Search results for: FEM SIMULATIONS
-
ANALYSIS OF THE PUNCHING FAILURE MECHANISM IN WORKING PLATFORMS
PublicationPaper presents an analysis of the shear failure mechanism which occurs from the punching of a working platform layer in relation to its thickness, grain size arrangement and mechanical properties, taking into consideration the interaction with soft subgrade. The study is based on the observations of performance of natural scale structures (Streefkerk) and the results of model investigations numerically represented with the use...
-
Reinforced concrete thin wall dome after eighty years of operation in maritime climate environment
PublicationThe paper presents a description of the construction elements of the Gdynia Seaport main hall dome. Firstly, it provides information about the technical condition of the dome’s structure. Secondly, it examines the strength analysis of the thin-walled reinforced concrete dome covering. Throughout the last 80 years the building has been exposed to an unfavourable marine climate. The analysis of the state of stress and deformations...
-
Novel analysis methods of dynamic properties for vehicle pantographs
PublicationTransmission of electrical energy from a catenary system to traction units must be safe and reliable especially for high speed trains. Modern pantographs have to meet these requirements. Pantographs are subjected to several forces acting on their structural elements. These forces come from pantograph drive, inertia forces, aerodynamic effects, vibration of traction units etc. Modern approach to static and dynamic analysis should...
-
A GPU Solver for Sparse Generalized Eigenvalue Problems with Symmetric Complex-Valued Matrices Obtained Using Higher-Order FEM
PublicationThe paper discusses a fast implementation of the stabilized locally optimal block preconditioned conjugate gradient (sLOBPCG) method, using a hierarchical multilevel preconditioner to solve nonHermitian sparse generalized eigenvalue problems with large symmetric complex-valued matrices obtained using the higher-order finite-element method (FEM), applied to the analysis of a microwave resonator. The resonant frequencies of the low-order...
-
Experimental and Numerical Investigation of Tensile and Flexural Behavior of Nanoclay Wood-Plastic Composite
PublicationIn this study, the effect of wood powder and nanoclay particle content on composites’ mechanical behavior made with polyethylene matrix has been investigated. The wood flour as a reinforcer made of wood powder was at levels of 30, 40, and 50 wt.%, and additional reinforcement with nanoclay at 0, 1, 3, and 5 wt.%. Furthermore, to make a composite matrix, high-density polyethylene was used at levels of 70, 60, and 50% by weight....
-
Reference FEM model for SHM system of cable-stayed bridge in Rzeszów
PublicationThe paper presents the references model for structural health monitoring system (SHM) of cable-stayed bridge recently constructed in Rzeszów over Wisłok River. The SHM system is design to provide on-line information on the structure state and facilitate its maintenance procedures. The main feature of the SHM system is permanent observation of the dynamic behavior of the bridge with focus on cable vibrations. The paper discusses...
-
A Stand for Measurement and Prediction of Scattering Properties of Diffusers
PublicationIn this paper we present a set of solutions which may be used for prototyping and simulation of acoustic scattering devices. A system proposed is capable of measuring sound field. Also a way to use an open source solution for simulation of scattering phenomena occurring in proximity of acoustic diffusers is shown. The result of our work are measurement procedure and a prototype of the simulation script based on FEniCS - an open source...
-
Optimal Rotating Receiver Angles Estimation for Multicoil Dynamic Wireless Power Transfer
PublicationThis study proposed an approach to dynamic wireless charging that uses a rotating receiver coil. Our simulation study focused on the verification of a novel way of increasing the coupling coefficient and power transfer stability by following the flux of the transmitting coils. To obtain the highest possible coupling by means of the FEM analysis, we studied the optimization of the trajectory of the angular velocity of the rotating...
-
Jacobi and gauss-seidel preconditioned complex conjugate gradient method with GPU acceleration for finite element method
PublicationIn this paper two implementations of iterative solvers for solving complex symmetric and sparse systems resulting from finite element method applied to wave equation are discussed. The problem under investigation is a dielectric resonator antenna (DRA) discretized by FEM with vector elements of the second order (LT/QN). The solvers use the preconditioned conjugate gradient (pcg) method implemented on Graphics Processing Unit (GPU)...
