Filters
total: 91
Search results for: METAL FOAM
-
KOMPOZYTOWY MOST PIESZO - ROWEROWY
PublicationPaper presents the composite foot and cycle bridge developed in FOBRIDGE grant cofinanced by The National Centre for Research and Development and realized by consortium of Gdansk University of Technology (leader), Military University of Technology in Warsaw and ROMA Sp. z o.o. in Toruń. The purpose of the grant was to design a shell type single span foot and cycle bridge made of composite materials, with the assumption of manufacturing...
-
Effect of bio-polyol molecular weight on the structure and properties of polyurethane-polyisocyanurate (PUR-PIR) foams
PublicationThe increasing interest in polyurethane materials has raised the question of the environmental impact of these materials. For this reason, the scientists aim to find an extremely difficult balance between new material technologies and sustainable development. This work attempts to validate the possibility of replacing petrochemical polyols with previously synthesized bio-polyols and their impact on the structure and properties...
-
A Simple Replica Method as the Way to Obtain a Morphologically and Mechanically Bone-like Iron-Based Biodegradable Material
PublicationPorous iron-based scaffolds were prepared by the simple replica method using polyurethane foam as a template and applying the sintering process in a tube furnace. Their surface morphology was characterized using scanning electron microscopy (SEM) and phase homogeneity was confirmed using X-ray diffraction (XRD). Corrosion behavior was determined using immersion and potentiodynamic polarization methods in phosphate buffered saline...
-
Experimental and numerical evaluation of mechanical behaviour of composite structural insulated panels
PublicationComposite structural insulated panels (CSIPs) are novel prefabricated elements for structural applications. Panels under consideration are made from glass-fibre reinforced magnesia cement boards as facesheets and expanded polystyrene foam (EPS) as a core. Quasi-static full-scale and model bending tests under monotonic loading were performed to recognize mechanical properties of CSIPs in flexure. In addition, tensile, compressive,...
-
Composite GFRP U-shaped footbridge
PublicationThe paper presents proposals for the use of glass fiber reinforced polymer composites for the construction of engineering objects, known and commonly used in the shipbuilding industry. An example of a pedestrian footbridge was used in this case, which, despite the considerable thickness of the structural material, was made using infusion technology in one production cycle. The designed and produced footbridge span is durable, dynamically...
-
Evaluation of Immobilization of Selected Peat-Isolated Yeast Strains of the Species Candida albicans and Candida subhashii on the Surface of Artificial Support Materials Used for Biotrickling Filtration
PublicationThe paper describes the process of n-butanol abatement by unicellular fungi, able to deplete n-butanol content in gas, by using n-butanol as source of carbon. Isolated and identified fungi species Candida albicans and Candida subhashii were subjected to a viability process via assimilation of carbon from hydrophilic and hydrophobic compounds. The isolates, which exhibited the ability to assimilate carbon, were immobilized on four...
-
Dynamic tests of composite footbridge segment – experimental and numerical studies
PublicationExperimental dynamic tests and numerical simulations of a 3 meters long segment of a footbridge made of polymer composites are presented in the paper. The span-length is reduced, however dimensions of cross-section are the same as the target footbridge. The segment structure is made of sandwich panels, which consist of fibre reinforced polymer (GFRP) laminates (skins) and a PET foam (core). The first part of the paper contains...
-
The Discrete-Continuous, Global Optimisation of an Axial Flow Blood Pump
PublicationThis paper presents the results of the discrete-continuous optimisation of an axial flow blood pump. Differential evolution (DE) is used as a global optimisation method in order to localise the optimal solution in a relatively short time. The whole optimisation process is fully automated. This also applies to geometry modelling. Numerical simulations of the flow inside the pump are performed by means of the Reynolds-Average Navier-Stokes...
-
Recycled Polyurethane as a Second Phase in Thermoset Blends and Its Effect on Thermal Degradation Kinetics Studies
PublicationA new approach is introduced in the modification of thermosetting polymer by using different amount of polyurethane of waste origin. The post consumer polyurethane foam coatings are degraded using glycolysis process and the recycled product is further converted into new polyurethane. The blending of recycled polyurethane with epoxy exhibits transparency and produces nanostructures. The effective interaction between two polymers...
