Filters
total: 1297
displaying 1000 best results Help
Search results for: :LEARNING
-
The CDIO model in architectural education and research by design
PublicationArchitectural education has always been related to experimentation: that is, defining concepts, drawing sketches, working on models, then testing and modifying them. This activity mirrors the CDIO learning methods and objectives. Despite this, research studies into the applicability of the CDIO model in architectural curricula are scarce. In the discipline of architecture, hands-on experiences are associated not only with one of...
-
Methodology for hospital design in architectural education
PublicationThe architecture of a hospital should be a response to strong user requirements. Recommendations on how to shape the environment of such facilities are highly complex, integrating guidelines from many fields of science. If contradictions between them exist, the designer is required to set priorities for spatial activities. This issue is particularly important during architectural education. The learning process should include projects...
-
Leveraging spatio-temporal features for joint deblurring and segmentation of instruments in dental video microscopy
PublicationIn dentistry, microscopes have become indispensable optical devices for high-quality treatment and micro-invasive surgery, especially in the field of endodontics. Recent machine vision advances enable more advanced, real-time applications including but not limited to dental video deblurring and workflow analysis through relevant metadata obtained by instrument motion trajectories. To this end, the proposed work addresses dental...
-
Sensors and Sensor’s Fusion in Autonomous Vehicles
PublicationAutonomous vehicle navigation has been at the center of several major developments, both in civilian and defense applications. New technologies such as multisensory data fusion, big data processing, and deep learning are changing the quality of areas of applications, improving the sensors and systems used. New ideas such as 3D radar, 3D sonar, LiDAR, and others are based on autonomous vehicle revolutionary development. The Special...
-
Bayesian Optimization for solving high-frequency passive component design problems
PublicationIn this paper, the performance of the Bayesian Optimization (BO) technique applied to various problems of microwave engineering is studied. Bayesian optimization is a novel, non-deterministic, global optimization scheme that uses machine learning to solve complex optimization problems. However, each new optimization scheme needs to be evaluated to find its best application niche, as there is no universal technique that suits all...
-
Student model representation for pedagogical virtual mentors
PublicationThe paper concerns technological aspects of virtual mentors construction, especially concentrating on the student model representation. The article distinguishes several types of information that is gathered by the pedagogical agents and other educational platforms, including student knowledge model, student progress tracking, interaction process patterns and learner preferences. A set of technologies used for the student model...
-
Method for Clustering of Brain Activity Data Derived from EEG Signals
PublicationA method for assessing separability of EEG signals associated with three classes of brain activity is proposed. The EEG signals are acquired from 23 subjects, gathered from a headset consisting of 14 electrodes. Data are processed by applying Discrete Wavelet Transform (DWT) for the signal analysis and an autoencoder neural network for the brain activity separation. Processing involves 74 wavelets from 3 DWT families: Coiflets,...
-
Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model
PublicationThis work attempts to meet the challenges associated with the classification of LIDAR point clouds by means of deep learning. In addition to achieving high accuracy, the designed system should allow the classification of point clouds covering an area of several dozen square kilometers within a reasonable time interval. Therefore, it must be characterized by fast processing and efficient use of memory. Thus, the most popular approaches...
-
Dynamic Bankruptcy Prediction Models for European Enterprises
PublicationThis manuscript is devoted to the issue of forecasting corporate bankruptcy. Determining a firm’s bankruptcy risk is one of the most interesting topics for investors and decision-makers. The aim of the paper is to develop and to evaluate dynamic bankruptcy prediction models for European enterprises. To conduct this objective, four forecasting models are developed with the use of four different methods—fuzzy sets, recurrent and...
-
E-experiments in physics. Proper business process management, collaborative development process and project management guidance – remedy for avoiding the main IT project’s failure
PublicationOnly a few of learning aids and simulations of physical phenomena allow for building interactive experiments; experiments similar to those that should be conducted in physics laboratories at schools. Group of staff from Gdansk University of Technology decided to fill this market niche by designing and constructing a set of virtual experiments – so called e-experiments. To avoid common problems that a lot of IT products brought...