-
Comparison of natural frequencies of a circular saw blade obtained empirically and with FEM
PublicationThe knowledge of the natural frequencies’ values of circular saw blades is necessary to determine the minimal critical rotational speed in which they can work with required stability. Moreover, testing the circular saw blades with more complicated shapes, e.g. which have additional holes inside blades for cleaning knifes or additional indirect teeth in gullets, reveals some kind of problematic properties of these saw blades. The...
-
Failure of cold-formed beam: How does residual stress affect stability?
PublicationIn machine industry, stresses are often calculated using simple linear FEM analysis. Occasional failures of elements designed in such a way require recomputation by means of more sophisticated methods, eg. including plasticity and non-linear effects. It usually leads to investigation of failure causes and improvement of an element in order to prevent its unwanted behavior in the future. The study presents the case where both linear...
-
Influence of an applied bearing system on behaviour of multi-span footbridge
PublicationThe cycle overpass in Gdynia is a box structure over 300 metres long, 10-span. It was opened for bicycle traffic in the second half of 2013. At the end of its construction, there was failure due to excessive horizontal displacement of the system. A number of bearings exceeded the range of permissible transverse shifts thus it was necessary to temporarily protect the spans from slipping. The FEM analysis of the original solution...
-
The Influence of Shear Deformation in analysis of plane frames
PublicationThe focus of the paper is to investigate the influence of shear deformation effect on the distribution of internal forces and frame deformation. To estimate shear deformation effect, the Timoshenko beam theory and the concept of shear deformation coefficients are used. Analysis of example frames gives the possibility to evaluate what have the most impact on size of shear deformation and in which type of frames the shear deformation...
-
Scientific research in the Department of Machine Design and Automotive Engineering
PublicationShort descriptions of various research subjects taken up at the Department of Machine Design and Automotive Engineering are included in the paper. The subjects cover a wide range of bearing systems and tribology research and the research on tires and road surfaces. A third field of activity is biomedical engineering – with the attempts to improve methods of modelling biological materials in FEM calculations. The Department has...
-
An analytical four-layer horizontal electric current dipole model for analysing underwater electric potential in shallow seawater
PublicationThe paper presents a new analytical four‑layer (air–water–bottom–non‑conductive layer) horizontal electric dipole model which allows an accurate approximation of ship’s Underwater Electric Potential (UEP) from a sufficient depth in shallow coastal marine waters. The numerical methods, usually Finite Element Method (FEM) or Boundary Elements Method (BEM), are typically used to estimate the electric field and the distribution of...
-
Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory
PublicationThe paper presents the formulation of the elastic constitutive law for functionally graded materials (FGM) on the grounds of nonlinear 6-parameter shell theory with the 6th parameter being the drilling degree of freedom. The material law is derived by through-the-thickness integration of the Cosserat plane stress equations. The constitutive equations are formulated with respect to the neutral physical surface. The influence of...
-
Modal analysis of cylindrical steel tanks
PublicationCylindrical steel tanks are very popular structures used for storage of products of chemical and petroleum industries. Their safety and reliability is crucial because any failure could have serious consequences. The aim of present paper is to show the results of the first phase of investigation of seismic behaviour such structures. Modal analysis using Finite Element Method (FEM) for three models of real tanks used in Poland has...
-
Thermo-elastic non-linear analysis of multilayered plates and shells
PublicationGeometrically nonlinear FEM analysis of multilayered composite plates and shells is performed in order to resolve the stability problem of the structures being under the influence of temperature field. The Riks-Wempner-Ramm algorithm with a specially modified multi-choice unloading condition has been implemented in authors’ numerical code. As the representation of multilayered medium the Equivalent Single Layer approach with the...
-
ESTIMATION OF YOUNG`S MODULUS OF THE POROUS TITANIUM ALLOY WITH THE USE OF FEM PACKAGE
PublicationPorous structures made of metal or biopolymers with a structure similar in shape and mechanical properties to human bone can easily be produced by stereolithographic techniques, e.g. selective laser melting (SLM). Numerical methods, like Finite Element Method (FEM) have great potential in testing new scaffold designs, according to their mechanical properties before manufacturing, i.e. strength or stiffness. An example of such designs...
-
Impact of an unsecured excavation on an underground pipeline
PublicationThe paper presents a numerical analysis of the impact of an unsecured excavation on an underground pipeline in selected soil conditions. The research was inspired by a real-life failure of a water pipeline which was caused by a nearby unsecured excavation (Sikora et al. 2015). The failure was triggered by displacement of soil mass in the vicinity of the pipeline. The study conducted in the framework of Finite Element...
