Publications
Filters
total: 772
Catalog Publications
Year 2021
-
Studies on Aminoanthraquinone-Modified Glassy Carbon Electrode: Synthesis and Electrochemical Performance toward Oxygen Reduction
PublicationIn this paper, 9,10-anthraquinone (AQ) derivative-modified glassy carbon (GC) electrodes werestudied towards the electrochemical reduction of oxygen in aqueous and non-aqueous solutions. The reaction of 1-chloro-9,10-anthraquinone with aliphatic diamines was applied for the synthesis of amino-9,10-anthraquinone derivatives. The obtained AQ derivatives were grafted onto the surface of glassy carbon electrodes by electropolymerisation...
-
Studies on Aminoanthraquinone-Modified Glassy Carbon Electrode: Synthesis and Electrochemical Performance toward Oxygen Reduction
PublicationIn this paper, 9,10-anthraquinone (AQ) derivative-modified glassy carbon (GC) electrodes were studied towards the electrochemical reduction of oxygen in aqueous and non-aqueous solutions. The reaction of 1-chloro-9,10-anthraquinone with aliphatic diamines was applied for the synthesis of amino-9,10-anthraquinone derivatives. The obtained AQ derivatives were grafted onto the surface of glassy carbon electrodes by electropolymerisation...
-
Surface quality control of a thin SiN layer by optical measurements
PublicationFiber optic interferometers have a wide range of applications, including biological and chemical measurements. Nevertheless, in the case of a reflective interferometer setup, standard silver mirrors cannot be used in every measurement, due to their chemical activity. This work investigates the surface quality of a thin optical layer of silicon nitride (SiN), which can serve as an alternative material for silver mirrors. We present...
-
Tailoring properties of indium tin oxide thin films for their work in both electrochemical and optical label-free sensing systems
PublicationThis work is devoted to the identification properties of indium tin oxide (ITO) thin films responsible for their possible application in combined optical and electrochemical label-free sensing systems offering enhanced functionalities. Since any post-processing would make it difficult to identify direct relation between deposition parameters and properties of the ITO films, especially when deposition on temperature-sensitive substrates...
-
Temperature Fiber-Optic Sensor with ZnO ALD Coating
PublicationThis study presents a microsphere-based fiber-optic sensor with a ZnO Atomic Layer Deposition (ALD) coating thickness of 100 nm for temperature measurements. Metrological properties of the sensor were investigated over the temperature range of 100 °C to 300 °C, with a 10 °C step. An interferometric signal is used to control whether the microstructure is whole. Spectrum shift of a reflected signal is used to ascertain changes in...
-
The Influence of a Photovoltaic Micro-Installation on the Low-Frequency Parameters of Electricity at PCC and Its Impact on the Thermal Characteristics of Selected Devices
PublicationThis manuscript illustrates the measurement results of parameters describing the quality of energy at the PCC (point of common coupling) of a photovoltaic micro-installation that can significantly affect devices in the same power grid. The analyses reflecting heating of selected devices used in domestic installations, which were performed in an isolated laboratory environment, are also indicated. The conducted study aimed at checking...
-
The microbial community, its biochemical potential, and the antimicrobial resistance of Enterococcus spp. in Arctic lakes under natural and anthropogenic impact (West Spitsbergen)
PublicationThe sustainable management of small human communities in the Arctic is challenging. In this study, both a water supply system (Lake 1) under the natural impact of a bird-nesting area, and a wastewater receiver (Lake 2) were analysed in the vicinity of the Polish Polar Station on West Spitsbergen. Microbial community composition, abundance and activity were assessed in samples of the treated wastewater, lake water and sediments...
-
The Optical Coherence Tomography and Raman Spectroscopy for Sensing of the Bone Demineralization Process
PublicationThe presented research was intended to seek new optical methods to investigate the demineralization process of bones. Optical examination of the bone condition could facilitate clinical trials and improve the safety of patients. The authors used a set of complementary methods: polarization-sensitive optical coherence tomography (PS-OCT) and Raman spectroscopy. Chicken bone samples were used in this research. To stimulate in laboratory...