-
Applying Decisional DNA to Internet of Things: The Concept and Initial Case Study
PublicationIn this article, we present a novel approach utilizing Decisional DNA to help the Internet of Things capture decisional events and reuse them for decision making in future operations. The Decisional DNA is a domain-independent, standard and flexible knowledge representation structure that allows its domains to acquire, store, and share experiential knowledge and formal decision events in an explicit way. We apply this approach...
-
Computing methods for fast and precise body surface area estimation of selected body parts
PublicationCurrently used body surface area (BSA) formulas give satisfactory results only for individuals with typical physique, while for elderly, obese or anorectic people accurate results cannot be expected. Particularly noteworthy are the results for individuals with severe obesity (body-mass index greater than 35 kg/m2), for which BSA estimation errors reached 80%. The main goal of our study is the development of precise BSA models for...
-
Internet w procesie kształcenia studentów
PublicationWirtualna rzeczywistość sieci komputerowych staje się coraz bardziej obecna w naszym życiu. Internet odgrywa rosnącą rolę w edukacji, rekrutacji, handlu, sprawowaniu władzy oraz rozrywce. Dlatego też zastanowić się trzeba, na jakie problemy napotykają wykładowcy przy tworzeniu materiałów dostępnych przez Internet oraz studenci w związku z wykorzystaniem nowoczesnych technologii do pozyskiwania informacji i wiedzy....
-
TeleCAD w kształceniu studentów Wydziału Inżynierii Lądowej Politechniki Gdańskiej
PublicationPrzedstawiono system TeleCAD opracowany w ramach projektu Leonardo da Vinci - Teleworkers Training for CAD Systems Users (1998-2001). Głównym celem projektu było stworzenie środowiska obsługi kursów programu AutoCAD bazującego na Internecie jako medium do komunikacji między uczestnikami oraz do dostarczania materiałów kursowych. W artykule zaprezentowano również system służący do oceny jakości szkoleń na odległość. Szkolenie TeleCAD...
-
Good practices in requirements, project and risk managment in educational IT projects
PublicationOne can find many learning aids and simulations of physical phenomena on the market - provided as a standalone application or as part of an educational package. However, only a few of them allow for the building of interactive experiments: experiments similar to those that should be conducted in physics laboratories at schools. Gdańsk University of Technology decided to fill this market niche by designing and constructing a set...
-
Mispronunciation Detection in Non-Native (L2) English with Uncertainty Modeling
PublicationA common approach to the automatic detection of mispronunciation in language learning is to recognize the phonemes produced by a student and compare it to the expected pronunciation of a native speaker. This approach makes two simplifying assumptions: a) phonemes can be recognized from speech with high accuracy, b) there is a single correct way for a sentence to be pronounced. These assumptions do not always hold, which can result...
-
Neural network model of ship magnetic signature for different measurement depths
PublicationThis paper presents the development of a model of a corvette-type ship’s magnetic signature using an artificial neural network (ANN). The capabilities of ANNs to learn complex relationships between the vessel’s characteristics and the magnetic field at different depths are proposed as an alternative to a multi-dipole model. A training dataset, consisting of signatures prepared in finite element method (FEM) environment Simulia...
-
Analysis of Factors Influencing the Prices of Tourist Offers
PublicationTourism is a significant branch of many world economies. Many factors influence the volume of tourist traffic and the prices of trips. There are factors that clearly affect tourism, such as COVID-19. The paper describes the methods of machine learning and process mining that allow for assessing the impact of various factors (micro, mezzo and macro) on the prices of tourist offers. The methods were used on large sets of real data...
-
The evolution of education spaces - from plan as generator to regenerative architecture, virtual rooms and green campuses
PublicationThe study programmes are often considered the main formative factors in the process of educating future architects. Another highly influential component is the architectural characteristics of learning spaces, and consequently the impact of the physical built environment on the quality of education has been widely discussed. However, not often do we realise that the characteristics of education spaces correlate with the organisational...
