Filters
total: 11488
filtered: 9010
-
Catalog
- Publications 9010 available results
- Journals 344 available results
- Conferences 129 available results
- Publishing Houses 1 available results
- People 263 available results
- Projects 21 available results
- Laboratories 1 available results
- Research Teams 1 available results
- Research Equipment 2 available results
- e-Learning Courses 296 available results
- Events 16 available results
- Open Research Data 1404 available results
Chosen catalog filters
displaying 1000 best results Help
Search results for: facial recognition, drowsiness, real-time monitoring, machine learning, neural networks, driver, fatigue
-
Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification
PublicationLiquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community...
-
Speed estimation of a car at impact with a W-beam guardrail using numerical simulations and machine learning
PublicationThis paper aimed at developing a new method of estimating the impact speed of a passenger car at the moment of a crash into a W-beam road safety barrier. The determination of such a speed based on the accident outcomes is demanding, because often there is no access to full accident data. However, accurate determination of the impact speed is one of the key elements in the reconstruction of road accidents. A machine learning algorithm...
-
Evaluation of Machine Learning Methods for the Experimental Classification and Clustering of Higher Education Institutions
PublicationHigher education institutions have a big impact on the future of skills supplied on the labour market. It means that depending on the changes in labour market, higher education institutions are making changes to fields of study or adding new ones to fulfil the demand on labour market. The significant changes on labour market caused by digital transformation, resulted in new jobs and new skills. Because of the necessity of computer...
-
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublicationThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
Research of electric drive systems with real time software configurable control
PublicationПредмет исследования. Представлен учебно-лабораторный стенд для исследования систем управления элек- троприводами. Стенд используется для обучения студентов системам управления электроприводами и предна- значен для повышения эффективности усвоения материала. Метод. В основу предлагаемого решения положен метод взаимного нагружения электрических машин, питаемых от силовых преобразователей с общим звеном постоянного тока. Это позволяет...
-
Diagnosis of damages in family buildings using neural networks
PublicationThe article concerns a problem of damages in family buildings, which result from traffic-induced vibrations. These vibrations arise from various causes and their size is influenced by many factors. The most important is the type of a road, type and weight of vehicles that run on the road, type and condition of the road surface, the distance from the house to the source of vibrations and many others which should be taken into account....
-
Optical method supported by machine learning for urinary tract infection detection and urosepsis risk assessment
PublicationThe study presents an optical method supported by machine learning for discriminating urinary tract infections from an infection capable of causing urosepsis. The method comprises spectra of spectroscopy measurement of artificial urine samples with bacteria from solid cultures of clinical E. coli strains. To provide a reliable classification of results assistance of 27 algorithms was tested. We proved that is possible to obtain...
-
Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy
PublicationBiochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand for sustainable energy. Efficient management systems are needed in order to exploit fully the potential of biochar. Modern machine learning (ML) techniques, and in particular ensemble approaches and explainable AI methods, are valuable for forecasting the properties and efficiency of biochar properly. Machine-learning-based forecasts,...
-
The impact of the temperament model on the behavior of an autonomous driver
PublicationBecause it is generally believed that the personality and temperament of a human driver influence his/her behavior on the road, the article presents a computational model of the temperament of an autonomous agent - a driver. First, a short review of the four ideas of Galen’s temperament in psychology is presented. Temperament traits are grouped into four other sets, one of which is chosen for implementation in the project of integration...
-
Neural modelling of dynamic systems with time delays based on an adjusted NEAT algorithm
PublicationA problem related to the development of an algorithm designed to find an architecture of artificial neural network used for black-box modelling of dynamic systems with time delays has been addressed in this paper. The proposed algorithm is based on a well-known NeuroEvolution of Augmenting Topologies (NEAT) algorithm. The NEAT algorithm has been adjusted by allowing additional connections within an artificial neural network and...
-
On Facial Expressions and Emotions RGB-D Database
PublicationThe goal of this paper is to present the idea of creating reference database of RGB-D video recordings for recognition of facial expressions and emotions. Two different formats of the recordings used for creation of two versions of the database are described and compared using different criteria. Examples of first applications using databases are also presented to evaluate their usefulness.