-
Evaluation of apparent Young׳s modulus of the composite polymer layers used as sliding surfaces in hydrodynamic thrust bearings
PublicationHydrodynamic bearings with a polymer sliding layer are able to operate in severe conditions, mainly due to favorable properties of the polymers. The goal of this research was to evaluate apparent Young׳s modulus of two types of the polymer composite layers used for sliding surfaces in hydrodynamic bearings, as a function of temperature. The Young׳s modulus was evaluated on the basis of compression tests carried out on samples obtained...
-
Distortional buckling of composite thin-walled columns of a box-type cross section with diaphragms
PublicationDistortional buckling of axially compressed columns of box-like composite cross sections with andwithout internal diaphragms is investigated in the framework of one-dimensional theory. The channel membersare composed of unidirectional fibre-reinforced laminate. Two approaches to the member orthotropic materialare applied: homogenization based on the theory of mixture and periodicity cells, and homogenization basedon the Voigt–Reuss...
-
GPU-Accelerated LOBPCG Method with Inexact Null-Space Filtering for Solving Generalized Eigenvalue Problems in Computational Electromagnetics Analysis with Higher-Order FEM
PublicationThis paper presents a GPU-accelerated implementation of the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method with an inexact nullspace filtering approach to find eigenvalues in electromagnetics analysis with higherorder FEM. The performance of the proposed approach is verified using the Kepler (Tesla K40c) graphics accelerator, and is compared to the performance of the implementation based on functions from...
-
Local mesh morphing technique for parametrized macromodels in the finite element method
PublicationThis paper presents a novel approach for enhancing the efficiency of the design process of microwave devices by means of the finite element method. It combines mesh morphing with local model order reduction (MOR) and yields parametrized macromodels that can be used to significantly reduce the number of variables in the FEM system of equations and acceleration of computer simulation. A projection basis for local reduction is generated...
-
Probabilistic estimation of diverse soil condition impact on vertical axis tank deformation
PublicationThe calculations of fuel tanks should take into account the geometric imperfections of the structure as well as the variability of the material parameters of the foundation. The deformation of the tank shell can have a significant impact on the limit state of the structure and its operating conditions. The paper presents a probabilistic analysis of a vertical-axis, floating-roof cylindrical shell of a tank with a capacity of 50000...
-
Influence of Added Water Mass on Ship Structure Vibration Parameters in Virtual and Real Conditions
PublicationModelling of ship structures in a virtual environment is now standard practice. Unfortunately, many engineers forget to consideri the influence of added water on the frequency values and the amplitude of natural vibrations. The article presents the effect of water damping on the frequency values of the individual natural vibration modes. The tests were carried out in two stages. First, the mentioned values were determined using...
-
Buckling and initial post-local buckling behaviour of cold-formed channel member flange
PublicationThe initial post-buckling behaviour of a cold-formed channel member flange after its local buckling is investigated. An axially compressed column or beam subjected to pure bending is considered. The member material is assumed to follow a linear stress-strain relationship. The governing non-linear differential equation of the problem is derived using the minimum total potential energy principle. An approximate solution for the equation...
-
Stress analysis of a strip under tension with a circular hole
PublicationThe paper addresses stress analysis of a strip with a circular hole under uniform uniaxial tension based oncircumferential stress expressionρπ. Stresses are analyzed in the infinite-length strips under tension with holes, the ratioof the hole radiusa to the strip half-widthb is either equal to:κ =a/b = 0.1 orκ = 0.5. Circumferential stresses aredetermined in selected cross-sections of the strip. The stress diagrams display local...
-
THE USE OF FEM FOR DETERMINATION OF RESONANT FREQUENCIES OF CIRCULAR SAW BLADES WITH INDIRECT TEETH IN GULLETS
PublicationUnderstanding the dynamical properties of the circular saw blade is necessary, since, there is a really need for a stable work at working rotational speeds, which are determined by frequencies at which the circular saw blade tends to vibrate. It was observed that the resonant frequency depend on the circular saw blade shape, a collar diameter and on saw’s teeth shape. In the presented work an attention was paid to the effect of...
-
Local buckling of compressed flange of cold-formed channel members made of aluminum alloy
PublicationThe paper deals with local buckling of a compressed single flange of thin-walled channel cold- formed columns and beams made of aluminum alloy. Material is described by means of the Ramberg-Osgood constitutive equation. Axial compression of the columns and beams undergoing bending is taken into consid- eration. A simple model of the member flange in the form a long beam elastically connected to the web is used to find the critical...
