Filters
total: 415
filtered: 357
Search results for: CARBONIZED CHITOSAN, SUSTAINABLE ENERGY, NANOSTRUCTURES, ORR ACTIVITY, MICROPOROSITY
-
The possibilities for application of new comminution circuits in order to improve technological indexes of KGHM Polska Miedź S.A. copper ore concentrators = Możliwości zastosowania nowych układów rozdrabniania w aspekcie wskaźników technologicznych w warunkach O/ZWR
PublicationArtykuł opisuje zagadnienia związane z efektywnością procesu przygotowania urobku do wzbogacania. Przeanalizowano w nim aktualne układy rozdrabniające, oparte o kruszarki młotkowe i młyny prętowe, jak również warianty układów rozdrabniania z aplikacjami najnowszych rozwiązań techniczno – technologicznych tj. wysokociśnieniowej kruszarki walcowej oraz kruszarki stożkowej. Omawiane aspekty oparte są na badaniach prowadzonych...
-
Structural, physicochemical and anticancer study of Zn complexes with pyridyl-based thiazolyl-hydrazones
PublicationThiazolyl-hydrazones (THs) exhibit a wide spectrum of biological activity that can be enhanced by complexation with various metal ions. Zn(II) complexes with α-pyridine-1,3-TH ligands may represent an alternative to the standard platinum-based chemotherapeutics. In addition, they show photoluminescence properties and thus can be regarded as multifunctional materials. In this study, we synthesized and characterized three neutral...
-
Hybrid electrode materials for fast performance devices
PublicationEnergy storage devices such as Electrochemical Double Layer Capacitors and other types of the electrochemical capacitors require chemically stable, non-soluble, electrochemically active electrode materials compatible with appropriate electrolytes. Factors which determine their applicability are derived from so called electrochemical window of electroltes, nature of charge accumulation and their kinetics. On the other hand technological...
-
Understanding Fuel Saving and Clean Fuel Strategies Towards Green Maritime
PublicationDue to recent emission-associated regulations imposed on marine fuel, ship owners have been forced to seek alternate fuels, in order to meet the new limits. The aim of achieving low-carbon shipping by the year 2050, has meant that alternative marine fuels, as well as various technological and operational initiatives, need to be taken into account. This article evaluates and examines recent clean fuels and novel clean technologies...
-
Thermodynamic Cycle Concepts for High-Efficiency Power Plants. Part B: Prosumer and Distributed Power Industry
PublicationAn analysis was carried out for different thermodynamic cycles of power plants with air turbines. A new modification of a gas turbine cycle with the combustion chamber at the turbine outlet has been described in the paper. A special air by-pass system of the combustor was applied, and in this way, the efficiency of the turbine cycle was increased by a few points. The proposed cycle equipped with an effective heat exchanger could...
-
Social media and efficient computer infrastructure in smart city
PublicationSocial media require an efficient infrastructures of computer and communication systems to support a smart city. In a big city, there are several crucial dilemmas with a home and public space planning, a growing population, a global warming, carbon emissions, a lack of key resources like water and energy, and a traffic congestion. In a smart city, we expect an efficient and sustainable transportation, efficient management of resources...
-
Silver nanoparticles incorporated with superior silica nanoparticles-based rice straw to maximize biogas production from anaerobic digestion of landfill leachate
PublicationTreating hazardous landfill leachate poses significant environmental challenges due to its complex nature. In this study, we propose a novel approach for enhancing the anaerobic digestion of landfill leachate using silver nanoparticles (Ag NPs) conjugated with eco-friendly green silica nanoparticles (Si NPs). The synthesized Si NPs and Ag@Si NPs were characterized using various analytical techniques, including transmission electron...
-
Climate change impact on groundwater resources in sandbar aquifers in southern Baltic coast
PublicationShallow coastal aquifers are vulnerable hydrosystems controlled by many factors, related to climate, seawater‑freshwater interactions and human activity. Given on‑going climate change, sea level rise and increasing human impact, it is especially true for groundwater resources situated in sandbars. We developed numerical models of unsaturated zone water flow for two sandbars in northern Poland: the Vistula Spit and the Hel Spit...
