Filters
total: 414
filtered: 255
-
Catalog
Chosen catalog filters
Search results for: artificial intelligence
-
Sensors and Sensor’s Fusion in Autonomous Vehicles
PublicationAutonomous vehicle navigation has been at the center of several major developments, both in civilian and defense applications. New technologies such as multisensory data fusion, big data processing, and deep learning are changing the quality of areas of applications, improving the sensors and systems used. New ideas such as 3D radar, 3D sonar, LiDAR, and others are based on autonomous vehicle revolutionary development. The Special...
-
How digital technology affects working conditions in globally fragmented production chains: Evidence from Europe
PublicationThis paper uses a sample of over 9 million workers from 22 European countries to study the intertwined relationship between digital technology, cross-border production links and working conditions. We compare the social consequences of technological change exhibited by three types of innovation: computerisation (software), automation (robots) and artificial intelligence (AI). To fully quantify work-related wellbeing, we propose...
-
Electronic nose algorithm design using classical system identification for odour intensity detection
PublicationThe two elements considered crucial for constructing an efficient environmental odour intensity monitoring systems are sensors and algorithms typically addressed to as electronic nose sensor (e-nose). Due to operational complexity of biochemical sensors developed in human bodies algorithms based on computational methods of artificial intelligence are typically considered superior to classical model based approaches in development...
-
Pedestrian detection in low-resolution thermal images
PublicationOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
Addressing Challenges in AI-based Systems Development: A Proposal of Adapted Requirements Engineering Process
Publication[Context] Present-day IT systems are more and more dependent on artificial intelligence (AI) solutions. Developing AI-based systems means facing new challenges, not known for more conventional systems. Such challenges need to be identified and addressed by properly adapting the existing development and management processes. [Objective] In this paper, we focus on the requirements engineering (RE) area of IT projects and aim to propose...
-
AI-Driven Sustainability in Agriculture and Farming
PublicationIn this chapter, we discuss the role of artificial intelligence (AI) in promoting sustainable agriculture and farming. Three main themes run through the chapter. First, we review the state of the art of smart farming and explore the transformative impact of AI on modern agricultural practices, focusing on its contribution to sustainability. With this in mind, our analysis focuses on topics such as data collection and storage, AI...
-
Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks
PublicationDeep Neural Networks (DNN) are state of the art algorithms for image classification. Although significant achievements and perspectives, deep neural networks and accompanying learning algorithms have some important challenges to tackle. However, it appears that it is relatively easy to attack and fool with well-designed input samples called adversarial examples. Adversarial perturba-tions are unnoticeable for humans. Such attacks...
-
A note on the affective computing systems and machines: a classification and appraisal
PublicationAffective computing (AfC) is a continuously growing multidisciplinary field, spanning areas from artificial intelligence, throughout engineering, psychology, education, cognitive science, to sociology. Therefore, many studies have been devoted to the aim of addressing numerous issues, regarding different facets of AfC solutions. However, there is a lack of classification of the AfC systems. This study aims to fill this gap by reviewing...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublicationFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Digital Innovations and Smart Solutions for Society And Economy: Pros and Cons
PublicationRecent developments in artificial intelligence (AI) may involve significant potential threats to personal data privacy, national security, and social and economic stability. AI-based solutions are often promoted as “intelligent” or “smart” because they are autonomous in optimizing various processes. Be-cause they can modify their behavior without human supervision by analyzing data from the environ-ment, AI-based systems may be...
-
Communication as a Factor Limiting University-Business Cooperation
PublicationObjective - Despite the broad extent of the scientific activity dealing with university-business cooperation, Poland has yet to develop a satisfactory cooperation strategy that takes business needs into account. This issue is still relevant due to the need for continuous improvement and resulting benefits aimed at improving enterprise competitiveness. Methodology/Technique - Authors of this article attempt to select an overriding...
-
Mixed-use buildings as the basic unit that shapes the housing environment of smart cities of the future
PublicationThe contemporary approach to creating the residential function is confronted with the trend of increasing the volume of buildings and expectations regarding the future urban environment focused on sustainable development. This paper presents an overview of the residential structure in the context of defined thematic scopes. Namely, it is a systemic approach to the problem of designing mixed-use buildings which create a modern residential...