-
USING ARTIFICIAL NEURAL NETWORKS FOR PREDICTING SHIP FUEL CONSUMPTION
PublicationIn marine vessel operations, fuel costs are major operating costs which affect the overall profitability of the maritime transport industry. The effective enhancement of using ship fuel will increase ship operation efficiency. Since ship fuel consumption depends on different factors, such as weather, cruising condition, cargo load, and engine condition, it is difficult to assess the fuel consumption pattern for various types...
-
Detection of People Swimming in Water Reservoirs with the Use of Multimodal Imaging and Machine Learning
PublicationEvery year in many countries, there are fatal unintentional drownings in different water reservoirs like swimming pools, lakes, seas, or oceans. The existing threats of this type require creating a method that could automatically supervise such places to increase the safety of bathers. This work aimed to create methods and prototype solutions for detecting people bathing in water reservoirs using a multimodal imaging system and...
-
Facial feature extraction from a monochromatic picture.
PublicationFace pose determination represents an important area of research in Human Machine Interaction. In this paper, I describe a new method of extracting facial feature locations from a single monochromatic monocular camera for the purpose of estimating and tracking the three dimensional pose of human face and eye-gaze direction.
-
Facial Feature extraction from a monochromatic picture
PublicationFace pose determination represents an important area of research in Human Machine Interaction. In this paper, I describe a new method of extracting facial feature locations from a single monochromatic monocular camera for the purpose of estimating and tracking the three dimensional pose of human face and eye-gaze direction.
-
The application of neural networks in forecasting the influence of traffic-induced vibrations on residential buildings
PublicationTraffic-induced vibrations may cause the cracking of plaster, damage to structural elements and, in extreme cases, may even lead to the structural collapse of residential buildings. The aim of this article is to analyse the effectiveness of a method of forecasting the impact of vibrations on residential buildings using the concept of artificial intelligence. The article presents several alternative forecasting systems for which...
-
Comparative study of neural networks used in modeling and control of dynamic systems
PublicationIn this paper, a diagonal recurrent neural network that contains two recurrent weights in the hidden layer is proposed for the designing of a synchronous generator control system. To demonstrate the superiority of the proposed neural network, a comparative study of performances, with two other neural network (1_DRNN) and the proposed second-order diagonal recurrent neural network (2_DRNN). Moreover, to confirm the superiority...
-
Performance Measurements of Real Time Video Transmission from Car Patrol
PublicationThe HSUPA technology application to video streaming from moving vehicle to the central server is presented in the paper. A dedicated software for transmission control in case of non public IP address is employed. Quality of video streaming in urban area was measured. Several car routes were investigated in the area of the Polish Tricity. Measurements pointed out that the real time streaming quality during vehicle movement is sufficient...
-
A Novel IoT-Perceptive Human Activity Recognition (HAR) Approach Using Multi-Head Convolutional Attention
PublicationTogether with fast advancement of the Internet of Things (IoT), smart healthcare applications and systems are equipped with increasingly more wearable sensors and mobile devices. These sensors are used not only to collect data, but also, and more importantly, to assist in daily activity tracking and analyzing of their users. Various human activity recognition (HAR) approaches are used to enhance such tracking. Most of the existing...
-
Training of Deep Learning Models Using Synthetic Datasets
PublicationIn order to solve increasingly complex problems, the complexity of Deep Neural Networks also needs to be constantly increased, and therefore training such networks requires more and more data. Unfortunately, obtaining such massive real world training data to optimize neural networks parameters is a challenging and time-consuming task. To solve this problem, we propose an easy-touse and general approach to training deep learning...
-
Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete
PublicationConventional ultra-high performance concrete (UHPC) has excellent development potential. However, a significant quantity of CO2 is produced throughout the cement-making process, which is in contrary to the current worldwide trend of lowering emissions and conserving energy, thus restricting the further advancement of UHPC. Considering climate change and sustainability concerns, cementless, eco-friendly, alkali-activated UHPC (AA-UHPC)...
-
Machine learning approach to packaging compatibility testing in the new product development process
PublicationThe paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the entire period of its shelf life and consumer use. This kind of testing...
-
Machine learning-based prediction of preplaced aggregate concrete characteristics
PublicationPreplaced-Aggregate Concrete (PAC) is a type of preplaced concrete where coarse aggregate is placed in the mold and a Portland cement-sand grout with admixtures is injected to fill the voids. Due to the complex nature of PAC, many studies were conducted to determine the effects of admixtures and the compressive and tensile strengths of PAC. Considering that a prediction tool is needed to estimate the compressive and tensile...