-
Rapid development of the photoresponse and oxygen evolution of TiO2 nanotubes sputtered with Cr thin films realized via laser annealing
PublicationRecently, earth abundant transition metal oxides have gained particular attention as potential catalyst candidates due to their availability and low-cost comparing to substrates containing precious Pt or Au species. Herein, we present characterization of morphology, structure and electrochemical properties of pulsed 532 nm laser treated TiO2 nanotubes (NT) sputtered by the thin film of chromium. Scanning electron microscopy enables...
-
Cloning and characterization of a novel cold-active glycoside hydrolase family 1 enzyme with beta-glucosidase, beta-fucosidase and beta-galactosidase activities.
PublicationBackground: Cold-active enzymes, sourced from cold-adapted organisms, are characterized by high catalytic efficiencies at low temperatures compared with their mesophilic counterparts, which have poor activity. This property makes them advantageous for biotechnology applications as it: (i) saves energy costs, (ii) shortens the times for processes operated at low temperatures, (iii) protects thermosensitive substrates or products...
-
Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium–sulphur batteries
PublicationThe exploration of natural resources as sustainable precursors affords a family of green materials. Exploring highly abundant and available biowaste precursors remaining from food processing throughout a scalable and cost-effective material synthesis path is highly important especially for new materials discovery in emerging energy storage technologies such as lithium–sulphur (Li–S) batteries. Herein, we have produced a series...
-
Diamond-Phase (Sp3-C) Rich Boron-Doped Carbon Nanowalls (Sp2-C): A Physico-Chemical And Electrochemical Properties
PublicationThe growth of B-CNW with different boron doping levels controlled by the [B]/[C] ratio in plasma, and the influence of boron on the obtained material’s structure, surface morphology, electrical properties and electrochemical parameters, such as -ΔE and k°, were investigated. The fabricated boron-doped carbon nanowalls exhibit activity towards ferricyanide redox couple, reaching the peak separation value of only 85 mV. The flatband...
-
Transparent thin films of Cu-TiO2 with visible light photocatalytic acitivity
PublicationThin films of Cu–TiO2 with a high level of transparency were prepared by a dip-coating procedure on the glass surface. CuCl2 was used as a copper precursor added during sol – gel synthesis of TiO2. The extension of optical absorption into the visible region of as-prepared thin films was indicated by UV/Vis spectroscopy. Only the anatase phase was detected by X-ray di ffraction analysis (XRD). The presence of copper in the structure...
-
A dual-control strategy based on electrode material and electrolyte optimization to construct an asymmetric supercapacitor with high energy density
PublicationMetal-organic frames (MOFs) are regarded as excellent candidates for supercapacitors that have attracted much attention because of their diversity, adjustability and porosity. However, both poor structural stability in aqueous alkaline electrolytes and the low electrical conductivity of MOF materials constrain their practical implementation in supercapacitors. In this study, bimetallic CoNi-MOF were synthesized to enhance the electrical...
-
Voltammetric and biological studies of folate-targeted non-lamellar lipid mesophases
PublicationFolate-targeted lipid nanostructures are promising strategies for the development of biocompatible drug delivery systems. The objective of this study was to evaluate the efficacy of drug delivery to cancer cells by folate-targeted lipid mesophases, cubosomes (CUB) and hexosomes (HEX), loaded with doxorubicin (DOX). Three cancer-derived cell lines (KB, HeLa, T98G) exhibiting different expressional levels of folate receptor protein...
-
Thermally tuneable optical and electrochemical properties of Au-Cu nanomosaic formed over the host titanium dimples
PublicationAu-Cu nanostructures offer unique optical and catalytic properties unlike the monometallic ones resulting from the specific interaction. Among others, they have the ability to exhibit surface plasmon resonance, electrochemical activity towards the oxygen and hydrogen evolution reaction (OER, HER) as well as improved photoresponse in relation to monometalic but those properties depend highly on the substrate where bimetallic structures...
-
Advancing sustainable wastewater management: A comprehensive review of nutrient recovery products and their applications
PublicationWastewater serves as a vital resource for sustainable fertilizer production, particularly in the recovery of nitrogen (N) and phosphorus (P). This comprehensive study explores the recovery chain, from technology to final product reuse. Biomass growth is the most cost-effective method, valorizing up to 95 % of nutrients, although facing safety concerns. Various techniques enable the recovery of 100 % P and up to 99 % N, but challenges...