-
What is the future of digital education in the higher education sector? An overview of trends with example applications at Gdańsk Tech, Poland
PublicationUniversities worldwide recognise the need to adapt to changes in society, the economy and the way young people prefer to learn. Additionally, the impetus to improve the digital approach in higher education intensifies as educational institutions have to remain competitive with commercial providers of education. Following the latest technological trends and implementing strategies to develop new digital solutions helps to improve...
-
Project-Based Collaborative Research and Training Roadmap for Manufacturing Based on Industry 4.0
PublicationThe importance of the economy being up to date with the latest developments, such as Industry 4.0, is more evident than ever before. Successful implementation of Industry 4.0 principles requires close cooperation of industry and state authorities with universities. A paradigm of such cooperation is described in this paper stemming from university partners with partly overlapping and partly complementary areas of expertise in manufacturing....
-
Automatic Rhythm Retrieval from Musical Files
PublicationThis paper presents a comparison of the effectiveness of two computational intelligence approaches applied to the task of retrieving rhythmic structure from musical files. The method proposed by the authors of this paper generates rhythmic levels first, and then uses these levels to compose rhythmic hypotheses. Three phases: creating periods, creating simplified hypotheses and creating full hypotheses are examined within this study....
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublicationRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Viability of decisional DNA in robotics
PublicationThe Decisional DNA is an artificial intelligence system that uses prior experiences to shape future decisions. Decisional DNA is written in the Set Of Experience Knowledge Structure (SOEKS) and is capable of capturing and reusing a broad range of data. Decisional DNA has been implemented in several fields including Alzheimer’s diagnosis, geothermal energy and smart TV. Decisional DNA is well suited to use in robotics due to the...
-
Spatial Visualization Based on Geodata Fusion Using an Autonomous Unmanned Vessel
PublicationThe visualization of riverbeds and surface facilities on the banks is crucial for systems that analyze conditions, safety, and changes in this environment. Hence, in this paper, we propose collecting, and processing data from a variety of sensors—sonar, LiDAR, multibeam echosounder (MBES), and camera—to create a visualization for further analysis. For this purpose, we took measurements from sensors installed on an autonomous, unmanned...
-
From Knowledge based Vision Systems to Cognitive Vision Systems: A Review
PublicationComputer vision research and applications have their origins in 1960s. Limitations in computational resources inherent of that time, among other reasons, caused research to move away from artificial intelligence and generic recognition goals to accomplish simple tasks for constrained scenarios. In the past decades, the development in machine learning techniques has contributed to noteworthy progress in vision systems. However,...
-
APPLICATION OF APRIORI ALGORITHM IN THE LAMINATION PROCESS IN YACHT PRODUCTION
PublicationThe article specifies the dependence of defects occurring in the lamination process in the production of yachts. Despite great knowledge about their genesis, they cannot be completely eliminated. Authentic data obtained through cooperation with one of the Polish yacht shipyards during the years 2013–2017 were used for the analysis. To perform a simulation, the sample size was observed in 1450 samples, consisting of 6 models of...
-
Machine Learning and Electronic Noses for Medical Diagnostics
PublicationThe need for noninvasive, easy-to-use, and inexpensive methods for point-of-care diagnostics of a variety of ailments motivates researchers to develop methods for analyzing complex biological samples, in particular human breath, that could aid in screening and early diagnosis. There are hopes that electronic noses, that is, devices based on arrays of semiselective or nonselective chemical sensors, can fill this niche. Electronic...
-
Autonomous port management based AGV path planning and optimization via an ensemble reinforcement learning framework
PublicationThe rapid development of shipping trade pushes automated container terminals toward the direction of intelligence, safety and efficiency. In particular, the formulation of AGV scheduling tasks and the safety and stability of transportation path is an important part of port operation and management, and it is one of the basic tasks to build an intelligent port. Existing research mainly focuses on collaborative operation between...
-
A Survey on the Datasets and Algorithms for Satellite Data Applications
PublicationThis survey compiles insights and describes datasets and algorithms for applications based on remote sensing. The goal of this review is twofold: datasets review for particular groups of tasks and high-level steps of data flow between satellite instruments and end applications from an implementation and development perspective. The article outlines the generalized data processing pipelines, taking into account the variations in...