-
Machine learning-based prediction of preplaced aggregate concrete characteristics
PublicationPreplaced-Aggregate Concrete (PAC) is a type of preplaced concrete where coarse aggregate is placed in the mold and a Portland cement-sand grout with admixtures is injected to fill the voids. Due to the complex nature of PAC, many studies were conducted to determine the effects of admixtures and the compressive and tensile strengths of PAC. Considering that a prediction tool is needed to estimate the compressive and tensile strengths...
-
Spatiotemporal Assessment of Satellite Image Time Series for Land Cover Classification Using Deep Learning Techniques: A Case Study of Reunion Island, France
PublicationCurrent Earth observation systems generate massive amounts of satellite image time series to keep track of geographical areas over time to monitor and identify environmental and climate change. Efficiently analyzing such data remains an unresolved issue in remote sensing. In classifying land cover, utilizing SITS rather than one image might benefit differentiating across classes because of their varied temporal patterns. The aim...
-
Cross-Platform Real-Time Nuclear Reactor Basic Principle Simulator
PublicationAbstract—In the paper several approaches to building the real-time basic principle simulators of nuclear reactor processes are presented and their characteristics are analyzed. The characteristics of developed simulators for MATLAB/Simulink including their limitations, and the idea of a cross-platform simulator independent of specific hardware or software are presented. Mathematical models of selected nuclear reactor’s processes...
-
DNAffinity: a machine-learning approach to predict DNA binding affinities of transcription factors
PublicationWe present a physics-based machine learning approach to predict in vitro transcription factor binding affinities from structural and mechanical DNA properties directly derived from atomistic molecular dynamics simulations. The method is able to predict affinities obtained with techniques as different as uPBM, gcPBM and HT-SELEX with an excellent performance, much better than existing algorithms. Due to its nature, the method can...
-
Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening
PublicationBeta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural...
-
Heavy duty vehicle fuel consumption modelling using artificial neural networks
PublicationIn this paper an artificial neural network (ANN) approach to modelling fuel consumption of heavy duty vehicles is presented. The proposed method uses easy accessible data collected via CAN bus of the truck. As a benchmark a conventional method, which is based on polynomial regression model, is used. The fuel consumption is measured in two different tests, performed by using a unique test bench to apply the load to the engine. Firstly,...
-
Low cost real time UAV stereo photogrammetry modelling technique – accuracy considerations
PublicationThe paper presents accuracy considerations regarding three 3D modelling techniques. The tested new consumer type stereo camera (ZED 3D Stereolabs) has been implemented info an aerial mapping system, on board micro air vehicle MAV) and tested object has been mapped using a real-time photogrammetry with original real-time software application. The evaluated results has been compared with model gained with a state of art unmanned...
-
MACHINE LEARNING SYSTEM FOR AUTOMATED BLOOD SMEAR ANALYSIS
PublicationIn this paper the authors propose a decision support system for automatic blood smear analysis based on microscopic images. The images are pre-processed in order to remove irrelevant elements and to enhance the most important ones - the healthy blood cells (erythrocytes) and the pathologic (echinocytes). The separated blood cells are analyzed in terms of their most important features by the eigenfaces method. The features are the...
-
Forewarned Is Forearmed: Machine Learning Algorithms for the Prediction of Catheter-Induced Coronary and Aortic Injuries
PublicationCatheter-induced dissections (CID) of coronary arteries and/or the aorta are among the most dangerous complications of percutaneous coronary procedures, yet the data on their risk factors are anecdotal. Logistic regression and five more advanced machine learning techniques were applied to determine the most significant predictors of dissection. Model performance comparison and feature importance ranking were evaluated. We identified...
-
Excitation-independent constant conductance isfet driver
PublicationA new constant conductance driver for ISFETs sensors has been developed. The proposed circuit maintains the sensor operating point at constant drain-source conductance. The combination of a simple, self-balancing resistance bridge and the subtraction half (or similar fraction) of source-drain voltage from the gate-source voltage provides the independence of output signal from current and voltage drivers instability. The use of...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublicationFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Prediction of Processor Utilization for Real-Time Multimedia Stream Processing Tasks
PublicationUtilization of MPUs in a computing cluster node for multimedia stream processing is considered. Non-linear increase of processor utilization is described and a related class of algorithms for multimedia real-time processing tasks is defined. For such conditions, experiments measuring the processor utilization and output data loss were proposed and their results presented. A new formula for prediction of utilization was proposed...