-
Cycling as a Sustainable Transport Alternative in Polish Cittaslow Towns
PublicationIt is well known that growing motor traffic in urban areas causes air pollution and noise which affects the environment and public health. It is hardly surprising then that cycling should be used as an alternative mode of transport, not just in major cities but also in smaller ones including those that are members of the Cittaslow network. Their approach is based on sustainable development, care for the environment and transport...
-
Sustainable utilization of copper post-flotation waste in cement composites
PublicationThe current way of managing the copper ore flotation waste is by placing it in waste neutralization facilities. However, flotation waste has great potential in application in cement composites. The article presents the detailed characteristics of post-flotation waste (PFW) and three types of cements: CEM I, CEM II/B-V, and CEM III/A, 42.5 MPa class. The post-flotation waste added for 20% of the cement mass increase the water demand...
-
Characterization and Filtration Efficiency of Sustainable PLA Fibers Obtained via a Hybrid 3D-Printed/Electrospinning Technique
PublicationThe enormous world demand for personal protective equipment to face the current SARS-CoV-2 epidemic has revealed two main weaknesses. On one hand, centralized production led to an initial shortage of respirators; on the other hand, the world demand for single-use equipment has had a direct and inevitable effect on the environment. Polylactide (PLA) is a biodegradable, biocompatible, and renewable thermoplastic polyester, mainly...
-
Surface and Trapping Energies as Predictors for the Photocatalytic Degradation of Aromatic Organic Pollutants
PublicationIn this study, anatase samples enclosed by the majority of three different crystal facets {0 0 1}, {1 0 0}, and {1 0 1} were successfully synthesized. These materials were further studied toward photocatalytic degradation of phenol and toluene as model organic pollutants in water and gas phases. The obtained results were analyzed concerning their surface structure, reaction type, and surface development. Moreover, the regression...
-
Locally sculptured modification of the electrochemical response of conductive poly(lactic acid) 3D prints by femtosecond laser processing
PublicationThis manuscript presents an approach to sculpture high electrochemical activity of the 3D printed electrodes with poly(lactic acid) (PLA) matrix and carbon black (CB) filler by femtosecond laser (FSL) ablation. CB-PLA utility for electrochemical applications depends on a surface modification aiming to remove the PLA and uncover the conductive CB. We have discussed how laser pulse energy is critical for such an activation process....
-
The Effect of C45 Carbon Black-Phosphomolybdic Acid Nanocomposite on Hydrogenation and Corrosion Resistance of La2Ni9Co Hydrogen Storage Alloy
PublicationIn this paper, we analysed the influence of corrosion processes and the addition of a carbon black-heteropoly phosphomolybdic acid (C45-MPA) nanocomposite on the operating parameters of a hydride electrode obtained on the basis of the intermetallic compound La2Ni9Co. The electrochemical properties of negative electrodes for NiMH batteries were studied using galvanostatic charge/discharge curves, the potentiostatic method, and electrochemical...
-
The Effect of Sterols on Amphotericin B Self-Aggregation in a Lipid Bilayer as Revealed by Free Energy Simulations
PublicationAmphotericin B (AmB) is an effective but toxic antifungal drug, known to increase the permeability of the cell membrane, presumably by assembling into transmembrane pores in a sterol-dependent manner. The aggregation of AmB molecules in a phospholipid bilayer is, thus, crucial for the drug’s activity. To provide an insight into the molecular nature of this process, here, we report an atomistic molecular dynamics simulation study...
-
Investigation of functional layers of solid oxide fuel cell anodes for synthetic biogas reforming
PublicationSolid oxide fuel cells (SOFCs) are one of the most promising energy conversion devices due to their high efficiency, low pollution and fuel flexibility. Unfortunately, when hydrocarbons are used as a fuel, for example in the form of a biogas, solid carbon can deposit on the anode surface. This process leads to the degradation of the fuel cell performance. A possible solution to this problem is to apply an additional catalytic material,...