-
Social media for e-learning of citizens in smart city
PublicationThe rapid development of social media can be applied for citizens’ e-learning in a smart city. Big cities have to cope with several open issues like a growing population or a traffic congestion. Especially, a home and public space is supposed to be used in more efficient way. Sustainable homes and buildings can be planned with using some modern techniques. Even currently, there is a huge problem with a lack of key resources like...
-
Global energy transition: From the main determinants to economic challenges regions
PublicationDynamic global energy transition has been accelerating for the last decade. Interestingly, the energy transition is multidimensional and concerns both the dimensions of technique/ technology and the economic, social, institu-tional, and legal spheres (Shuguang et al., 2022; Tzeremes et al., 2022; Ram-zan et al., 2022; Tzeremes et al., 2022). The literature also points to the signif-icant impact of the digitization of the global...
-
UAV measurements and AI-driven algorithms fusion for real estate good governance principles support
PublicationThe paper introduces an original method for effective spatial data processing, particularly important for land administration and real estate governance. This approach integrates Unmanned Aerial Vehicle (UAV) data acquisition and processing with Artificial Intelligence (AI) and Geometric Transformation algorithms. The results reveal that: (1) while the separate applications of YOLO and Hough Transform algorithms achieve building detection...
-
Automatic Watercraft Recognition and Identification on Water Areas Covered by Video Monitoring as Extension for Sea and River Traffic Supervision Systems
PublicationThe article presents the watercraft recognition and identification system as an extension for the presently used visual water area monitoring systems, such as VTS (Vessel Traffic Service) or RIS (River Information Service). The watercraft identification systems (AIS - Automatic Identification Systems) which are presently used in both sea and inland navigation require purchase and installation of relatively expensive transceivers...
-
The impact of the AC922 Architecture on Performance of Deep Neural Network Training
PublicationPractical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...
-
Optimisation of turbine shaft heating process under steam turbine run-up conditions
PublicationAn important operational task for thermal turbines during run-up and run-down is to keep the stresses in the structural elements at a right level. This applies not only to their instantaneous values, but also to the impact of them on the engine lifetime. The turbine shaft is a particularly important element. The distribution of stresses depends on geometric characteristics of the shaft and its specific locations. This means a groove manufactured...
-
Sensing Direction of Human Motion Using Single-Input-Single-Output (SISO) Channel Model and Neural Networks
PublicationObject detection Through-the-Walls enables localization and identification of hidden objects behind the walls. While numerous studies have exploited Channel State Information of Multiple Input Multiple Output (MIMO) WiFi and radar devices in association with Artificial Intelligence based algorithms (AI) to detect and localize objects behind walls, this study proposes a novel non-invasive Through-the-Walls human motion direction...
-
Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
PublicationBreast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private...
-
Spectrum-based modal parameters identification with Particle Swarm Optimization
PublicationThe paper presents the new method of the natural frequencies and damping identification based on the Artificial Intelligence (AI) Particle Swarm Optimization (PSO) algorithm. The identification is performed in the frequency domain. The algorithm performs two PSO-based steps and introduces some modifications in order to achieve quick convergence and low estimation error of the identified parameters’ values for multi-mode systems....
-
Comparison and Analysis of Service Selection Algorithms
PublicationIn Service Oriented Architecture, applications are developed by integration of existing services in order to reduce development cost and time. The approach, however, requires algorithms that select appropriate services out of available, alternative ones. The selection process may consider both optimalization requirements, such as maximalization of performance, and constraint requirements, such minimal security or maximum development...
-
Machine learning approach to packaging compatibility testing in the new product development process
PublicationThe paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the entire period of its shelf life and consumer use. This kind of testing...
-
How high-tech solutions support the fight against IUU and ghost fishing: a review of innovative approaches, methods, and trends
PublicationIllegal, Unreported, and Unregulated fishing is a major threat to human food supply and marine ecosystem health. Not only is it a cause of significant economic loss but also its effects have serious long-term environmental implications, such as overfishing and ocean pollution. The beginning of the fight against this problem dates since the early 2000s. From that time, a number of approaches and methods have been developed and reported....
