
PublicationMachine Learning (ML) method is widely used in engineering applications such as fracture mechanics. In this study, twenty different ML algorithms were employed and compared for the prediction of the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) of various materials, including fibre-reinforced concrete, cement mortar, sandstone, white travertine, marble, and granite. A set of 401 specimens of “Brazilian...
-
Exploring the influence of personal factors on physiological responses to mental imagery in sport
PublicationImagery is a well-known technique in mental training which improves performance efficiency and influences physiological arousal. One of the biomarkers indicating the amount of physiological arousal is skin conductance level (SCL). The aim of our study is to understand how individual differences in personality (e.g. neuroticism), general imagery and situational sport anxiety are linked to arousal measuring with SCL in situational...
-
Privacy-Preserving, Scalable Blockchain-Based Solution for Monitoring Industrial Infrastructure in the Near Real-Time
PublicationThis paper proposes an improved monitoring and measuring system dedicated to industrial infrastructure. Our model achieves security of data by incorporating cryptographical methods and near real-time access by the use of virtual tree structure over records. The currently available blockchain networks are not very well adapted to tasks related to the continuous monitoring of the parameters of industrial installations. In the database...
-
Effective density of airborne wear particles from car brake materials
PublicationPeople living in urban environments are subject to high health risks due to various anthropogenic sources of airborne particulate matter, including wear of transport vehicle brakes. Studies of airborne particles often require an estimate of the effective particle density, a property that allows correct matching of mass and size characteristics measured by different aerosol instruments. In this study we investigated the effective...
-
Porosity and shape of airborne wear microparticles generated by sliding contact between a low-metallic friction material and a cast iron
PublicationThe wear of brakes in transport vehicles is one of the main anthropogenic sources of airborne particulate matter in urban environments. The present study deals with the characterisation of airborne wear microparticles from a low-metallic friction material / cast iron pair used in car brakes. Particles were generated by a pin-on-disc machine in a sealed chamber at sliding velocity of 1.3 m/s and contact pressure of 1.5 MPa. They...
-
University Students’ Research on Artificial Intelligence and Knowledge Management. A Review and Report of Multi-case Studies
PublicationLeading technologies are very attractive for students preparing their theses as the completion of their studies. Such an orientation of students connected with professional experiences seems to be a crucial motivator in the research in the management and business areas where these technologies condition the development of professional activities. The goal of the paper is the analysis of students’ thesis topics defended in the last...
-
Contemporary and Conventional Passive Methods of Intensifying Convective Heat Transfer—A Review
PublicationThe ever-increasing demand for effective heat dissipation and temperature control in industrial and everyday applications highlights a critical research problem. The need for development is not only in terms of providing thermal comfort to humans but also forms the basis for the efficient operation of machines and equipment. Cooling of industrial machinery and household electronic equipment is a crucial element in any manufacturing...
-
Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network
PublicationDesigning microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective...
-
Desirability-based optimization of dual-fuel diesel engine using acetylene as an alternative fuel
Publicationhe study examined the dual-fuel engine performance employing acetylene gas as primary fuel and diesel as pilot fuel. The engine's operational parameters were adjusted using the Box-Behnken design, and the results were recorded. The best operating settings were yielded as 81.25 % engine load, 4.48 lpm acetylene gas flow rate and the compression ratio were 18. At this optimized setting the BTE was 27.1 % and the engine emitted 360...
-
Detection of People Swimming in Water Reservoirs with the Use of Multimodal Imaging and Machine Learning
PublicationEvery year in many countries, there are fatal unintentional drownings in different water reservoirs like swimming pools, lakes, seas, or oceans. The existing threats of this type require creating a method that could automatically supervise such places to increase the safety of bathers. This work aimed to create methods and prototype solutions for detecting people bathing in water reservoirs using a multimodal imaging system and...
-
An Empirical Study of a Dynamic Stop Loss Strategy with Deep Reinforcement Learning on the NASDAQ Stock Market
PublicationThe objective of this paper is to empirically investigate the efficacy of using Deep Reinforcement Learning (DRL) to maximize investment returns by incorporating expected optimal closing prices of long positions into a daily strategy. This paper extends existing research on the impact of stop-loss orders on investment strategy results and brings contribution of these orders to trading strategies into a completely new perspective....
