Filters
total: 398
Search results for: DEPOSITION TECHNIQUES
-
Opto-Electrochemical Sensing Device Based on Long-Period Grating Coated with Boron-Doped Diamond Thin Film
PublicationThe fabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrodes on fused silica single mode optical fiber cladding has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ºC. We have obtained homogenous, continuous and polycrystalline surface morphology with high sp3 content in B-NCD...
-
Release of selected chemical elements from shale drill cuttings to aqueous solutions of different pH
PublicationThe effect of pH changes on leachability of light and heavy metals from shale drill cuttings generated from unconventional shale gas production was investigated. Cuttings, being the primary byproduct generated from drilling operations, belong to the potentially hazardous type of wastes due to presence of heavy and radioactive elements and remains of drilling fluid. In this regard, assessment of potentially dangerous components...
-
Diamond-based protective layer for optical biosensors
PublicationOptical biosensors have become a powerful alternative to the conventional ways of measurement owing to their great properties, such as high sensitivity, high dynamic range, cost effectiveness and small size. Choice of an optical biosensor's materials is an important factor and impacts the quality of the obtained spectra. Examined biological objects are placed on a cover layer which may react with samples in a chemical, biological...
-
Enhanced Charge Storage Mechanism And Long-Term Cycling Stability In Diamondized Titania Nanocomposite Supercapacitors Operating In Aqueous Electrolytes
PublicationThe long cycle life stability jointly with high energy density are limiting broader feasible applications of supercapacitors. The novel diamondized titania nanocomposite supercapacitors deliver high power and energy densities along with high capacitance retention rates. Supercapacitor electrodes were fabricated utilizing a combination of Ti anodization followed by chemical vapor deposition resulting in simultaneous growth of complex...
-
Characterization of diatomaceous earth coated with nitrated asphaltenes as superior adsorbent for removal of VOCs from gas phase in fixed bed column
PublicationAsphaltenes isolated from bitumen possess unusual adsorption characteristics that can be further enhanced by chemical modifications to promote interactions with VOCs’. Herein, nitrated asphaltenes are used as an active layer coated on a surface of a diatomaceous earth, in order to prepare an efficient adsorbent (AsfNitro). Breakthrough experiments with benzene, pyridine, and 1-nitropropane revealed significant increase in adsorption...
-
Physicochemical and Mechanical Performance of Freestanding Boron-Doped Diamond Nanosheets Coated with C:H:N:O Plasma Polymer
PublicationThe physicochemical and mechanical properties of thin and freestanding heavy boron-doped diamond (BDD) nanosheets coated with a thin C:H:N:O plasma polymer were studied. First, diamond nanosheets were grown and doped with boron on a Ta substrate using the microwave plasma-enhanced chemical vapor deposition technique (MPECVD). Next, the BDD/Ta samples were covered with nylon 6.6 to improve their stability in harsh environments and...
-
Effect of small quantities of potassium promoter and steam on the catalytic properties of nickel catalysts in dry/combined methane reforming
PublicationCarbon dioxide and methane are two of the principal greenhouse gases. Reduction of their content in the atmosphere is currently the subject of much worldwide research. Dry and combined reforming of methane are effective methods of CO2 and CH4 utilization and production of synthesis gas (syngas) in chemical technology. Testing of catalysts that provide the desired H2/CO ratio and long operation time is one of the critical aspects...
-
Mathematical approach to design 3D scaffolds for the 3D printable bone implant
PublicationThis work demonstrates that an artificial scaffold structure can be designed to exhibit mechanical properties close to the ones of real bone tissue, thus highly reducing the stress-shielding phenomenon. In this study the scan of lumbar vertebra fragment was reproduced to create a numerical 3D model (this model was called the reference bone sample). New nine 3D scaffold samples were designed and their numerical models were created....
-
Enhanced photocatalytic activity of accordion-like layered Ti3C2 (MXene) coupled with Fe-modified decahedral anatase particles exposing {1 0 1} and {0 0 1} facets
PublicationNew composites consisting of decahedral anatase particles exposing {001} and {101} facets coupled with accordion-like layered Ti3C2 with boosted photocatalytic activity towards phenol and carbamazepine degradation were investigated. The photocatalysts were characterized with X-ray diffraction (XRD), diffuse reflectance spectroscopy (DR/UV–Vis), Brunauer-Emmett-Teller (BET) specific surface area, Raman spectroscopy, scanning electron...
-
Real-time monitoring of volatiles and particles emitted from thermoplastic filaments during 3D printing
PublicationThe proliferation of consumer-grade three-dimensional (3D) printers using fused deposition, also known as fused filament fabrication, has given rise to concerns over the exposure of users to potentially harmful substances. Thermoplastic filaments made of different polymers are extruded through a heated printer nozzle and deposited layer by layer on a build platform to form the printed object. This process leads to the emission...