-
Shell model of multiple-row moment I-section end-plate joint
PublicationThe paper deals with a problem of application of shell elements in the models of multiple-row moment end-plate connections. The extended connection of I-section with a cross-section W760x265x220 made of steel S355 was analyzed. Comparison analysis of FEM, complex volume and shell models has been done. Three cases with different end-plate thickness: 14, 18 and 36 mm were analyzed and compared with the reference results. Comparison...
-
An influence of the ship's block coefficient implementation on the evaluation of it's hull girder bending
PublicationAn influence of the three different ways of implementation ship's block coefficient δ (three geometrical models) on the stresses due to wave bending moment have been investigated. Two models have been applied and compared: beam one (description of the shape usingparameters) and FEM shell model (direct representation of the shape). The outcomes have been compared to Polish Register of Shipping (PRS) rules. The results show that...
-
Flexural buckling and post-buckling of columns made of aluminium alloy
PublicationThe paper concerns flexural buckling and initial post-buckling of axially compressed columns made of aluminium alloy described by the Ramberg-Osgood relationship. The non-linear differential equation of the problem is derived using the stationary total energy principle and the assumptions of classical beam theory within a finite range. The approximate analytical solution of the equation leading to the buckling loads and initial...
-
Identification of plate dynamic parameters for structural health monitoring
PublicationPraca przedstawia technikę wyznaczania parametrów modalnych wykorzystywanych w diagnostyce konstrukcji. Modalna masa, sztywność, tłumienie i postacie drgań wyznaczone są dla prostokątnej stalowej płyty na podstawie badań eksperymentalnych. Teoretyczne parametry modalne otrzymaneo z modelu MES. Omówiony został wpływ dodatkowej masy na parametry modalne konstrukcji.This paper presents a technique for modal parameters estimation for...
-
Non-Salient Brushless Synchronous Generator Main Exciter Design for More Electric Aircraft
PublicationThis paper presents a prototype of high speed brushless synchronous generators (BSG) design for the application in autonomous electric power generation systems (e.g., airplane power grid). Commonly used salient pole field of the main generator part of BSG was replaced with a prototype non-salient pole field. The main objective of the research is an investigation into the advantages and disadvantages of a cylindrical field of the...
-
Hybrid model of geared rotor system
PublicationIn the paper a hybrid model of a geared multirotor system has been developed. The model is obtained by application of both the modal decomposition methodology and the spatial discretization method. Reduced modal model was constructed for the system without gyroscopic and damping effects. The gyroscopic interaction, damping and other phenomena which are difficult to include in the modal approach were modeled by application of simply...
-
Numerical modeling and experimental validation of full-scale segment to support design of novel GFRP footbridge
PublicationThe paper contains analysis of full-scaled three meters long segment of a novel composite footbridge. Both numerical modeling and experimental validation were performed. Analyzed object is a shell type sandwich channel-like structure made of composite sandwich with GFRP laminates as a skin and PET foam as a core. Several static load schemes were performed including vertical and horizontal forces. In FEM analysis multilayered laminate...
-
Analysis of guided wave propagation in adhesive joints of steel rods
PublicationThe aim of the study is the elastic wave propagation in adhesive joints of metal rods that are one of the simplest kind of glue connections. They are consisted of two metal members and an adhesive layer joining two parts together. The analysis is directed to technical diagnostics of such type of connections. Longitudinal and transversal guided waves were excited in prepared joints. Signals of propagating waves were registered in...
-
Large deformation finite element analysis of undrained pile installation
PublicationIn this paper, a numerical undrained analysis of pile jacking into the subsoil using Abaqus software suit has been presented. Two different approaches, including traditional Finite Element Method (FEM) and Arbitrary Lagrangian–Eulerian (ALE) formulation, were tested. In the first method, the soil was modelled as a two-phase medium and effective stress analysis was performed. In the second one (ALE), a single-phase medium was assumed...
-
High-quality Experiment Dedicated to microGravity Exploration, Heat Flow and Oscillation Measurement from Gdańsk
PublicationIn this paper we propose HEDGEHOG (High-quality Experiment Dedicated to microGravity Exploration, Heat flow and Oscillation measurement from Gdańsk) REXUS experiment to investigate vibrational and heat flow phenomena during the whole (ascent, microgravity phase, descent and recovery) flight of a sounding rocket. First, a proposed system of cantilever beams is discussed to study dynamic behaviour of dummy payload. Dimensioning has...
