Publikacje
Filtry
wszystkich: 79
Katalog Publikacji
Rok 2022
-
Generalized Dobrushin Coefficients on Banach Spaces
PublikacjaThe asymptotic behavior of iterates of bounded linear operators (not necessarily positive), acting on Banach spaces, is studied. Through the Dobrushin ergodicity coefficient, we generalize some ergodic theorems obtained earlier for classical Markov semigroups acting on L1 (or positive operators on abstract state spaces).
-
Marcinkiewicz Averages of Smooth Orthogonal Projections on Sphere
PublikacjaWe construct a single smooth orthogonal projection with desired localization whose average under a group action yields the decomposition of the identity operator. For any full rank lattice \Gamma ⊂ R^d , a smooth projection is localized in a neighborhood of an arbitrary precompact fundamental domain R^d / \Gamma. We also show the existence of a highly localized smooth orthogonal projection, whose Marcinkiewicz average under the...
Rok 2021
-
Equivalence of equicontinuity concepts for Markov operators derived from a Schur-like property for spaces of measures
PublikacjaVarious equicontinuity properties for families of Markov operators have been – and still are – used in the study of existence and uniqueness of invariant probability for these operators, and of asymptotic stability. We prove a general result on equivalence of equicontinuity concepts. It allows comparing results in the literature and switching from one view on equicontinuity to another, which is technically convenient in proofs....
-
Parseval Wavelet Frames on Riemannian Manifold
PublikacjaWe construct Parseval wavelet frames in L 2 (M) for a general Riemannian manifold M and we show the existence of wavelet unconditional frames in L p (M) for 1 < p < ∞. This is made possible thanks to smooth orthogonal projection decomposition of the identity operator on L 2 (M), which was recently proven by Bownik et al. (Potential Anal 54:41–94, 2021). We also show a characterization of Triebel–Lizorkin F sp,q (M) and Besov B...
-
Smooth Orthogonal Projections on Riemannian Manifold
PublikacjaWe construct a decomposition of the identity operator on a Riemannian manifold M as a sum of smooth orthogonal projections subordinate to an open cover of M. This extends a decomposition on the real line by smooth orthogonal projection due to Coifman and Meyer (C. R. Acad. Sci. Paris, S´er. I Math., 312(3), 259–261 1991) and Auscher, Weiss, Wickerhauser (1992), and a similar decomposition when M is the sphere by Bownik and Dziedziul (Const....
-
Towards a classification of networks with asymmetric inputs
PublikacjaCoupled cell systems associated with a coupled cell network are determined by (smooth) vector fields that are consistent with the network structure. Here, we follow the formalisms of Stewart et al (2003 SIAM J. Appl. Dyn. Syst. 2, 609–646), Golubitsky et al (2005 SIAM J. Appl. Dyn. Syst. 4, 78–100) and Field (2004 Dyn. Syst. 19, 217–243). It is known that two non-isomorphic n-cell coupled networks can determine the same sets of...
Rok 2020
-
Bounded solutions of odd nonautonomous ODE
PublikacjaBorsuk-Ulam type argument is used in order to prove exstence of nontrivial bounded solutions to some nonautonomous differential euations which are odd with respect to the spatial variable. A Poincare compactification trick is also applied.
-
Generalized Gradient Equivariant Multivalued Maps, Approximation and Degree
PublikacjaConsider the Euclidean space Rn with the orthogonal action of a compact Lie group G. We prove that a locally Lipschitz G-invariant mapping f from Rn to R can be uniformly approximated by G-invariant smooth mappings g in such a way that the gradient of g is a graph approximation of Clarke’s generalized gradient of f . This result enables a proper development of equivariant gradient degree theory for a class of set-valued gradient...
-
Generic invariant measures for iterated systems of interval homeomorphisms
PublikacjaIt is well known that iterated function systems generated by orientation preserving homeomorphisms of the unit interval with positive Lyapunov exponents at its ends admit a unique invariant measure on (0, 1) provided their action is minimal. With the additional requirement of continuous differentiability of maps on a fixed neighbourhood of {0,1} { 0 , 1 } , we present a metric in the space of such systems which renders it complete....