-
Systematic comparison of a biotrickling filter and a conventional filter for the removal of a mixture of hydrophobic VOCs by Candida subhashii
PublicationThis work systematically compared the potential of a conventional fungal biofilter (BF) and a fungal biotrickling filter (BTF) for the abatement of a mixture of hydrophobic volatile organic compounds (VOCs). Candida subhashii was herein used for the first time, to the best of the author's knowledge, to remove n-hexane, trichloroethylene, toluene and α-pinene under aerobic conditions. C. subhashii immobilized on polyurethane foam...
-
Facile synthesis and characterization of graphene and N-doped graphene by CVD method from liquid precursors for promising electrode materials
PublicationIn this study, high-quality and few-layered graphene was synthesized using the chemical vapor deposition (CVD) method from liquid sources. Two different liquid carbon sources, pyridine, and benzene, were used and deposited on nickel foam under heat conditions using a bubbler in a quartz tube. X-ray diffraction (XRD) and Raman analysis confirmed the crystalline properties of graphene and N-doped graphene, demonstrating the high...
-
Parametric optimization of sandwich composite footbridge with U-shaped cross-section
PublicationParametric optimization of sandwich composite footbridge was presented in the paper. Composite footbridge has 14,5 m long and has U-shaped cross-section with inner dimensions 2,6 × 1,3 m. The sandwich structure in made from GFRP laminate as a faces and PET foam as a core. The aim of analysis was to minimize the mass of the new footbridge that can lead to minimize the cost of structure. After optimization was conducted, the new...
-
Validation Process for Computational Model of Full-Scale Segment for Design of Composite Footbridge
PublicationExperimental tests and numerical simulations of a full-scale segment of a foot and cycle bridge made of polymer composites are presented in the paper. The analysed structure is made of sandwich panels, which consist of glass fibre reinforced polymer (GFRP) multi-layered laminate faces and a PET foam (obtained from recycling) core. The dimensions of the segment cross-section are the same as for the target footbridge; however, span...
-
Recycling of Polyurethanes Containing Flame-Retardants and Polymer Waste Transformed into Flame-Retarded Polyurethanes
PublicationThe growing number of polyurethanes (PUs) produced every year has developed methods for their mechanical and chemical recycling which yield valuable products like substitutes for commercial polyols or flame-retardants. PUs can be produced in different shapes and forms (i.e., elastomers, flexible or rigid foams, coatings, etc.) using several different components (i.e., di- or polyisocyanates, ester- or ether-based polyols, low-molecular...
-
Enhancement of PUR/PIR foam thermal stability after addition of Zostera marina biomass component investigated via thermal analysis and isoconversional kinetics
PublicationIn the present work, a thorough thermogravimetric (TG) analysis of bio-based polyurethane–polyisocyanurate (PUR–PIR) foams in both nitrogen and oxygen atmosphere is performed. A sustainable element of the foam is a biopolyol obtained via acid-catalyzed liquefaction of Zostera marina and Enteromorpha Algae biomass. Based on isoconversional analysis and apparent activation energies, several conclusions are obtained. In contradiction...
-
Characterization of volatile compounds, structural, thermal and physico-mechanical properties of cross-linked polyethylene foams degraded thermo-mechanically at variable times
PublicationWaste cross-linked polyethylene foam (wXLPE) was thermo-mechanically degraded at variable time using internal batch mixer. The progress of wXLPE degradation has been investigated by using a simultaneous thermogravimetric/differential scanning calorimetry analyzer coupled with Fourier transform infrared spectroscopy, swelling measurements, tensile tests and scanning electron microscopy. Volatile organic compounds generated during...