-
Two-photon microperimetry with picosecond pulses
PublicationTwo-photon vision is a phenomenon associated with the perception of short pulsesof near-infrared radiation (900-1200 nm) as a visible light. It is caused by the nonlinear processof two-photon absorption by visual pigments. Here we present results showing the influence ofpulse duration and repetition rate of short pulsed lasers on the visual threshold. We comparedtwo-photon sensitivity maps of the retina obtained for subjects with...
-
Utilizing pulse dynamics for non-invasive Raman spectroscopy of blood analytes
PublicationNon-invasive measurement methods offer great benefits in the field of medical diagnostics with molecular-specific techniques such as Raman spectroscopy which is increasingly being used for quantitative measurements of tissue biochemistry in vivo. However, some important challenges still remain for label-free optical spectroscopy to be incorporated into the clinical laboratory for routine testing. In particular, non-analyte-specific...
Year 2020
-
A measurement method for capacitive sensors based on a versatile direct sensor-to-microcontroller interface circuit
PublicationIn the paper, there is presented a new time-domain measurement method for determining the capacitance values of capacitive sensors, dedicated, among others, to capacitive relative humidity sensors. The method is based on a versatile direct sensor-to-microcontroller interface for microcontrollers with internal analog comparators (ACs) and with precision voltage reference sources, e.g. digital-to-analog converters (DACs). The reference...
-
Advanced operating methods
PublicationSelected operating methods of resistive gas sensors were presented. The methods utilize flicker noise (1/f noise), which gives additional information about ambient gas when compared with the recorded changes of DC resistance only. Methods of flicker noise measurements were outlined. Recently developed prototype gas sensors comprising golden nanoparticle functionalized with organic ligands can generate intense flicker noise induced...
-
Ammonia Gas Sensors: Comparison of Solid-State and Optical Methods
PublicationHigh precision and fast measurement of gas concentrations is important for both understanding and monitoring various phenomena, from industrial and environmental to medical and scientific applications. This article deals with the recent progress in ammonia detection using in-situ solid-state and optical methods. Due to the continuous progress in material engineering and optoelectronic technologies, these methods are among the most...
-
Analiza danych pomiarowych na potrzeby obrazowania optyczną tomografią koherentną
PublicationW rozdziale omówiono wybrane aspekty związane z analizą danych pomiarowych na potrzeby obrazowania metodą optycznej tomografii koherentnej. Przedstawiono podstawowe zależności umożliwiające obrazowanie tkanek na podstawie analizy promieniowania wstecznie rozproszonego, mierzonego przez systemy OCT pracujące w dziedzinie czasu (TD-OCT) lub w dziedzinie częstotliwości (FD-OCT). Pokazano, że wykorzystując zaawansowane przetwarzanie...
-
Analysis of Vibration and Acoustic Signals for Noncontact Measurement of Engine Rotation Speed
PublicationThe non-contact measurement of engine speed can be realized by analyzing engine vibration frequency. However, the vibration signal is distorted by harmonics and noise in the measurement. This paper presents a novel method for the measurement of engine rotation speed by using the cross-correlation of vibration and acoustic signals. This method can enhance the same frequency components in engine vibration and acoustic signal. After...
-
Application of the Monte Carlo algorithm for solving volume integral equation in light scattering simulations
PublicationVarious numerical methods were proposed for analysis of the light scattering phenomenon. Important group of these methods is based on solving the volume integral equation describing the light scattering process. The popular method from this group is the discrete dipole approximation (DDA). DDA uses various numerical algorithms to solve the discretized integral equation. In the recent years, the application of the Monte Carlo (MC)...