-
Homoclinics for singular strong force Lagrangian systems
PublikacjaWe study the existence of homoclinic solutions for a class of generalized Lagrangian systems in the plane, with a C1-smooth potential with a single well of infinite depth at a point ξ and a unique strict global maximum 0 at the origin.Under a strong force condition around the singular point ξ, via minimization of an action integral, we will prove the existence of at least two geometrically distinct homoclinic solutions.
-
Istnienie i regularność heteroklinicznych rozwiązań równania Allena-Cahna z anizotropowym operatorem eliptycznym
PublikacjaCelem rozprawy jest udowodnienie dwóch twierdzeń dotyczących równań różniczkowych cząstkowych typu eliptycznego. Pierwsze mówi o regularności słabych rozwiązań pewnej klasy równań z operatorem eliptycznym, który pochodzi od wypukłej i anizotropowej G-funkcji spełniającej odpowiednie warunki wzrostu. To twierdzenie jest pewnym uogólnieniem znanych wyników z izotropowymi warunkami wzrostu na przypadek operatorów anizotropowych. Drugie...
-
Moments of Hermite-Gaussian functionals
PublikacjaMoments of finite products of Hermite-Gaussian functionals are expressed by covariances of Gaussian sequence.
-
Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator
PublikacjaUsing the Mountain Pass Theorem we show that the problem \begin{equation*} \begin{cases} \frac{d}{dt}\Lcal_v(t,u(t),\dot u(t))=\Lcal_x(t,u(t),\dot u(t))\quad \text{ for a.e. }t\in[a,b]\\ u(a)=u(b)=0 \end{cases} \end{equation*} has a solution in anisotropic Orlicz-Sobolev space. We consider Lagrangian $\Lcal=F(t,x,v)+V(t,x)+\langle f(t), x\rangle$ with growth conditions determined by anisotropic G-function and some geometric conditions...
-
On homotopies of morphisms and admissible mappings
PublikacjaThe notion of homotopy in the category of morphisms introduced by G´orniewicz and Granas is proved to be equivalence relation which was not clear for years. Some simple properties are proved and a coincidence point index is described.
-
On the Existence of Homoclinic Type Solutions of a Class of Inhomogenous Second Order Hamiltonian Systems
PublikacjaWe show the existence of homoclinic type solutions of a class of inhomogenous second order Hamiltonian systems, where a C1-smooth potential satisfies a relaxed superquadratic growth condition, its gradient is bounded in the time variable, and a forcing term is sufficiently small in the space of square integrable functions. The idea of our proof is to approximate the original system by time-periodic ones, with larger and larger...
-
Regularity of weak solutions for aclass of elliptic PDEs in Orlicz-Sobolev spaces
PublikacjaWe consider the elliptic partial differential equation in the divergence form $$-\div(\nabla G(\nabla u(x))) t + F_u (x, u(x)) = 0,$$ where $G$ is a convex, anisotropic function satisfying certain growth and ellipticity conditions We prove that weak solutions in $W^{1,G}$ are in fact of class $W^{2,2}_{loc}\cap W^{1,\infty}_{loc}$.
-
The Palais–Smale condition for the Hamiltonian action on a mixed regularity space of loops in cotangent bundles and applications
PublikacjaWe show that the Hamiltonian action satisfies the Palais-Smale condition over a “mixed regular- ity” space of loops in cotangent bundles, namely the space of loops with regularity H^s, s ∈ (1/2, 1), in the baseand H^{1−s} in the fiber direction. As an application, we give a simplified proof of a theorem of Hofer-Viterbo on the existence of closed characteristic leaves for certain contact type hypersufaces in cotangent bundles.
Rok 2019
-
Bernstein-type theorem for ϕ-Laplacian
PublikacjaIn this paper we obtain a solution to the second-order boundary value problem of the form \frac{d}{dt}\varPhi'(\dot{u})=f(t,u,\dot{u}), t\in [0,1], u\colon \mathbb {R}\to \mathbb {R} with Sturm–Liouville boundary conditions, where \varPhi\colon \mathbb {R}\to \mathbb {R} is a strictly convex, differentiable function and f\colon[0,1]\times \mathbb {R}\times \mathbb {R}\to \mathbb {R} is continuous and satisfies a suitable growth...