-
Biobased Ultralow-Density Polyurethane Foams with Enhanced Recyclability
PublicationPolyurethane (PUR) foams are widely used in many engineering applications, but their efficient recycling has remained a major challenge for many years. This study presents a novel strategy of incorporating hydrolyzable ester units into the PUR structure to enhance PUR foam recyclability. The present ecodesign concept of PUR materials enables fully the replacement of petrochemical polyols with biobased alternatives and production...
-
Analysis of Validation and Simplification of Timber-Frame Structure Design Stage with PU-Foam Insulation
PublicationThe transition from experimental studies to the realm of numerical simulations is often necessary for further studies, but very difficult at the same time. This is especially the case for extended seismic analysis and earthquake-resistant design. This paper describes an approach to moving from the experimental testing of an elementary part of a wood-frame building structure to a numerical model, with the use of a commercial engineering...
-
Structure, Mechanical, Thermal and Fire Behavior Assessments of Environmentally Friendly Crude Glycerol-Based Rigid Polyisocyanurate Foams
PublicationIn this work, rigid polyisocyanurate foams were prepared at partial substitution (0–70 wt%) of commercially available petrochemical polyol, with previously synthesized biopolyol based on crude glycerol and castor oil. Influence of the biopolyol content on morphology, chemical structure, static and dynamic mechanical properties, thermal insulation properties, thermal stability and flammability was investigated. Incorporation of...
-
Numerical analyses of novel prefabricated structural wall panels in residential buildings based on laboratory tests in scale 1:1
PublicationThe paper presents experimental and numerical investigations on novel prefabricated composite building wall panels for residential building constructions. The wall panels were composed of reinforced concrete ribbed elements with the core from the EPS foam as the thermal insulation. The wall panels in the full-scale 1:1 were subjected to vertical loads. In the first step, the experiments were analysed with simple usual static methods....
-
Hierarchical MnO2 nanoflowers blooming on 3D nickel foam: A novel micro-macro catalyst for peroxymonosulfate activation
PublicationIn this work, birnessite-type δ-MnO2 nanoflowers were uniformly deposited on 3D nickel foam (NF) by one-step hydrothermal route for high-efficient activation of peroxymonosulfate (PMS) towards degradation of acid orange 7 (AO7). High specific surface area, large pore volume and 3D hierarchical structure promotes the mass and electron transfer for great catalytic activity. Low reaction energy barrier (Ea=27.5 kJ/mol) and outstanding...
-
Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation
PublicationA new method of obtaining functional foam material has been proposed. The materials were created by mixing the poly lactic acid (PLA) solution in chloroform, chitosan (CS) dissolved in water saturated with CO2 and polyethylene glycol (PEG), and freeze-dried for removal of the solvents. The composite foams were characterized for their structural (SEM, FT-IR, density, porosity), thermal (DSC), functional (hardness, elasticity, swelling...
-
Trimethylamine N-oxide and the reverse cholesterol transport in cardiovascular disease: a cross-sectional study
PublicationThe early atherosclerotic lesions develop by the accumulation of arterial foam cells derived mainly from cholesterol-loaded macrophages. Therefore, cholesterol and cholesteryl ester transfer protein (CETP) have been considered as causative in atherosclerosis. Moreover, recent studies indicate the role of trimethylamine N-oxide (TMAO) in development of cardiovascular disease (CVD). The current study aimed to investigate the association...
-
Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation
PublicationA new method of obtaining functional foam material has been proposed. The materials were created by mixing the poly lactic acid (PLA) solution in chloroform, chitosan (CS) dissolved in water saturated with CO2 and polyethylene glycol (PEG), and freeze-dried for removal of the solvents. The composite foams were characterized for their structural (SEM, FT-IR, density, porosity), thermal (DSC), functional (hardness, elasticity, swelling...
-
Clays as Inhibitors of Polyurethane Foams’ Flammability
PublicationPolyurethanes are a very important group of polymers with an extensive range of applications in different branches of industry. In the form of foams, they are mainly used in bedding, furniture, building, construction, and automotive sectors. Due to human safety reasons, these applications require an appropriate level of flame retardance, often required by various law regulations. Nevertheless, without the proper modifications,...