-
Assessment of Electronic Sensing Techniques for the Rapid Identification of Alveolar Echinococcosis through Exhaled Breath Analysis
PublicationHere we present a proof-of-concept study showing the potential of a chemical gas sensors system to identify the patients with alveolar echinococcosis disease through exhaled breath analysis. The sensors system employed comprised an array of three commercial gas sensors and a custom gas sensor based on WO3 nanowires doped with gold nanoparticles, optimized for the measurement of common breath volatile organic compounds. The measurement...
-
Combined Long-Period Fiber Grating and Microcavity In-Line Mach–Zehnder Interferometer for Refractive Index Measurements with Limited Cross-Sensitivity
PublicationThis work discusses sensing properties of a long-period grating (LPG) and microcavity in-line Mach–Zehnder interferometer (µIMZI) when both are induced in the same single-mode optical fiber. LPGs were either etched or nanocoated with aluminum oxide (Al2O3) to increase its refractive index (RI) sensitivity up to ≈2000 and 9000 nm/RIU, respectively. The µIMZI was machined using a femtosecond laser as a cylindrical cavity (d = 60...
-
Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study
PublicationThe variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups...
-
Convergence of Monte Carlo algorithm for solving integral equations in light scattering simulations
PublicationThe light scattering process can be modeled mathematically using the Fredholm integral equation. This equation is usually solved after its discretization and transformation into the system of algebraic equations. Volume integral equations can be also solved without discretization using the Monte Carlo (MC) algorithm, but its application to the light scattering simulations has not been sufficiently studied. Here we present implementation...
-
Density functional LCAO calculations of vibrational modes and phonon density of states in the strained single-layer phosphorene
PublicationThe paper presents an investigation of phosphorene under axial strain on the phonon density of states and vibrational modes. The studies were performed by means of density functional theory (DFT) within the linear combination of atomic orbitals (LCAO). The strained models were constructed using optimised supercell techniques. The vibrational mode spectra were estimated for strains applied for both the zigzag and armchair directions...
-
Efficiency of pollutants removal from landfill leachates using Nb/BDD and Si/BDD anodic oxidation
PublicationLandfill leachates (LLs) is a complex, refectory and difficult to depurate liquid generated from sanitary landfills. It contains excessive levels of biodegradable and in particular non-biodegradable products (e.g. heavy metals, phenols, sulphide, plasticisers). LLs are among the effluents that may pose major environmental concerns, they can be a dangerous source of pollution e.g. due to infiltration into soil and underlying water....
-
Electrochemical detection of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole on boron-doped diamond/graphene nanowall electrodes
PublicationWe present a promising approach to the electroanalytical detection of a specific nitroaromatic explosive in landfill leachates (LLs) that originated from a municipal solid waste plant. The paper is focused but not limited to the sensing of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole (TNBI) using differential pulse voltammetry and cyclic voltammetry. Highly electroactive nanocarbon was applied to determine low concentrations of...
-
Electrochemical determination of nitroaromatic explosives at boron-doped diamond/graphene nanowall electrodes: 2,4,6-trinitrotoluene and 2,4,6-trinitroanisole in liquid effluents
PublicationThe study is devoted to the electrochemical detection of trace explosives on boron-doped diamond/graphene nanowall electrodes (B:DGNW). The electrodes were fabricated in a one-step growth process using chemical vapour deposition without any additional modifications. The electrochemical investigations were focused on the determination of the important nitroaromatic explosive compounds, 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitroanisole...
-
Electrochemical oxidation of PFOA and PFOS in landfill leachates at low and highly boron-doped diamond electrodes
PublicationPolyfluorinated alkyl substances (PFASs) may reach landfill leachates (LLs) due to improper waste management. In this study perfluorooctanoate (PFOA) and perfluorooctane sulphonate (PFOS) were used as representatives of PFASs in the decomposition on boron-doped diamond electrodes (BDDs) with high (10k ppm) and low (0.5k ppm) boron doping concentrations. The result shows that although better COD removal efficacies are obtained on...