-
Photoactivity of decahedral TiO2 loaded with bimetallic nanoparticles: Degradation pathway of phenol-1- 13 C and hydroxyl radical formation
PublicationDecahedral TiO2decorated with bimetallic nanoparticles were synthesized via radiolysis and photode-position method. The effect of bimetallic surface composition (Ag Pt, Ag Au, Au Pd, Au Pt) as well asdeposition technique (simultaneous or sequential) on the photocatalytic activity in phenol degradationand efficiency of hydroxyl radicals generation under UV–vis light irradiation were investigated. Modifiedand pristine decahedral...
-
Unusual dynamic properties of water near the ice-binding plane of hyperactive antifreeze protein
PublicationThe dynamical properties of solvation water of hyperactive antifreeze protein from Choristoneura fumiferana (CfAFP) are analyzed and discussed in context of its antifreeze activity. The protein comprises of three well-defined planes and one of them binds to the surface of ice. The dynamical properties of solvation water around each of these planes were analyzed separately; the results are compared with the dynamical properties...
-
Insight into Potassium Vanadates as Visible-Light-Driven Photocatalysts: Synthesis of V(IV)-Rich Nano/Microstructures for the Photodegradation of Methylene Blue
PublicationPhotocatalysis is regarded as a promising tool for wastewater remediation. In recent years, many studies have focused on investigating novel photocatalysts driven by visible light. In this study, K2V6O16·nH2O nanobelts and KV3O8 microplatelets were synthesized and investigated as photocatalysts. Samples were obtained via the facile method based on liquid-phase exfoliation with ion exchange. By changing the synthesis temperature...
-
Noble metal modified TiO2 microspheres: Surface properties and photocatalytic activity under UV-vis and visible light
PublicationComposite photocatalysts that consist of TiO2and noble metal nanostructures have been considered tobe the promising and pivotal material for accessible enhancement of the efficiency in the photocatalyticprocess carried out in the aqueous and gas phases. In this work we fabricated porous TiO2microspheresthrough a hydrothermal process followed by photochemical reduction of noble metal nanoparticles atthe TiO2surface. The morphology...
-
Preparation, characterization and photocatalytic activity of TiO2 microspheres decorated by bimetallic nanoparticles
PublicationComposite photocatalysts that consist of TiO2and noble metal nanostructures have been considered tobe the promising and pivotal material for accessible enhancement of the efficiency in the photocatalyticprocess carried out in the aqueous and gas phases. In this work we fabricated porous TiO2microspheresthrough a hydrothermal process followed by photochemical reduction of noble metal nanoparticles atthe TiO2surface. The morphology...
-
Tailoring Defects in B, N-Codoped Carbon Nanowalls for Direct Electrochemical Oxidation of Glyphosate and its Metabolites
PublicationTailoring the defects in graphene and its related carbon allotropes has great potential to exploit their enhanced electrochemical properties for energy applications, environmental remediation, and sensing. Vertical graphene, also known as carbon nanowalls (CNWs), exhibits a large surface area, enhanced charge transfer capability, and high defect density, making it suitable for a wide range of emerging applications. However, precise...
-
Nonlocal Models of Plates and Shells with Applications in Micro- and Nanomechanics
PublicationNowadays, the use of small-scale structures in micro/nanomachines has become more and more widespread. The most important applications of such small-sized parts are in micro-electro-mechanical systems (MEMS) as well as nano-electro-mechanical systems (NEMS) as actuators, sensors, energy harvesters. For example, nanosensors are nanoscale devices that measure physical quantities and convert these to signals that can be detected and...
-
End-Of-Life Management of Photovoltaic Solar Modules
PublicationThe PV industry continues to push its credentials as a technology that addresses one of the fundamental challenges of our times – climate change. There are however two major concerns about this technology: first, the potential negative environmental impacts of energy used in the production stage and second, the possible shortage of the valuable materials in the future. The currently dominant semiconductor used in photovoltaic modules...