-
Organic carbon fluxes of a glacier surface: a case study of Foxfonna, a small Arctic glacier
PublicationArctic glaciers are rapidly responding to global warming by releasing organic carbon (OC) to downstream ecosystems. The glacier surface is arguably the most biologically active and biodiverse glacial habitat and therefore the site of important OC transformation and storage, although rates and magnitudes are poorly constrained. In this paper, we present measurements of OC fluxes associated with atmospheric deposition, ice melt,...
-
Fabrication methods of smart composite coatings - review
PublicationPostoperative bacterial infections are one of the main reasons for unsuccessful implantation of long-term implants. The development of bacterial infection requires antibiotic therapy, in extreme cases a reimplantation procedure is necessary. In order to provide materials for implants with antibacterial properties, they are subjected to modifications to create a coating that will release the drug substance, when the inflammation...
-
3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: A new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation
PublicationCobalt-based catalysts with high stability and facile recovery for heterogeneous peroxymonosulfate (PMS) activation are still rather sparse and therefore highly desirable. Herein, 3D mesoporous α-Co(OH)2 nanosheets was created on robust nickel foam (NF) via facile electrodeposition approach at 6 mA/cm2 for only 400 s. Almost complete removal of phenol can be achieved within 7 min with a degradation rate of 0.39 min−1, 2 times higher...
-
Studies on Silver Ions Releasing Processes and Mechanical Properties of Surface-Modified Titanium Alloy Implants
PublicationDispersed silver nanoparticles (AgNPs) on the surface of titanium alloy (Ti6Al4V) and titanium alloy modified by titania nanotube layer (Ti6Al4V/TNT) substrates were produced by the chemical vapor deposition method (CVD) using a novel precursor of the formula [Ag5(O2CC2F5)5(H2O)3]. The structure and volatile properties of this compound were determined using single crystal X-ray diffractometry, variable temperature IR spectrophotometry...
-
Tailoring the optical parameters of optical fiber interferometer with dedicated boron-doped nanocrystalline diamond thin film
PublicationOptical fiber interferometer using nanocrystalline boron-doped diamond film was investigated. The diamond films were deposited on glass plates using a Microwave Plasma-Enhanced Chemical Vapour Deposition (μPE CVD) sys-tem. The growth time was 3h, with boron doping level of 10 000 ppm producing films (B-NCD-10) of thickness ~ 200 nm. The presence of boron atoms in the diamond film is evident in Raman spectrum as peaks at 1212 cm-1...
-
Catalytic activity of Ni-MgAl2O4 modified with transition metal (Ti, Mo, W) carbides as potential catalysts for resource recovery via dry reforming of waste plastics
PublicationThe growing amounts of plastic waste and CO2 emissions are two environmental threats that require urgent attention. Pyrolysis combined with dry reforming (PCDR) is a technology that allows both CO2 utilization and resource recovery from waste plastic. New catalysts for PCDR are crucial for developing efficient and stable processes that can be widely implemented in the industry. In this study, Ni/MgAl2O4 catalysts modified using different...
-
Highly crystalline colloidal nickel oxide hole transport layer for low-temperature processable perovskite solar cell
PublicationHighly crystalline NiOX usually requires high annealing temperature (>300 °C) which is incompatible with flexible substrate and might consume high amount of energy. Herein, we demonstrate a facile emulsion process to synthesize highly crystalline, low temperature deposition (<150 °C) and solution processable NiOx nanoparticles (NPs) as a hole transport layer for the perovskite solar cells (PVSCs). A novel surfactant of tetramethylammonium...
-
From ashes to porous hierarchical nanocarbon electrode: Upcycling secondary waste materials through self-catalytic chemical vapour deposition
PublicationMetal and metal oxide particles are abundant in various ash-based wastes. Utilizing these as catalyst sources for the fabrication of carbon nanomaterials could present a valuable approach to reduce our reliance on non-renewable and costly catalyst sources, thereby facilitating large-scale nanomaterial production. In this context, secondary waste materials (SWMs) are by-products resulting from the (complete or partial) combustion...
-
The importance of individual spray properties in performance improvement of a urea-SCR system employing flash-boiling injection
PublicationThe appropriate mixing of a urea–water solution (UWS) with exhaust gases in a selective catalytic reduction system is crucial to efficiently reduce nitrogen oxides and diminish the deposition of liquid wall film. One of the methods to enhance the mixing of the UWS with the exhaust gases is a flash-boiling injection. Its positive effect has been linked with a reduced Sauter mean diameter (SMD) and improved evaporation, but the...