-
An Adversarial Machine Learning Approach on Securing Large Language Model with Vigil, an Open-Source Initiative
PublicationSeveral security concerns and efforts to breach system security and prompt safety concerns have been brought to light as a result of the expanding use of LLMs. These vulnerabilities are evident and LLM models have been showing many signs of hallucination, repetitive content generation, and biases, which makes them vulnerable to malicious prompts that raise substantial concerns in regard to the dependability and efficiency of such...
-
Teaching High–performance Computing Systems – A Case Study with Parallel Programming APIs: MPI, OpenMP and CUDA
PublicationHigh performance computing (HPC) education has become essential in recent years, especially that parallel computing on high performance computing systems enables modern machine learning models to grow in scale. This significant increase in the computational power of modern supercomputers relies on a large number of cores in modern CPUs and GPUs. As a consequence, parallel program development based on parallel thinking has become...
-
Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology
PublicationLignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization...
-
Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling
PublicationDeep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors....
-
The adaptive backstepping control of PMSM supplied by current source inverter for the field weakening region
PublicationThe sensorless control system of permanent magnet synchronous motor PMSM supplied by current source inverter for field weakening operation is presented in this paper. The adaptive backstepping control system and the backstepping speed observer are presented. The control system is based on multi-scalar variables. The control variables are: dc-link voltage and the output current vector pulsation. The control system was named voltage...
-
HIERARCHICAL CYCLES IN MODERN POWER SYSTEMS – EXERGY ANALYSIS UNDER PART LOADS
PublicationThe aim of the paper is to investigate thermodynamic efficiency of advanced hierarchic power cyclesunder partial loads by using of exergy analyze. Advanced hierarchical power systems arecomposed of few energy conversion cycles, most common are steam and gas cycles in various configurations, but they may contain fuel cells, ORC, lithium bromide absorption chillers and others. Moreover hierarchical cycles can be powered by several...
-
Diagnostic system of wheeled tractors detecting four defect's categories
PublicationIn a classical approach to damage diagnosis, the technical condition of an analyzed machine is identified based on the measured symptoms, such as performance, thermal state or vibration parameters. In wheeled tractor the fundamental importance has monitoring and diagnostics during exploitation concerning technical inspection and fault element localizations. The main functions of a diagnostic system are: monitoring tractor components...
-
Programowo-sprzętowa platforma symulacyjna - Hardware In the Loop - zaawansowanego układu sterowania poziomem wody w pionowej wytwornicy pary elektrowni jądrowej
PublicationW artykule przedstawiono koncepcję programowo-sprzętowej platformy symulacyjnej wykorzystującej technikę symulacji w pętli sprzętowej HIL (ang. Hardware In The Loop simulation), wykorzystanej dla potrzeb projektowania i weryfikacji w czasie rzeczywistym (ang. Real Time) zaawansowanych algorytmów sterowania poziomem wody w pionowej wytwornicy pary elektrowni jądrowej. Jej głównymi elementami sa: środowisko czasu rzeczywistego Matlab/Simulink...
-
Multicomponent ionic liquid CMC prediction
PublicationWe created a model to predict CMC of ILs based on 704 experimental values published in 43 publications since 2000. Our model was able to predict CMC of variety of ILs in binary or ternary system in a presence of salt or alcohol. The molecular volume of IL (Vm), solvent-accessible surface (Sˆ), solvation enthalpy (DsolvGN), concentration of salt (Cs) or alcohol (Ca) and their molecular volumes (Vms and Vma, respectively) were chosen...
-
Programowo-sprzętowa platforma symulacyjna - Hardware In the Loop - zaawansowanego układu sterowania poziomem wody w pionowej wytwornicy pary elektrowni jądrowej
PublicationW artykule przedstawiono koncepcję programowo-sprzętowej platformy symulacyjnej wykorzystującej technikę symulacji w pętli sprzętowej HIL (ang. Hardware In The Loop simulation), wykorzystanej dla potrzeb projektowania i weryfikacji w czasie rzeczywistym (ang. Real Time) zaawansowanych algorytmów sterowania poziomem wody w pionowej wytwornicy pary elektrowni jądrowej. Jej głównymi elementami są: środowisko czasu rzeczywistego Matlab/Simulink...
-
The Influence of Workpiece Hardness on Plate Temperature during One Side Lapping
PublicationLapping leads to a surface with low roughness and high precision. Because of required parts accuracy tool flatness is the key to the successful machining. To avoid its excessive thermal expansion, plate temperature research was taken. The goal was to determine the correlation between the basic lapping conditions and wheel temperature. In work Bulsara et al. authors developed model to estimate the maximum and average temperature...