-
Electrochemical performance of thin free-standing boron-doped diamond nanosheet electrodes
PublicationIn the following work we describe preparation and the electrochemical performance of thin and free-standing heavy boron-doped diamond (BDD) nanosheets. The investigated foils were deposited on Ta substrate using microwave plasma-enhanced chemical vapor deposition technique (MPECVD). Foils of two B-dopant densities were investigated, obtained on the base of 10 k and 20 k ppm [B]/[C] ratio in the gas admixture. The obtained foils...
-
Electrochemically directed biofunctionalization of a lossy-mode resonance optical fiber sensor
PublicationIn this work, we present a direct electrochemical biofunctionalization of an indium-tin-oxide-coated lossy-mode resonance optical fiber sensor. The functionalization using a biotin derivative was performed by cyclic voltammetry in a 10 mM biotin hydrazide solution. All stages of the experiment were simultaneously verified with optical and electrochemical techniques. Performed measurements indicate the presence of a poly-biotin...
-
Electrodes criticality: the impact of CRMs in the leachate electrochemical oxidation
Publication. Landfill leachate possesses high concentrations of ammonia, micropollutants, and heavy metals, and are characterised for low biodegradability. For this reason, conventional treatment technologies may result ineffective for complete pollutant removal. Electrochemical oxidation allows most of the of recalcitrant pollutants to be oxidised effectively within an easy operational and acceptable retention time, without the need to provide...
-
Enhanced Charge Storage Mechanism And Long-Term Cycling Stability In Diamondized Titania Nanocomposite Supercapacitors Operating In Aqueous Electrolytes
PublicationThe long cycle life stability jointly with high energy density are limiting broader feasible applications of supercapacitors. The novel diamondized titania nanocomposite supercapacitors deliver high power and energy densities along with high capacitance retention rates. Supercapacitor electrodes were fabricated utilizing a combination of Ti anodization followed by chemical vapor deposition resulting in simultaneous growth of complex...
-
Exhaled breath analysis by resistive gas sensors
PublicationBreath analysis has attracted human beings for centuries. It was one of the simplest methods to detect various diseases by using human smell sense only. Advances in technology enable to use more reliable and standardized methods, based on different gas sensing systems. Breath analysis requires the detection of volatile organic compounds (VOCs) of the concentrations below individual ppm (parts per million). Therefore, advanced detection...
-
Fast-response optoelectronic detection of explosives’ residues from the nitroaromatic compounds detonation: field studies approach
PublicationWe are presenting an application of optoelectronic nitrogen dioxide (NO2) analyzer based on cavity enhanced absorption spectroscopy in the detection of traces of explosives after detonation. It has been shown that the analyzer using blue-violet laser is able to detect explosive residues after the detonation of various amounts of nitroaromatic compounds (75g-1kg) with higher efficiency than the HPLC soil sample testing equipment,...
-
Fluctuation-Enhanced Sensing
PublicationFluctuation-enhanced sensing (FES) is an exciting and relatively new research field that promises to extend the range of information that can be extracted from a single sensor. In FES, the stochastic fluctuations of the sensor signal, rather than its average value, are recorded and analyzed. Typical components of such fluctuations are due to interactions at the microscopic level. Proper statistical analysis provides optimum sensory...
-
Fluctuation-Enhanced Sensing (FES): A Promising Sensing Technique
PublicationFluctuation-enhanced sensing (FES) is a very powerful odor and gas sensing technique and as such it can play a fundamental role in the control of environments and, therefore, in the protection of health. For this reason, we conduct a comprehensive survey on the state-of-the-art of the FES technique, highlighting potentials and limits. Particular attention is paid to the dedicated instrumentation necessary for the application of...
-
Formaldehyde detection with chemical gas sensors based on WO3 nanowires decorated with metal nanoparticles under dark conditions and UV light irradiation
PublicationWe report results of formaldehyde gas (CH2O) detection under dark conditions and UV light irradiation with pristine tungsten trioxide nanowires (WO3 NWs) and metal nanoparticles decorated WO3 NWs gas sensing layers. The resistive layers were deposited by one step aerosol assisted chemical vapor deposition (AACVD) on commercial alumina substrates with 10-pair interdigitated platinum electrodes. The elaborated gas sensors, based...