-
Clarke duality for Hamiltonian systems with nonstandard growth
PublikacjaWe consider the existence of periodic solutions to Hamiltonian systems with growth conditions involving G-function. We introduce the notion of symplectic G-function and provide relation for the growth of Hamiltonian in terms of certain constant CG associated to symplectic G-function G. We discuss an optimality of this constant for some special cases. We also provide applications to the Φ-laplacian type systems.
-
Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space
PublikacjaUsing the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.
-
Multiresolution analysis and adaptive estimation on a sphere using stereographic wavelets
PublikacjaWe construct an adaptive estimator of a density function on d dimensional unit sphere Sd (d ≥ 2), using a new type of spherical frames. The frames, or as we call them, stereografic wavelets are obtained by transforming a wavelet system, namely Daubechies, using some stereographic operators. We prove that our estimator achieves an optimal rate of convergence on some Besov type class of functions by adapting to unknown smoothness....
-
Subharmonic solutions for a class of Lagrangian systems
PublikacjaWe prove that second order Hamiltonian systems with a potential of class C1, periodic in time and superquadratic at infinity with respect to the space variable have subharmonic solutions. Our intention is to generalise a result on subharmonics for Hamiltonian systems with a potential satisfying the global Ambrosetti-Rabinowitz condition from [P. H. Rabinowitz, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 33-38]. Indeed, we weaken...
-
The E-Cohomological Conley Index, Cup-Lengths and the Arnold Conjecture on T 2n
PublikacjaWe show that the E-cohomological Conley index, that was introduced by the first author recently, has a natural module structure. This yields a new cup-length and a lower bound for the number of critical points of functionals on Hilbert spaces. When applied to the setting of the Arnold conjecture, this paves the way to a short proof on tori, where it was first shown by C. Conley and E. Zehnder in 1983.
-
The Maslov index and the spectral flow—revisited
PublikacjaWe give an elementary proof of a celebrated theorem of Cappell, Lee and Miller which relates the Maslov index of a pair of paths of Lagrangian subspaces to the spectral flow of an associated path of self-adjoint first-order operators. We particularly pay attention to the continuity of the latter path of operators, where we consider the gap-metric on the set of all closed operators on a Hilbert space. Finally, we obtain from Cappell,...
Rok 2018
-
Bifurcation of equilibrium forms of an elastic rod on a two-parameter Winkler foundation
PublikacjaWe consider two-parameter bifurcation of equilibrium states of an elastic rod on a deformable foundation. Our main theorem shows that bifurcation occurs if and only if the linearization of our problem has nontrivial solutions. In fact our proof, based on the concept of the Brouwer degree, gives more, namely that from each bifurcation point there branches off a continuum of solutions.
-
Heteroclinic solutions of Allen-Cahn type equations with a general elliptic operator
PublikacjaWe consider a generalization of the Allen-Cahn type equation in divergence form $-\rm{div}(\nabla G(\nabla u(x,y)))+F_u(x,y,u(x,y))=0$. This is more general than the usual Laplace operator. We prove the existence and regularity of heteroclinic solutions under standard ellipticity and $m$-growth conditions.
Rok 2017
-
Anisotropic Orlicz–Sobolev spaces of vector valued functions and Lagrange equations
PublikacjaIn this paper we study some properties of anisotropic Orlicz and Orlicz–Sobolev spaces of vector valued functions for a special class of G-functions. We introduce a variational setting for a class of Lagrangian Systems. We give conditions which ensure that the principal part of variational functional is finitely defined and continuously differentiable on Orlicz–Sobolev space.
-
Convex set of quantum states with positive partial transpose analysed by hit and run algorithm
PublikacjaThe convex set of quantum states of a composite K×K system with positive partial transpose is analysed. A version of the hit and run algorithm is used to generate a sequence of random points covering this set uniformly and an estimation for the convergence speed of the algorithm is derived. For K >3 or K=3 this algorithm works faster than sampling over the entire set of states and verifying whether the partial transpose is positive....