-
To Survive in a CBRN Hostile Environment: Application of CAVE Automatic Virtual Environments in First Responder Training
PublicationThis paper is of a conceptual nature and focuses on the use of a specific virtual reality environment in civil-military training. We analyzed the didactic potential of so-called CAVE automatic virtual environments for First Responder training, a type of training that fills the gap between First Aid training and the training received by emergency medical technicians. Since real training involves live drills based on unexpected situations,...
-
Metal–Organic Frameworks (MOFs) for Cancer Therapy
PublicationMOFs exhibit inherent extraordinary features for diverse applications ranging from catalysis, storage, and optics to chemosensory and biomedical science and technology. Several procedures including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasound techniques have been used to synthesize MOFs with tailored features. A continued attempt has also been directed towards functionalizing MOFs via “post-synthetic...
-
Ontology-Aided Software Engineering
PublicationThis thesis is located between the fields of research on Artificial Intelligence (AI), Knowledge Representation and Reasoning (KRR), Computer-Aided Software Engineering (CASE) and Model Driven Engineering (MDE). The modern offspring of KRR - Description Logic (DL) [Baad03] is considered here as a formalization of the software engineering Methods & Tools. The bridge between the world of formal specification (governed by the mathematics)...
-
Structural insights, biocatalytic characteristics, and application prospects of lignin-modifying enzymes for sustainable biotechnology
PublicationLignin modifying enzymes (LMEs) have gained widespread recognition in depolymerization of lignin polymers by oxidative cleavage. LMEs are a robust class of biocatalysts that include lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), laccase (LAC), and dye-decolorizing peroxidase (DyP). Members of the LMEs family act on phenolic, non-phenolic substrates and have been widely researched for valorization...
-
How Can We Identify Electrophysiological iEEG Activities Associated with Cognitive Functions?
PublicationElectrophysiological activities of the brain are engaged in its various functions and give rise to a wide spectrum of low and high frequency oscillations in the intracranial EEG (iEEG) signals, commonly known as the brain waves. The iEEG spectral activities are distributed across networks of cortical and subcortical areas arranged into hierarchical processing streams. It remains a major challenge to identify these activities in...
-
Adjusting the Stiffness of Supports during Milling of a Large-Size Workpiece Using the Salp Swarm Algorithm
PublicationThis paper concerns the problem of vibration reduction during milling. For this purpose, it is proposed that the standard supports of the workpiece be replaced with adjustable stiffness supports. This affects the modal parameters of the whole system, i.e., object and its supports, which is essential from the point of view of the relative tool–workpiece vibrations. To reduce the vibration level during milling, it is necessary to...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublicationAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublicationAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Condition-Based Monitoring of DC Motors Performed with Autoencoders
PublicationThis paper describes a condition-based monitoring system estimating DC motor degradation with the use of an autoencoder. Two methods of training the autoencoder are evaluated, namely backpropagation and extreme learning machines. The root mean square (RMS) error in the reconstruction of successive fragments of the measured DC motor angular-frequency signal, which is fed to the input of autoencoder, is used to determine the health...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublicationThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
Explainable machine learning for diffraction patterns
PublicationSerial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...
-
Preferred Benchmarking Criteria for Systematic Taxonomy of Embedded Platforms (STEP) in Human System Interaction Systems
PublicationThe rate of progress in the field of Artificial Intelligence (AI) and Machine Learning (ML) has significantly increased over the past ten years and continues to accelerate. Since then, AI has made the leap from research case studies to real production ready applications. The significance of this growth cannot be undermined as it catalyzed the very nature of computing. Conventional platforms struggle to achieve greater performance...
-
Digital Transformation of Terrestrial Radio: An Analysis of Simulcasted Broadcasts in FM and DAB+ for a Smart and Successful Switchover
PublicationThe process of digitizing radio is far from over. It is an important interdisciplinary aspect, involving Big Data and AI (Artificial Intelligence) when it comes to classifying and handling content, and an organizational challenge in the Industry 4.0 concept. There exist several methods for delivering audio signals, including terrestrial broadcasting and internet streaming. Among them, the DAB+ (Digital Audio Broadcasting plus)...
-
Neural network training with limited precision and asymmetric exponent
PublicationAlong with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublicationThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...