-
Classification of Sea Going Vessels Properties Using SAR Satellite Images
PublicationThe aim of the project was to analyze the possibility of using machine learning and computer vision to identify (indicate the location) of all sea-going vessels located in the selected area of the open sea and to classify the main attributes of the vessel. The key elements of the project were to download data from the Sentinel-1 satellite [1], download data on the sea vessels [2], then automatically tag data and develop a detection...
-
Klasyfikator SVM w zastosowaniu do synchronizacji sygnału OFDM zniekształconego przez kanał wielodrogowy
PublicationW pracy przedstawiono analizę przydatności klasyfikatora SVM bazującego na uczeniu maszynowym do estymacji przesunięcia czasowego odebranego symbolu OFDM. Przedstawione wyniki wykazują, że ten klasyfikator potrafi zapewnić synchronizację dla różnych kanałów wielodrogowych o wysokim poziomie szumu. Eksperymenty przeprowadzone w Matlabie z użyciem modeli modulatora i demodulatora wykazały, że w większości przypadków klasyfikator...
-
Międzynarodowa Szkoła Letnia na temat algorytmów
EventsKatedra Algorytmów i Modelowania Systemów WETI PG organizuje 4. edycję Międzynarodowej Szkoły Letniej na temat algorytmów dla problemów optymalizacji dyskretnej i głębokiego uczenia
-
Efkleidis Katsaros
PeopleEfklidis Katsaros received the B.Sc. degree in mathematics from the Aristotle University of Thessaloniki, Greece, in 2016, and the M.Sc. degree (cum laude) in data science: statistical science from Leiden University, The Netherlands, in 2019. He is currently pursuing the Ph.D. degree in deep video multi-task learning with the Department of Biomedical Engineering, Gdańsk University of Technology, Poland. Since 2020, he has been...
-
Brygida Mielewska dr
PeopleBorn on 1 December 1972 in Gdynia. Education and professional experience:June 1997 MSc in Physics, Gdańsk University, Faculty of Mathematics and Physics; October 1997 – August 2003 – Assistant at Gdańsk University of Technology (GUT), Faculty of Applied Physics nad Technical Mathematics, Department of Physics of Electronic Phenomena;June 2003 – PhD in Physics, thesis advisor prof. dr hab. Mariusz Zubek; September 2003- January...
-
METHODS OF TEACHING NOISE PROTECTION AT ENVIRONMENTAL ENGINEERING
PublicationNoise strongly influences both our health and behavior in everyday life and as employees or employers. The lost of hearing and other effects of noise on humans result not only in a significant decrease in the quality of life or work efficiency but have also have economic consequences. As noise can be preventable in part by the Environmental Engineers, but it is necessary to introduce them noise issues during their education process....
-
Implementing artificial intelligence in forecasting the risk of personal bankruptcies in Poland and Taiwan
PublicationResearch background: The global financial crisis from 2007 to 2012, the COVID-19 pandemic, and the current war in Ukraine have dramatically increased the risk of consumer bankruptcies worldwide. All three crises negatively impact the financial situation of households due to increased interest rates, inflation rates, volatile exchange rates, and other significant macroeconomic factors. Financial difficulties may arise when the...
-
Abdalraheem Ijjeh Ph.D. Eng.
PeopleThe primary research areas of interest are artificial intelligence (AI), machine learning, deep learning, and computer vision, as well as modeling physical phenomena (i.e., guided waves in composite laminates). The research interests described above are utilized for SHM and NDE applications, namely damage detection and localization in composite materials.
-
Qualia: About Personal Emotions Representing Temporal Form of Impressions - Implementation Hypothesis and Application Example
PublicationThe aim of this article is to present the new extension of the xEmotion system as a computerized emotional system, part of an Intelligent System of Decision making (ISD) that combines the theories of affective psychology and philosophy of mind. At the same time, the authors try to find a practical impulse or evidence for a general reflection on the treatment of emotions as transitional states, which at some point may lead to the...
-
Monitoring the BTEX Volatiles during 3D Printing with Acrylonitrile Butadiene Styrene (ABS) Using Electronic Nose and Proton Transfer Reaction Mass Spectrometry
PublicationWe describe a concept study in which the changes of concentration of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and styrene within a 3D printer enclosure during printing with different acrylonitrile butadiene styrene (ABS) filaments were monitored in real-time using a proton transfer reaction mass spectrometer and an electronic nose. The quantitative data on the concentration of the BTEX compounds, in particular...