-
E-cohomological Conley index
PublikacjaIn this thesis we continue with developing the E-cohomological Conley index which was introduced by A.Abbondandolo. In particular, we generalize the index to non-gradient flows, we show that it an possesses additional multiplicative structure and we prove the continuation principle. Then, using continuation principle, we show how the computation of the E-cohomological Conley index can be reduced to the computation of the classical...
-
Equations with Separated Variables on Time Scales
PublikacjaWe show that the well-known theory for classical ordinary differential equations with separated variables is not valid in case of equations on time scales. Namely, the uniqueness of solutions does not depend on the convergence of appropriate integrals.
-
Grupa gdańskich topologów
PublikacjaArtykuł o charakterze przeglądowym. Jako rozdział 6 w książce zawiera przegląd najważniejszych rezultatów badawczych uzyskanych przez dużą grupę matematyków związanych z Uniwersytetem i Politechniką Gdańską określanych potocznie grupą topologów, a także uwagi historyczne dotyczące rozwoju tych zespołów. Dołączono i pokrótce omówiono obszerną bibliografię.
-
Homotopy invariance of the Conley index and local Morse homology in Hilbert spaces
PublikacjaIn this paper we introduce a new compactness condition — Property-(C) — for flows in (not necessary locally compact) metric spaces. For such flows a Conley type theory can be developed. For example (regular) index pairs always exist for Property-(C) flows and a Conley index can be defined. An important class of flows satisfying the this compactness condition are LS-flows. We apply E-cohomology to index pairs of LS-flows and obtain...
-
On the existence of homoclinic type solutions of inhomogenous Lagrangian systems
PublikacjaWe study the existence of homoclinic type solutions for a class of inhomogenous Lagrangian systems with a potential satisfying the Ambrosetti-Rabinowitz superquadratic growth condition and a square integrable forcing term. A homoclinic type solution is obtained as a limit of periodic solutions of an approximative sequence of second order differential equations.
-
Study of the Flow Dynamics of Surface Water Masses in the Area of the Coastal Gulf of Gdansk
PublikacjaThe paper describes two methods of predicting the movement of small objects with surface water masses. One of the methods uses graph theory to describe the motion of water masses in port docks. The results of this study were compared to a simulation using the hydrodynamic numerical model M3D. The results obtained in a virtual environment were related to the experiments in the real world. In the coastal area of the Gulf of Gdansk,...
Rok 2016
-
SOME CONVERGENCE PROPERTIES OF THE SUM OF GAUSSIAN FUNCTIONALS
PublikacjaIn the paper, some aspects of the convergence of series of dependent Gaussian sequences problem are solved. The necessary and sufficient conditions for the convergence of series of centered dependent indicators are obtained. Some strong convergence results for weighted sums of Gaussian functionals are discussed.
Rok 2015
-
Homoclinic orbits for an almost periodically forced singular Newtonian system in R^3
Publikacja. This work uses a variational approach to establish the existence of at least two homoclinic solutions for a family of singular Newtonian systems in R^3 which are subjected to almost periodic forcing in time variable
-
Morse cohomology in a Hilbert space via the Conley index
PublikacjaThe main theorem of this paper states that Morse cohomology groups in a Hilbert space are isomorphic to the cohomological Conley index. It is also shown that calculating the cohomological Conley index does not require finite-dimensional approximations of the vector field. Further directions are discussed.
-
Numerical solution of threshold problems in epidemics and population dynamics
PublikacjaA new algorithm is proposed for the numerical solution of threshold problems in epidemics and population dynamics. These problems are modeled by the delay-differential equations, where the delay function is unknown and has to be determined from the threshold conditions. The new algorithm is based on embedded pair of continuous Runge–Kutta method of order p = 4 and discrete Runge–Kutta method of order q = 3 which is used for the...
-
On Von Karman Equations and the Buckling of a Thin Circular Elastic Plate
PublikacjaWe shall be concerned with the buckling of a thin circular elastic plate simply supported along a boundary, subjected to a radial compressive load uniformly distributed along its boundary. One of the main engineering concerns is to reduce deformations of plate structures. It is well known that von Karman equations provide an established model that describes nonlinear deformations of elastic plates. Our approach to study plate deformations...
-
Smooth orthogonal projections on sphere.