-
Evaluation of the glycerolysis process and valorisation of recovered polyol in polyurethane synthesis
PublicationIn this study, the glycerolysis of polyurethane (PU) foam and the applicability of obtained glycerolysate (GLY) for cast PUs were investigated. It was found that crude glycerine with purity grade of 84% might be successfully used for the glycerolysis. The optimal conditions were determined as follows: reaction time of 60 min at 220 °C using dibutyltin dilaurate catalyst (0.5%). Moreover, the purification of GLY by means of liquid-liquid...
-
Effects of thermal history on the performance of low-temperature solid oxide fuel cells with Sm0.2Ce0.8O2-δ electrolyte and LiNi0.81Co0.15Al0.04O2 electrodes
PublicationIn this study, low-temperature solid oxide fuel cells with an ∼560 μm thick Sm0.2Ce0.8O2−δ (SDC) electrolyte and ∼890 μm thick LiNi0.81Co0.15Al0.04O2−δ (NCAL) electrodes are constructed and characterized under three experimental conditions. The cell with an NCAL cathode pre-reduced under an H2 atmosphere at 550 °C presents the best electrochemical performance. This is ascribed to facts that the reduction reaction generating Ni–Co...
-
Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction
PublicationIn this work, the specific role of the addition of graphene oxide (GO) to state-of-the-art nickel–iron (NiFe) and cobalt–nickel–iron (CoNiFe) mixed oxides/hydroxides towards the oxygen evolution reaction (OER) is investigated. Morphology, structure, and OER catalytic activity of the catalysts with and without GO were studied. The catalysts were fabricated via a two-step electrodeposition. The first step included the deposition...
-
Effect of ground tire rubber on structural, mechanical and thermal properties of flexible polyurethane foams
PublicationFlexible polyurethane foams were modified with two kinds of ground tire rubber, untreated and thermo-mechanically reclaimed. A reclamation process was performed in auto-thermal conditions, which reduced the cost of the process and decreased the environmental impact of devulcanization (e.g., emission of gases). The reclamation process was carried out in a continuous manner using a co-rotating twin screw extruder. The foams were...
-
Packing Incubation and Addition of Rot Fungi Extracts Improve BTEX Elimination from Air in Biotrickling Filters
PublicationThe removal of benzene, toluene, ethylbenzene, and xylene (BTEX) from air was investigated in two similar biotrickling filters (BTFs) packed with polyurethane (PU) foam, differing in terms of inoculation procedure (BTF A was packed with pre-incubated PU discs, and BTF B was inoculated via the continuous recirculation of a liquid inoculum). The effects of white rot fungi enzyme extract addition and system responses to variable VOC...
-
Cyclodextrin polymers as efficient adsorbents for removing toxic non-biodegradable pimavanserin from pharmaceutical wastewaters
PublicationPresence of even small amount of active pharmaceutical ingredients in the environment carries risks tohuman and animal health, presenting an important issue. The paper presents issues related to the newdrug - pimavanserin (PMV). Biological treatment efficiency of pimavanserin (PMV) was evaluated usinglab-scale Sequencing Batch Reactor (SBR). It has been shown to have a negative effect on aquatic or-ganisms by classifying it as...
-
3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: A new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation
PublicationCobalt-based catalysts with high stability and facile recovery for heterogeneous peroxymonosulfate (PMS) activation are still rather sparse and therefore highly desirable. Herein, 3D mesoporous α-Co(OH)2 nanosheets was created on robust nickel foam (NF) via facile electrodeposition approach at 6 mA/cm2 for only 400 s. Almost complete removal of phenol can be achieved within 7 min with a degradation rate of 0.39 min−1, 2 times higher...
-
Cost Analysis of Prefabricated Elements of the Ordinary and Lightweight Concrete Walls in Residential Construction
PublicationGlobal economic growth causes an increase in natural resources exploitation, particularly in construction branch. The growing use of electricity contributes to climate change. Therefore, it is necessary to search the solutions, which will allow for reducing natural resources exploitation. One of the many opportunities to do that is the application of the recycled materials. The authors of the given article have analyzed three variants...