-
Buckling of thin-walled columns accounting for initial geometrical imperfections
PublicationThe paper is devoted to the effect of some geometrical imperfections on the critical buckling load of axially compressed thin-walled I-columns. The analytical formulas for the critical torsional and flexural buckling loads accounting for the initial curvature of the column axis or the twist angle respectively are derived. The classical assumptions of theory of thin-walled beams with non-deformable cross-sections are adopted. The...
-
Local buckling of thin-walled channel member flange made of aluminum alloy
PublicationThe paper deals with local stability of the thin-walled compressed flange of channel columns and beams made of aluminum alloy. The aim of paper is to find critical stress of local buckling of the flange member taking into account the web-flange interaction in linear and nonlinear elastic range of the member material. The governing differential equation of the problem is derived with aid of the principle of stationary total potential...
-
Finite Element Approaches to Model Electromechanical, Periodic Beams
PublicationPeriodic structures have some interesting properties, of which the most evident is the presence of band gaps in their frequency spectra. Nowadays, modern technology allows to design dedicated structures of specific features. From the literature arises that it is possible to construct active periodic structures of desired dynamic properties. It can be considered that this may extend the scope of application of such structures. Therefore,...
-
A method to determine the tightening sequence for standing rigging of a mast
PublicationThe article proposes an alternative method to determine the sequence of generation of pre-tension forces in standing rigging of a mast. The proposed approach has been verified on both a virtual simulation experiment and laboratory tests. In this method, the desired tension values are obtained using the influence matrix which allows to calculate the effect of tension change in an individual rope on the tension distribution in the...
-
Monitoring of CRT by means of impedance multiple measurements - simulation studies
PublicationCardiac resynchronization therapy (CRT) is a very promising treatment for patients with congestive heart failure. An Impedance Cardiography (ICG) is used for evaluation of heart mechanical activity. A simulation study with the use of a FEM model was performed. The developed realistic model of the thorax, based on CT data obtained from examination of a 68-year-old man, consisted of 212 000 tetrahedral elements. Different configurations...
-
The effect of a belt position in the spindle driving system on critical rotational speeds
PublicationThe aim of this paper was to examine how the belt pulley position affects critical rotational speeds of the modernized spindle of the sliding table saw Fx3. Methodology of determination of critical rotational speeds of the spindle in a function of the spindle design features and its driving system is presented. Spindles in these kind of machine tools are mainly driven with V-belts, and the pulleys on the spindles might be positioned:...
-
Determination of the minimal critical rotational speeds of the circular saw blades with the quasi-twin resonant frequencies
PublicationTo determine the minimal critical rotational speeds of the circular saw blades is the fundamental aspect of obtaining the range of the rotational operating speeds, by which the circular saw blade can work with required stability. While for the circular saw blades with full-homogeneous bodies the determination of such rotational speeds is the relatively low level of difficulty function, whereas for circular saw blades with more...
-
Non-Destructive Testing of a Sport Tribune under Synchronized Crowd-Induced Excitation Using Vibration Analysis
PublicationThis paper presents the concept of repairing the stand of a motorbike speedway stadium. The synchronized dancing of fans cheering during a meeting brought the stand into excessive resonance. The main goal of this research was to propose a method for the structural tuning of stadium stands. Non-destructive testing by vibration methods was conducted on a selected stand segment, the structure of which recurred on the remaining stadium...
-
Behaviour of steel columns under impact
PublicationOne of import issues related to the idea of sustainable society is the safety of civil engineering structures. The safety and reliability of steel structures under impact loading is among a number of different aims during the design state. The aim of this paper is to present the results of investigation focused on dynamic behaviour of steel columns under impact loading. Modal and transient dynamic analyses using Finite Element...
-
Non-linear FEM analysis of pounding-involved response of buildings under non-uniform earthquake excitation
PublicationThe aim of the paper is to show the results of the study investigating the influence of non-uniform earthquake excitation, due to spatial seismic effects connected with the propagation of seismic wave, on the pounding-involved response of two buildings. The three-dimensional non-linear FEM analysis has been conducted using the detailed models of colliding structures. Acceleration records for different structural supports have been...