-
Monometallic nanoparticles decorated and rare earth ions doped KTaO3/K2Ta2O6 photocatalysts with enhanced pollutant decomposition and improved H2 generation
PublicationNew, monometallic nanoparticles (MNPs) decorated surface and rare earth (RE) ions doped lattice of perovskite-type (KTaO3)/pyrochlore-type (K2Ta2O6) photocatalysts were successfully prepared by facile hydrothermal incorporation of RE ions into KTaO3/K2Ta2O6 lattices followed by photodeposition of MNPs. The impact of noble metal type (MNPs = Au, Pt, Rh) and rare earth dopant type (RE = Er, Pr) on the physicochemical properties correlated...
-
M-BDC (M = Co and/ or Fe) MOFs as effective catalysts for hydrogen generation via hydrolysis of sodium borohydride
PublicationMono- (Co-BDC, Fe-BDC) and bimetallic FeCo-BDC Metal-Organic Frameworks are successfully synthesized by the solvothermal method in DMF at 150 °C within 15 h and tested as catalysts for sodium borohydride hydrolysis. The materials are characterized by FTIR, PXRD, TGA, ICP-OES, H2-TPR, BET model, and SEM-EDS. The catalytic activity of these materials is studied for dehydrogenation of sodium borohydride in water at various temperatures...
-
Photoinduced K+ Intercalation into MoO3/FTO Photoanode—the Impact on the Photoelectrochemical Performance
PublicationIn this work, thin layers of MoO3 were tested as potential photoanodes for water splitting. The influence of photointercalation of alkali metal cation (K+) into the MoO3 structure on the photoelectrochemical properties of the molybdenum trioxide films was investigated for the first time. MoO3 thin films were synthesized via thermal annealing of thin, metallic Mo films deposited onto the FTO substrate using a magnetron sputtering...
-
Photocatalytic degradation and pollutant-oriented structure-activity analysis of carbamazepine, ibuprofen and acetaminophen over faceted TiO2
PublicationPhotocatalytic degradation of carbamazepine, ibuprofen, acetaminophen and phenol was studied in the presence of anatase photocatalyst, exposing three different crystal facets in the majority of {0 0 1}, {1 0 0} or {1 0 1}. It was found that octahedral anatase particles exposing {1 0 1} facets allow to achieve the best degradation and mineralization of all persistent organic pollutants. This confirms that the previous findings,...
-
Practical Approach to Large-Scale Electronic Structure Calculations in Electrolyte Solutions via Continuum-Embedded Linear-Scaling Density Functional Theory
PublicationWe present the implementation of a hybrid continuum-atomistic model for including the effects of a surrounding electrolyte in large-scale density functional theory (DFT) calculations within the Order-N Electronic Total Energy Package (ONETEP) linear-scaling DFT code, which allows the simulation of large complex systems such as electrochemical interfaces. The model represents the electrolyte ions as a scalar field and the solvent...
-
Re-use of historic wooden verandas in Sopot, Poland
PublicationSopot is the best-known seaside resort in Poland. The city is unique with regard not only to its location and natural values, but also its interesting architecture, which dates back to the end of the 19th and the beginning of the 20th century. Wooden verandas are one of the characteristic features of Sopot architecture. Their origin is associated with the Swiss style, which was fashionable at the turn of the 20th century and quite...
-
Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum)
PublicationThis study aims to extract cellulose nanofibers (CNFs) from a sustainable source, i.e. millet husk, which is an agro-waste worthy of consideration. Pre-treatments such as mercerisation, steam explosion, and peroxide bleaching (chlorine-free) were applied for the removal of non-cellulosic components. The bleached millet husk pulp was subjected to acid hydrolysis (5% oxalic acid) followed by homogenization to extract CNFs. The extracted...
-
A comparative study of pentanol (C5 alcohol) and kerosene blends in terms of gas turbine engine performance and exhaust gas emission
PublicationThe growing demand for sustainable and clean energy sources provides the incentive for the development of alternative fuels. Simultaneously, the development of gas turbine technologies with flexible fuel supply systems enables the use of alternative non-fossil fuels that can play key roles in contributing to global efforts in meeting emissions targets. This paper presents the current state of knowledge on the production and potential...