-
A System for Heart Sounds Classification
PublicationThe future of quick and efficient disease diagnosis lays in the development of reliable non-invasive methods. As for the cardiac diseases – one of the major causes of death around the globe – a concept of an electronic stethoscope equipped with an automatic heart tone identification system appears to be the best solution. Thanks to the advancement in technology, the quality of phonocardiography signals is no longer an issue. However,...
-
The experimental identification of the dynamic coefficients of two hydrodynamic journal bearings operating at constant rotational speed and under nonlinear conditions.
PublicationHydrodynamic bearings are commonly used in ship propulsion systems. Typically, they are calculated using numerical or experimental methods. This paper presents an experimental study through which it has been possible to estimate 24 dynamic coefficients of two hydrodynamic slide bearings operating under nonlinear conditions. During the investigation, bearing mass coefficients are identified by means of a newly developed algorithm....
-
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublicationThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Review of Segmentation Methods for Coastline Detection in SAR Images
PublicationSynthetic aperture radar (SAR) images acquired by airborne sensors or remote sensing satellites contain the necessary information that can be used to investigate various objects of interest on the surface of the Earth, including coastlines. The coastal zone is of great economic importance and is also very densely populated. The intensive and increasing use of coasts and changes of coastlines motivate researchers to try to assess...
-
Data-driven, probabilistic model for attainable speed for ships approaching Gdańsk harbour
PublicationThe growing demand for maritime transportation leads to increased traffic in ports. From this arises the need to observe the consequences of the specific speed ships reach when approaching seaports. However, usually the analyzed cases refer only to the statistical evaluation of the studied phenomenon or to the empirical modelling, ignoring the mutual influence of variables such as ship type, length or weather conditions. In this...
-
Axial-Flux Permanent-Magnet Dual-Rotor Generator for a Counter-Rotating Wind Turbine
PublicationCoaxial counter-rotating propellers have been widely applied in ships and helicopters for improving the propulsion efficiency and offsetting system reactive torques. Lately, the counter-rotating concept has been introduced into the wind turbine design. Distributed wind power generation systems often require a novel approach in generator design. In this paper, prototype development of axial-flux generator with a counter-rotating...
-
Real-time hybrid model of a wind turbine with doubly fed induction generator
PublicationIn recent years renewable sources have been dominating power system. The share of wind power in energy production increases year by year, which meets the need to protect the environment. Possibility of conducting, not only computer simulation, but also laboratory studies of wind turbine operation and impact on the power system and other power devices in laboratory conditions would be very useful. This article presents a method...
-
Laxer Clinical Criteria for Gaming Disorder May Hinder Future Efforts to Devise an Efficient Diagnostic Approach: A Tree-Based Model Study
PublicationInternet Gaming Disorder (IGD) has been recognized in May 2013 and can be evaluated using the criteria developed by American Psychiatric Association (APA). The present study investigated the role each IGD criteria plays in diagnosing disordered gaming. A total of 3,377 participants (mean age 20 years, SD = 4.3 years) participated in the study. The data collected was scrutinized to detect patterns...
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublicationResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
Detecting Lombard Speech Using Deep Learning Approach
PublicationRobust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks...
-
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm
PublicationSatellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification...
-
Preferred Benchmarking Criteria for Systematic Taxonomy of Embedded Platforms (STEP) in Human System Interaction Systems
PublicationThe rate of progress in the field of Artificial Intelligence (AI) and Machine Learning (ML) has significantly increased over the past ten years and continues to accelerate. Since then, AI has made the leap from research case studies to real production ready applications. The significance of this growth cannot be undermined as it catalyzed the very nature of computing. Conventional platforms struggle to achieve greater performance...
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublicationResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
Neural network training with limited precision and asymmetric exponent
PublicationAlong with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...
-
Detection of anomalies in bee colony using transitioning state and contrastive autoencoders
PublicationHoneybees plays vital role for the environmental sustainability and overall agricultural economy. Assisting bee colonies within their proper functioning brings the attention of researchers around the world. Electronics systems and machine learning algorithms are being developed for classifying specific undesirable bee behaviors in order to alert about upcoming substantial losses. However, classifiers could be impaired when used...