-
Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks
PublicationDeep Neural Networks (DNN) are state of the art algorithms for image classification. Although significant achievements and perspectives, deep neural networks and accompanying learning algorithms have some important challenges to tackle. However, it appears that it is relatively easy to attack and fool with well-designed input samples called adversarial examples. Adversarial perturba-tions are unnoticeable for humans. Such attacks...
-
IFE: NN-aided Instantaneous Pitch Estimation
PublicationPitch estimation is still an open issue in contemporary signal processing research. Nowadays, growing momentum of machine learning techniques application in the data-driven society allows for tackling this problem from a new perspective. This work leverages such an opportunity to propose a refined Instantaneous Frequency and power based pitch Estimator method called IFE. It incorporates deep neural network based pitch estimation...
-
Keystroke Dynamics Patterns While Writing Positive and Negative Opinions
PublicationThis paper deals with analysis of behavioural patterns in human–computer interaction. In the study, keystroke dynamics were analysed while participants were writing positive and negative opinions. A semi-experiment with 50 participants was performed. The participants were asked to recall the most negative and positive learning experiences (subject and teacher) and write an opinion about it. Keystroke dynamics were captured and...
-
Listening to Live Music: Life beyond Music Recommendation Systems
PublicationThis paper presents first a short review on music recommendation systems based on social collaborative filtering. A dictionary of terms related to music recommendation systems, such as music information retrieval (MIR), Query-by-Example (QBE), Query-by-Category (QBC), music content, music annotating, music tagging, bridging the semantic gap in music domain, etc. is introduced. Bases of music recommender systems are shortly presented,...
-
Method of selecting the LS-SVM algorithm parameters in gas detection process
PublicationIn this paper we showed the method of resistive gas sensors data processing. The UV irradiation and temperature modulation was applied to improve gas sensors’ selectivity and sensitivity. Noise voltage across the sensor’s terminals (proportional to its resistance fluctuations) was recorded to estimate power spectral density. This function was an input data vector for LS-SVM (least squares – support vector machine) algorithm, which...
-
Comparing the Effectiveness of ANNs and SVMs in Forecasting the Impact of Traffic-Induced Vibrations on Building
PublicationTraffic - induced vibrations may cause damage to structural elements and may even lead to structural collapse. The aim of the article is to compare the effectiveness of algorithms in forecasting the impact of vibrations on buildings using the Machine Learning (ML) methods. The paper presents two alternative approaches by using Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). Factors that may affect traffic-induced...
-
INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY
PublicationIn recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...
-
Universities as Part of the Urban Transport System—Analysis Using the Example of the Gdansk University of Technology and Medical University of Gdansk
PublicationMany cities perceive academic function as a distinctive feature, representing the rank and prestige of the city. Universities provide places for work and learning for a high number of people and represent a significant proportion compared to the total city population (even 22%). Many of Polish universities are located in the urban structure in the form of spatially concentrated campuses, where the number of people working and studying...
-
Is This Distance Teaching Planning That Bad?
PublicationIn spring 2020, university courses were moved into the virtual space due to the Covid-19 lockdown. In this paper, we use experience from courses at Gdańsk University of Technology and ETH Zurich to identify core problems in distance teaching planning and to discuss what to do and what not to do in teaching planning after the pandemic. We conclude that we will not return to the state of (teaching) affairs that we had previously....
-
A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification
PublicationThe article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with...
-
Detection of Lexical Stress Errors in Non-Native (L2) English with Data Augmentation and Attention
PublicationThis paper describes two novel complementary techniques that improve the detection of lexical stress errors in non-native (L2) English speech: attention-based feature extraction and data augmentation based on Neural Text-To-Speech (TTS). In a classical approach, audio features are usually extracted from fixed regions of speech such as the syllable nucleus. We propose an attention-based deep learning model that automatically de...