-
Measurements of Thermal Conductivity of LWC Cement Composites Using Simplified Laboratory Scale Method
PublicationThe implementation of low-energy construction includes aspects related to technological and material research regarding thermal insulation. New solutions are sought, firstly, to reduce heat losses and, secondly, to improve the environment conditions in isolated rooms. The effective heat resistance of insulating materials is inversely proportional to temperature and humidity. Cement composites filled with lightweight artificial...
-
Development, characterization and evaluation of composite adsorbent for the adsorption of crystal violet from aqueous solution: Isotherm, kinetics, and thermodynamic studies
PublicationThe purpose of this work focuses on the production and investigations of a new composite material as alternative low-cost adsorbent for the removal of crystal violet (CV) dye from waste solution. The production method was performed by in-situ thermal activation technology via extrusion process of polymer wastes containing tire rubber (50 wt%) and polyurethane foam (50 wt%) using single-screw extruder under processing temperature...
-
The miniaturised emission chamber system and home-made passive flux sampler studies of monoaromatic hydrocarbons emissions from selected commercially-available floor coverings
PublicationThe estimation of the emission rate of organic compounds released from various types of indoor materials can be performed using stationary environmental test chambers (ETC) classified as ex-situ methods or small-scale portable analytical devices based on the use of passive technique at the stage of analytes sampling from the gaseous phase (in-situ methods). The paper presents results of emissions of selected organic compounds from...
-
The Input of Nanoclays to the Synergistic Flammability Reduction in Flexible Foamed Polyurethane/Ground Tire Rubber Composites
PublicationCurrently, postulated trends and law regulations tend to direct polymer technology toward sustainability and environmentally friendly solutions. These approaches are expressed by keeping materials in a loop aimed at the circular economy and by reducing the environmental burdens related to the production and use of polymers and polymer-based materials. The application of recycled or waste-based materials often deals efficiently...
-
Fungal co-culture improves the biodegradation of hydrophobic VOCs gas mixtures in conventional biofilters and biotrickling filters
PublicationThe present study systematically evaluated the potential of Candida subhashii, Fusarium solani and their consortium for the abatement of n-hexane, trichloroethylene (TCE), toluene and α-pinene in biofilters (BFs) and biotrickling filters (BTFs). Three 3.2 L BFs packed with polyurethane foam and operated at a gas residence time of 77 s with an air mixture of hydrophobic volatile organic compounds (VOCs) were inoculated with C. subhashii,...
-
Process control of air stream deodorization from vapors of VOCs using a gas sensor matrix conducted in the biotrickling filter (BTF)
PublicationThis article presents the validity, advisability and purposefulness of using a gas sensor matrix to monitor air deodorization processes carried out in a peat-perlite-polyurethane foam-packed biotrickling filter. The aim of the conducted research was to control the effectiveness of air stream purification from vapors of hydrophobic compounds, i.e., n-hexane and cyclohexane. The effectiveness of hydrophobic n-hexane and cyclohexane...
-
Development of nanoscale morphology and role of viscoelastic phase separation on the properties of epoxy/recycled polyurethane blends
PublicationA novel and cost-effective approach towards the modification of epoxy matrix has been developed using recycled polyurethane for the first time without sacrificing any of the intrinsic properties of the resin. Polyurethane, recycled from waste foam by glycolysis process (RPU), was found to be very effective in improving the properties of the thermosetting resin based on Diglycidyl ether of bisphenol-A (DGEBA). The effect of the...
-
Load Testing of GFRP Composite U-Shape Footbridge
PublicationThe paper presents the scope of load tests carried out on an innovative shell composite footbridge. The tested footbridge was manufactured in one production cycle and has no components made from materials other than GFRP laminates and PET foam. The load tests, performed on a 14-m long structure, were the final stage of a research program in the Fobridge project carried out in cooperation with: Gdańsk University of Technology (leader),...