-
Formation of the hollow nanopillar arrays through the laser-induced transformation of TiO2 nanotubes
PublicationIn the following article, we present a simple, two-step method of creating spaced, hollow nanopillars, from the titania nanotube arrays via pulsed laser-treatment. Due to the high ordering of the structure, the prepared material exhibits photonic properties, which has been shown to increase the overall photoefficiency. The optical and morphological changes in the titania nanotubes after pulsed laser-treatment with 532, 355, and...
-
High-Temperature Oxidation of Heavy Boron-Doped Diamond Electrodes: Microstructural and Electrochemical Performance Modification
PublicationIn this work, we reveal in detail the effects of high-temperature treatment in air at 600 °C on the microstructure as well as the physico-chemical and electrochemical properties of boron-doped diamond (BDD) electrodes. The thermal treatment of freshly grown BDD electrodes was applied, resulting in permanent structural modifications of surface depending on the exposure time. High temperature affects material corrosion, inducing...
-
Incorporation of nitrogen in diamond films - A new way of tuning parameters for optical passive elements
PublicationThis paper investigates the impact of nitrogen incorporation in diamond films for the construction of an interferometric sensor to measure displacement. Diamond films with different nitrogen levels (0–5%) were deposited on silicon substrates by microwave plasma enhanced chemical vapor deposition. The structural characteristics of these samples are characterized using scanning electron microscopy (SEM), atomic force microscopy...
-
Long-Period Gratings and Microcavity In-Line Mach Zehnder Interferometers as Highly Sensitive Optical Fiber Platforms for Bacteria Sensing
PublicationSelected optical fiber sensors offer extraordinary sensitivity to changes in external refractive (RI), which make them promising for label-free biosensing. In this work the most sensitive ones, namely long-period gratings working at (DTP-LPG) and micro-cavity in-line Mach-Zehnder interferometers (µIMZI) are discussed for application in bacteria sensing. We describe their working principles and RI sensitivity when operating in water...
-
Microscale diamond protection for a ZnO coated fiber optic sensor
PublicationFiber optic sensors are widely used in environmental, biological and chemical sensing. Due to the demanding environmental conditions in which they can be used, there is a risk of damaging the sensor measurement head placed in the measuring field. Sensors using nanolayers deposited upon the fiber structure are particularly vulnerable to damage. A thin film placed on the surface of the fiber end-face can be prone to mechanical damage...
-
Multisine impedimetric probing of biocatalytic reactions for label-free detection of DEFB1 gene: How to verify that your dog is not human?
PublicationAlbert is a dog (Canis familiaris), but he does not realize this. Albert loves human food (and beer), watching movies on the internet, sleeping in bed, and more. But he should not do all these things. To convince him that, we have desinged a test procedure. The DEFB1 gene is unique to human species. Detecting its presence from saliva and in short periods may offer an advantage in the field of forensic medicine, and influence Albert’s...
-
Nanocrystalline diamond sheets as protective coatings for fiber-optic measurement head
PublicationFiber-optic sensors find numerous applications in science and industry, but their full potential is limited because of the risk of damaging the measurement head, in particular, due to the vulnerability of unprotected tips of the fiber to mechanical damage and aggressive chemical agents. In this paper, we report the first use of a new nanocrystalline diamond structure in a fiber-optic measurement head as a protective coating of...
-
Nanodiamond phantoms mimicking human liver: perspective to calibration of T1 relaxation time in magnetic resonance imaging
PublicationPhantoms of biological tissues are materials that mimic the properties of real tissues. This study shows the development of phantoms with nanodiamond particles for calibration of T1 relaxation time in magnetic resonance imaging. Magnetic resonance imaging (MRI) is a commonly used and non-invasive method of detecting pathological changes inside the human body. Nevertheless, before a new MRI device is approved for use, it is necessary...