-
Exploring Cause-and-Effect Relationships Between Public Company Press Releases and Their Stock Prices
PublicationThe aim of the work is to design and implement a method of exploring the cause-and-effect relationships between company announcements and the stock prices on NASDAQ stock exchange, followed by a brief discussion. For this purpose, it was necessary to download the stock quotes of selected companies from the NASDAQ market from public web sources. Additionally, media messages related to selected companies had to be downloaded, and...
-
Technique for reducing erosion in large-scale circulating fluidized bed units
PublicationThis paper presents a methodology, implemented for a real industrial-scale circulating fluidized bed boiler, to mitigate the risk of heating surfaces exposed to an intensive particle erosion process. For this purpose, a machine learning algorithm was developed to support the boiler reliability management process. Having a tool that can help mitigate the risk of uncontrolled power unit failure without expensive and technically complex...
-
Newcomers@Work Newcomers@Work: Strengthening the Employability of Young Refugee and Migrant NEETs
ProjectsProject realized in Department of Entrepreneurship and Business Law according to 2022-1-PL01-KA220-YOU-000089667 agreement
-
Experimental and Theoretical Insights into the Intermolecular Interactions in Saturated Systems of Dapsone in Conventional and Deep Eutectic Solvents
PublicationSolubility is not only a crucial physicochemical property for laboratory practice but also provides valuable insight into the mechanism of saturated system organization, as a measure of the interplay between various intermolecular interactions. The importance of these data cannot be overstated, particularly when dealing with active pharmaceutical ingredients (APIs), such as dapsone. It is a commonly used anti-inflammatory and...
-
Multiclass AdaBoost Classifier Parameter Adaptation for Pattern Recognition
PublicationThe article presents the problem of parameter value selection of the multiclass ``one against all'' approach of an AdaBoost algorithm in tasks of object recognition based on two-dimensional graphical images. AdaBoost classifier with Haar features is still used in mobile devices due to the processing speed in contrast to other methods like deep learning or SVM but its main drawback is the need to assembly the results of binary...
-
Weighted Clustering for Bees Detection on Video Images
PublicationThis work describes a bee detection system to monitor bee colony conditions. The detection process on video images has been divided into 3 stages: determining the regions of interest (ROI) for a given frame, scanning the frame in ROI areas using the DNN-CNN classifier, in order to obtain a confidence of bee occurrence in each window in any position and any scale, and form one detection window from a cloud of windows provided by...
-
NbIr 2 B 2 and TaIr 2 B 2 – New Low Symmetry Noncentrosymmetric Superconductors with Strong Spin–Orbit Coupling
PublicationSuperconductivity was first observed more than a century ago, but the search for new superconducting materials remains a challenge. The Cooper pairs in superconductors are ideal embodiments of quantum entanglement. Thus, novel superconductors can be critical for both learning about electronic systems in condensed matter and for possible application in future quantum technologies. Here two previously unreported materials, NbIr2B2...
-
Data Acquisition and Processing for GeoAI Models to Support Sustainable Agricultural Practices
PublicationThere are growing opportunities to leverage new technologies and data sources to address global problems related to sustainability, climate change, and biodiversity loss. The emerging discipline of GeoAI resulting from the convergence of AI and Geospatial science (Geo-AI) is enabling the possibility to harness the increasingly available open Earth Observation data collected from different constellations of satellites and sensors...
-
Exploring perceptions of pro environmental educational mobile applications based on semantic field analysis
PublicationThe paper aims to identify multidimensional perceptions of mobile apps by their users. Special attention has been paid to pro-environmental educational apps. Semantic field analysis and measurement of emotional temperatures were performed to achieve this goal. Transcripts from seven focus group interviews were used as research material. The results indicate that functionality based on a reward or benefit system reinforces environmentally...
-
A Triplet-Learnt Coarse-to-Fine Reranking for Vehicle Re-identification
PublicationVehicle re-identification refers to the task of matching the same query vehicle across non-overlapping cameras and diverse viewpoints. Research interest on the field emerged with intelligent transportation systems and the necessity for public security maintenance. Compared to person, vehicle re-identification is more intricate, facing the challenges of lower intra-class and higher inter-class similarities. Motivated by deep...