-
Quantifying inconsistencies in the Hamburg Sign Language Notation System
PublicationThe advent of machine learning (ML) has significantly advanced the recognition and translation of sign languages, bridging communication gaps for hearing-impaired communities. At the heart of these technologies is data labeling, crucial for training ML algorithms on a huge amount of consistently labeled data to achieve models that generalize well. The adoption of language-agnostic annotations is essential to connect different sign...
-
Modeling lignin extraction with ionic liquids using machine learning approach
PublicationLignin, next to cellulose, is the second most common natural biopolymer on Earth, containing a third of the organic carbon in the biosphere. For many years, lignin was perceived as waste when obtaining cellulose and hemicellulose and used as a biofuel for the production of bioenergy. However, recently, lignin has been considered a renewable raw material for the production of chemicals and materials to replace petrochemical resources....
-
A Case Study of Electric Vehicles Load Forecasting in Residential Sector Using Machine Learning Techniques
PublicationElectric vehicles (EVs) have been widely adopted to prevent global warming in recent years. The higher installation of Level-1 and Level-2 chargers in residential areas soon poses challenges to the distributed network. However, such challenges can be mitigated through the adoption of smart charging or controlled charging schemes. To facilitate the implementation of smart charging, accurate forecasting of EV charging demand in residential...
-
Operational Performance and Weld Bead Characteristics of Experimental Tubular-Wires for Underwater Welding
PublicationAiming to evaluate new formulations and their operational behavior underwater, two experimental tubular wires with different chemical compositions in their internal flux were initially manufactured, employing a pilot machine and a unique manufacturing process. Weld beads were deposited on a plate placed in a flat position inside a tank using a mechanized system and the IMC 300 welding power source. The work was done at a depth...
-
Utilizing UAV and orthophoto data with bathymetric LiDAR in google earth engine for coastal cliff degradation assessment
PublicationThis study introduces a novel methodology for estimating and analysing coastal cliff degradation, using machine learning and remote sensing data. Degradation refers to both natural abrasive processes and damage to coastal reinforcement structures caused by natural events. We utilized orthophotos and LiDAR data in green and near-infrared wavelengths to identify zones impacted by storms and extreme weather events that initiated mass...
-
Personalized prediction of the secondary oocytes number after ovarian stimulation: A machine learning model based on clinical and genetic data
PublicationControlled ovarian stimulation is tailored to the patient based on clinical parameters but estimating the number of retrieved metaphase II (MII) oocytes is a challenge. Here, we have developed a model that takes advantage of the patient’s genetic and clinical characteristics simultaneously for predicting the stimulation outcome. Sequence variants in reproduction-related genes identified by next-generation sequencing were matched...
-
Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
PublicationNowadays, due to improvements in seismic codes and computational devices, retrofitting buildings is an important topic, in which, permanent deformation of buildings, known as Residual Interstory Drift Ratio (RIDR), plays a crucial role. To provide an accurate yet reliable prediction model, 32 improved Machine Learning (ML) algorithms were considered using the Python software to investigate the best method for estimating Maximum...
-
Core loss resistance impact on sensorless speed control of an induction motor using hybrid adaptive sliding mode observer
PublicationInduction motors (IMs) experience power losses when a portion of the input power is converted to heat instead of driving the load. The combined effect of copper losses, core losses, and mechanical losses results in IM power losses. Unfortunately, the core losses in the motor, which have a considerable impact on its energy efficiency, are not taken into account by the generally employed dynamic model in the majority of the studies. Due...
-
Investigating the Effects of Ground-Transmitted Vibrations from Vehicles on Buildings and Their Occupants, with an Idea for Applying Machine Learning
PublicationVibrations observed as a result of moving vehicles can potentially affect both buildings and the people inside them. The impacts of these vibrations are complex, affected by a number of parameters, like amplitude, frequency, and duration, as well as by the properties of the soil beneath. These factors together lead to various effects, from slight disruptions to significant structural damage. Occupants inside affected buildings...
-
Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms
Publication(1) About 15-20% of couples struggle with the problem of infertility. 30 to 40% of these cases are caused by abnormalities in the structure and motility of sperm. Sometimes the only possibility for such people is to use the procedure of artificial insemination. CASA systems are used to increase the efficiency of this procedure by selecting the appropriate sperm cell. (2) This paper presents an approach to the sperm classification...