-
A Review on Metal–Organic Framework as a Promising Catalyst for Biodiesel Production ENERGY & FUELS
PublicationThe rapid depletion of fossil-derived fuels along with rising environmental pollution have motivated academics and manufacturers to pursue more environmentally friendly and sustainable energy options in today’s globe. Biodiesel has developed as an ecologically favorable alternative. However, the mass manufacturing of biodiesel on an industrial scale confronts substantial cost and pricing challenges. To address this issue, high-efficiency...
-
KNOWING WHEN TO SAY NO / SAPERE QUANDO DIRE NO
PublicationEver since we began illuminating the exterior of the slender skyscrapers built during the of 20s and 30s in XX century, urban lighting has been considered a way to beautify cities, and make them more visually prominent and safe. At that time, we knew so little about the impact of lighting on humans, flora and fauna, so it never occurred to lighting designers then, that their actions would have harmful consequences. In those days,...
-
Issues relating to the efficient Application of passive solar protection in multi-family residential buildings
PublicationThe following article is intended to discuss the issues concerning the introduction of passive measures aimed at improving solar protection in multi-family buildings. A system of classifying these methods into two groups of solutions (architectural and material-building) was applied. The first group includes issues concerning facade design, the spatial features of which (such as loggias, balconies and other overhangs) can be treated...
-
An experimental assessment on a diesel engine powered by blends of waste-plastic-derived pyrolysis oil with diesel
PublicationThe utilization of plastic solid wastes for sustainable energy production is a crucial aspect of the circular economy. This study focuses on pyrolysis as an effective method to convert this feedstock into renewable drop-in fuel. To achieve this, it is essential to have a comprehensive understanding of feedstock composition, pyrolysis process parameters, and the physicochemical characteristics of the resulting fuel, all correlated...
-
Aluminum-TiO2 NPs Composites as Non-precious Catalysts for Efficient Electrochemical Generation of Hydrogen
PublicationIn this paper, we demonstrated, for the first time, aluminum titania nanoparticle (Al-TiO2 NP) composites with variable amounts of TiO2 NPs as nonprecious active catalysts for the electrochemical generation of H2. These materials were synthesized by mixing desired amounts of hydrogen titanate nanotubes (TNTs), fabricated here by a cost-effective approach at moderate hydrothermal conditions, with aluminum powder (purity 99.7%; size...
-
Thermally activated natural chalcopyrite for Fenton-like degradation of Rhodamine B: Catalyst characterization, performance evaluation, and catalytic mechanism
PublicationIn this work, catalytic activity of natural chalcopyrite (CuFeS2) was improved by thermal activation. The modified chalcopyrite was used as efficient catalyst for degradation of organic dye Rhodamine B (RhB) through advanced oxidation process (AOP). Effects of catalyst dosage, H2O2 concentration, reaction temperature, solution pH, anions, and natural organic matter on the degradation efficiency of RhB were investigated. This study...
-
Industrial Heritage in sacrifice zones, The potential of Bocamina I & II Thermoelectric in Coronel, Chile
PublicationThis work aims to present the recovery potential of the Chilean Sacrifice Zones, urban areas affected by high amounts of pollution caused by industrial activities. It centers in the case of “Bocamina I & II”, two Thermoelectric based in the city of Coronel, southern Chile. A settlement historically related to the mining processes. These plants operated for decades supplying the national energy...
-
Investigating BiMeVOx compounds as potential photoelectrochemical and electrochemical materials for renewable hydrogen production
PublicationIn this study, BiMeVOx compounds (where Me: Co, Mo, Ce, Zr) were synthesized and characterized as potential photoelectrochemical materials for solar water splitting, the hydrogen evolution reaction (HER), and oxygen evolution reaction (OER). The analysis confirmed the successful formation of phase BiMeVOx compounds with the desired crystal structure. Among the tested materials, BiCoVOx(800) showed the highest photocurrent density...
-
Synthesis of 5-Substituted 1H-Tetrazoles from Nitriles in the Presence of Heterogeneous Catalyst
PublicationTetrazoles are five-membered heterocyclic compounds containing in their rings four nitrogen atoms. They have wide applications as corrosion inhibitors, analytical reagents, high-energy materials and gas generating compositions. Tetrazoles also play important role in coordination chemistry as ligands and in medicinal chemistry as metabolically stable surrogates for carboxylic acids. In recent years, investigation of new method of...