PublikacjaWe construct a decomposition of the identity operator on the sphere S^d as a sum of smooth orthogonal projections subordinate to an open cover of S^d. We give applications of our main result in the study of function spaces and Parseval frames on the sphere.
-
Solving Boundary Value Problems for Second Order Singularly Perturbed Delay Differential Equations by ε-Approximate Fixed-Point Method
PublikacjaIn this paper, the boundary value problem for second order singularly perturbed delay differential equation is reduced to a fixed-point problem v = Av with a properly chosen (generally nonlinear) operator A. The unknown fixed-point v is approximated by cubic spline vh defined by its values vi = vh(ti) at grid points ti, i = 0, 1, ... ,N. The necessary for construction the cubic spline and missing the first derivatives at the boundary...
-
Subcritical bifurcation of free elastic shell of biological cluster
PublikacjaIn this paper we will investigate symmetry-breaking bifurcation of equilibrium forms of biological cluster. A biological cluster is a two-dimensional analogue of a gas balloon. The cluster boundary is connected with its kernel by elastic links. The inside part is filled with compressed gas or fluid. Equilibrium forms of biological cluster can be found as solutions of a certain second order ordinary functional-differential equation...
-
The cohomological span of LS-Conley index
PublikacjaIn this paper we introduce a new homotopy invariant – the cohomological span of LS-Conley index. We prove the theorems on the existence of critical points for a class of strongly indefinite functionals with the gradient of the form Lx+K(x), where L is bounded linear and K is completely continuous. We give examples of Hamiltonian systems for which our methods give better results than the Morse inequalities. We also give a formula...
-
Wspomaganie zajęć dydaktycznych z matematyki na kierunkach technicznych kursem e-Learningowym"
PublikacjaW artykule przedstawiono doświadczenia w zakresie wspomagania przedmiotu matematyka na pierwszym roku studiów inżynierskich kursem e-learningowym. Wykonano analizę wyników testów przeprowadzonych podczas e-zajęć. Przedstawiono również wyniki ankiet ewaluacyjnych obrazujących stosunek studentów do wprowadzania kształcenia matematyki z wykorzystaniem blended learning.
Rok 2014
-
A note on an approximative scheme of finding almost homoclinic solutions for Newtonian systems
PublikacjaIn this work we will be concerned with the existence of an almost homoclinic solution for a perturbed Newtonian system in a finite dimensional space. It is assumed that a potential is C^1 smooth and its gradient is bounded with respect to a time variable. Moreover, a forcing term is continuous, bounded and squere integrable. We will show that the appproximative scheme due to J. Janczewska for a time periodic potential extends to...
-
Approximative sequences and almost homoclinic solutions for a class of second order perturbed Hamiltonian systems
PublikacjaIn this work we will consider a class of second order perturbed Hamiltonian systems with a superquadratic growth condition on a time periodic potential and a small aperiodic forcing term. To get an almost homoclinic solution we approximate the original system by time periodic ones with larger and larger time periods. These approximative systems admit periodic solutions, and an almost homoclinic solution for the original system...
-
Density smoothness estimation problem using a wavelet approach
PublikacjaIn this paper we consider a smoothness parameter estimation problem for a density function. The smoothness parameter of a function is defined in terms of Besov spaces. This paper is an extension of recent results (K. Dziedziul, M. Kucharska, B. Wolnik, Estimation of the smoothness parameter ). The construction of the estimator is based on wavelets coefficients. Although we believe that the effective estimation of the smoothness...
-
Module structure in Conley theory with some applications
PublikacjaA multiplicative structure in the cohomological versjon of Conley index is described . In the case of equivariant flows we apply the normalization procedure known from equivariant degree theory and we propose a new continuation invariant. The theory is then applied to obtain a mountain pass type theorem. Another application is a result on multiple bifurcations for some elliptic PDE.
-
On the Peano Theorem for Some Functional Differential Equations on Time Scale
PublikacjaThe Peano Theorem for some functional differential equations on time scale is proved. Assumptions are of Caratheodory type. Two counter examples for false Peano theorems in the literature are presented.
-
Rozpiętość kohomologiczna LS-indeksu i rozwiązania okresowe układów hamiltonowskich.
Publikacja.