-
Intra-subject class-incremental deep learning approach for EEG-based imagined speech recognition
PublicationBrain–computer interfaces (BCIs) aim to decode brain signals and transform them into commands for device operation. The present study aimed to decode the brain activity during imagined speech. The BCI must identify imagined words within a given vocabulary and thus perform the requested action. A possible scenario when using this approach is the gradual addition of new words to the vocabulary using incremental learning methods....
-
Assessment Of the Relevance of Best Practices in The Development of Medical R&D Projects Based on Machine Learning
PublicationMachine learning has emerged as a fundamental tool for numerous endeavors within health informatics, bioinformatics, and medicine. However, novices among biomedical researchers and IT developers frequently lack the requisite experience to effectively execute a machine learning project, thereby increasing the likelihood of adopting erroneous practices that may result in common pitfalls or overly optimistic predictions. The paper...
-
Dangerous sound event recognition using Support Vector Machine classifiers
PublicationA method of recognizing events connected to danger based on their acoustic representation through Support Vector Machine classification is presented. The method proposed is particularly useful in an automatic surveillance system. The set of 28 parameters used in the classifier consists of dedicated parameters and MPEG-7 features. Methods for parameter calculation are presented, as well as a design of SVM model used for classification....
-
Multi-Camera Vehicle Tracking Using Local Image Features and Neural Networks
PublicationA method for tracking moving objects crossing fields of view of multiple cameras is presented. The algorithm utilizes Artificial Neural Networks (ANNs). Each ANN is trained to recognize images of one moving object acquired by a single camera. Local image features calculated in the vicinity of automatically detected interest points are used as object image parameters. Next, ANNs are employed to identify the same objects captured...
-
Multiple sound sources localization in real time using acoustic vector sensor
PublicationMethod and preliminary results of multiple sound sources localization in real time using the acoustic vector sensor were presented in this study. Direction of arrival (DOA) for considered source was determined based on sound intensity method supported by Fourier analysis. Obtained spectrum components for considered signal allowed to determine the DOA value for the particular frequency independently. The accuracy of the developed...
-
Automatic Breath Analysis System Using Convolutional Neural Networks
PublicationDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is common for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected as...
-
Automatic Breath Analysis System Using Convolutional Neural Networks
PublicationDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is not uncommon for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected...
-
Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
PublicationPlain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...
-
INVESTIGATION OF THE LOMBARD EFFECT BASED ON A MACHINE LEARNING APPROACH
PublicationThe Lombard effect is an involuntary increase in the speaker’s pitch, intensity, and duration in the presence of noise. It makes it possible to communicate in noisy environments more effectively. This study aims to investigate an efficient method for detecting the Lombard effect in uttered speech. The influence of interfering noise, room type, and the gender of the person on the detection process is examined. First, acoustic parameters...
-
Application of Artificial Neural Networks to Predict Insulation Properties of Lightweight Concrete
PublicationPredicting the properties of concrete before its design and application process allows for refining and optimizing its composition. However, the properties of lightweight concrete are much harder to predict than those of normal weight concrete, especially if the forecast concerns the insulating properties of concrete with artificial lightweight aggregate (LWA). It is possible to use porous aggregates and precisely modify the composition...
-
Analyzing the Effectiveness of the Brain–Computer Interface for Task Discerning Based on Machine Learning
PublicationThe aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was...
-
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublicationAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...
-
Data augmentation for improving deep learning in image classification problem
PublicationThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...
-
Machine Learning Algorithm-Based Tool and Digital Framework for Substituting Daylight Simulations In Early- Stage Architectural Design Evaluation
PublicationThe aim of this paper is to examine the new method of obtaining the simulation-based results using backpropagation of errors artificial neural networks. The primary motivation to conduct the research was to determine an alternative, more efficient and less timeconsuming method which would serve to achieve the results of daylight simulations. Three daylight metrics: Daylight Factor, Daylight Autonomy and Daylight Glare Probability have...
-
A new multi-process collaborative architecture for time series classification
PublicationTime series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...