-
Ocena jakości superkondensatorów wybranymi metodami, wykorzystując zjawiska losowe i badania rozkładu temperatury
PublicationW artykule przedstawiono metody analizy jakości wykonania próbek superkondensatorów na podstawie pomiarów szumów generowanych w ich strukturach oraz rozkładów temperatury na ich powierzchni. Prezentowane metody zostały porównane z obecnie stosowanymi parametrami oceny jakości tych elementów. Wyniki uzasadniają wprowadzenie dodatkowych parametrów, pozwalających oceniać jakość superkondensatorów.
-
Physicochemical and Mechanical Performance of Freestanding Boron-Doped Diamond Nanosheets Coated with C:H:N:O Plasma Polymer
PublicationThe physicochemical and mechanical properties of thin and freestanding heavy boron-doped diamond (BDD) nanosheets coated with a thin C:H:N:O plasma polymer were studied. First, diamond nanosheets were grown and doped with boron on a Ta substrate using the microwave plasma-enhanced chemical vapor deposition technique (MPECVD). Next, the BDD/Ta samples were covered with nylon 6.6 to improve their stability in harsh environments and...
-
Simultaneous optical and electrochemical label-free biosensing with ITO-coated lossy-mode resonance sensor
PublicationIn this work we discuss a new label-free biosensing device based on indium tin oxide (ITO) overlaid section of a multimode optical fiber fused silica core. The sensor has been used to optical measurements also simultaneously interrogated electrochemically (EC). Due to optimized thickness and optical properties of ITO film, a lossy-mode resonance (LMR) could be observed in the optical domain, where electrical properties of the film...
-
Single-step grown boron doped nanocrystalline diamond-carbon nanograss hybrid as an efficient supercapacitor electrode
PublicationDirect synthesis of nano-structured carbon hybrid consisting of vertically aligned carbon nanograss on top of boron-doped nanocrystalline diamond is demonstrated and the carbon hybrid is further applied as an electrode material for the fabrication of supercapacitor. The hybrid film combines the dual advantages of sp2 (carbon nanograss) and sp3 (nanocrystalline diamond) bonded carbon, possessing not only the excellent electrical...
-
Spectroscopic Optical Coherence Tomography for Thin Layer and Foil Measurements
PublicationThe main goal of this research was to assess if it is possible to evaluate the thickness of thin layers (both thin films on the surface and thin layers below the surface of the tested object) and foils using optical coherence tomography (OCT) for thickness assessment under the resolution of the standard commercially available OCT measurement system. In the proposed solution, light backscattered from the evaluated thin layer has...
-
Stress Monitoring System for Individuals with Autism Spectrum Disorders
PublicationIn this article, a stress monitoring system tailored for individuals with Autism Spectrum Disorders (ASD) and developed for the educational institution is presented. People with ASD face problems with effective stress management due to their high self-perceived levels of stress, poor ability to cope with it, and dificulties with the accurate detection of the source of stress. Consistently, being able to measure stress appears to...
-
Temperature distribution of supercapacitors prepared by various technologies
PublicationSupercapacitors, also known by different names such as electrostatic double-layer capacitors (EDLCs) or ultra-capacitors, are electrical storage devices still in development. These devices require fast and reliable methods of assessing their state-of-health. Thermographic imaging is a method which can be applied with this aim due to its popularity, and the high negative impact of overheating on a supercapacitor’s parameters. Moreover,...
-
The electrochemical determination of isatin at nanocrystalline boron-doped diamond electrodes: stress monitoring of animals
PublicationUltra-thin nanocrystalline boron-doped diamond electrodes (B:NCD) were used for the electrochemical determination of isatin in dog urine samples using cyclic voltammetry and square wave voltammetry in a phosphate buffer saline, pH = 7.2. No additional modification or pretreatment of the electrode surface was required in this approach, being of high importance for the facile detection procedure. The increase of the peak current...