-
Tuning Electrochemical Performance by Microstructural Optimization of the Nanocrystalline Functional Oxygen Electrode Layer for Solid Oxide Cells
PublicationFurther development of solid oxide fuel cell (SOFC) oxygen electrodes can be achieved through improvements in oxygen electrode design by microstructure miniaturisation alongside nanomaterials implementation. In this work, improved electrochemical performance of an La0.6Sr0.4Co0.2Fe0.8O3-d (LSCF) cathode was achieved by the controlled modification of the La0.6Sr0.4CoO3-d (LSC) nanocrystalline interlayer introduced between a porous...
-
Layer-by-layer polymer deposited fabrics with superior flame retardancy and electrical conductivity
PublicationSmart and multifunctional textiles and fabrics are progressively developing, such that multifunctional fabrics are becoming more widespread. We elaborated herein multi-layered flax fabrics with superior flame retardancy and conductivity, which revealed fireproof feature while keeping conductivity during burning. The flax fabric was reinforced by layer-by-layer (LbL) deposition of sodium polyacrylate (SPA), polyethylenimine (PEI),...
-
Diamondized carbon nanoarchitectures as electrocatalytic material for sulfate-based oxidizing species electrogeneration
PublicationThe introduction of nanotechnology seems to be an imperative factor to intensify the synergic effects of electrocatalytic materials to produce strong oxidant species or to increase the active sites on their surfaces as well as to enhance the conversion yield in a fuel cell, high-added value products, electrolytic treatment for environmental protection or the detection limit in electroanalysis. Recently, a new type of 3D-diamond...
-
Addressing challenges of BiVO4 light-harvesting ability through vanadium precursor engineering and sub-nanoclusters deposition for peroxymonosulfate-assisted photocatalytic pharmaceuticals removal
PublicationIn this study, we present a complex approach for increasing light utilisation and peroxymonosulfate (PMS) activation in BiVO4-based photocatalyst. This involves two key considerations: the design of the precursor for BiVO4 synthesis and interface engineering through CuOx sub-nanoclusters deposition. The designed precursor of ammonium methavanadate (NH4VO3, NHV) leads to reduction in particle size, better dispersion and improved light...
-
The influence of phosphorus fractions in bottom sediments on phosphate removal in semi-natural systems as the 3rd stage of biological wastewater treatment
PublicationThe research was carried out in two semi-natural systems (the polishing ponds in Swarzewo and the free water surface constructed wetland in Zarnowiec) in Poland. They were built as the 3rd stage of a conventional mechanical–biological wastewater treatment plant. These systems were built to improve the quality of the effluent of treated wastewater. In the polishing ponds and FWS wetland system, suspended solids, organic matter as...
-
Tensile and Fatigue Behavior of Additive Manufactured Polylactide
PublicationThis article presents the results of monotonic tensile and fatigue tests conducted on commercial polylactide or polylactic acid (PLA). The results of fatigue tests for this material present in the literature are limited, especially for additive manufactured elements. The specimens were manufactured using the injection molding and the fused filament fabrication (FFF) method. The FFF specimens were divided into five subgroups, depending...
-
Trace elements content of surface peat deposits in the Solovetsky Islands (White Sea)
PublicationPeatlands form environmental archives of trace element deposition. In this regard they are particularly valuable for areas such as the Arctic, where regular pollution monitoring is either impossible or extremely costly. The aim of this study was to assess pollution in the Solovetsky Islands (65° 05' N, 35° 53' E) by examining the spatial variability in trace element content of the uppermost layer of peat, immediately below the...
-
Mechanical and Corrosion Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings
Publication: Titanium and its alloys is the main group of materials used in prosthetics and implantology. Despite their popularity and many advantages associated with their biocompatibility, these materials have a few significant disadvantages. These include low biologic activity—which reduces the growth of fibrous tissue and allows loosening of the prosthesis—the possibility of metallosis and related inflammation or other allergic reactions,...
-
Polyurethanes Crosslinked with Poly(vinyl alcohol) as a Slowly-Degradable and Hydrophilic Materials of Potential Use in Regenerative Medicine
PublicationNovel, slowly-degradable and hydrophilic materials with proper mechanical properties and surface characteristics are in great demand within the biomedical field. In this paper, the design, synthesis, and characterization of polyurethanes (PUR) crosslinked with poly(vinyl alcohol) (PVA) as a new proposition for regenerative medicine is described. PVA-crosslinked PURs were synthesized by a two-step polymerization performed in a solvent...
-
Pulsed Laser Deposition of Bismuth Vanadate Thin Films—The Effect of Oxygen Pressure on the Morphology, Composition, and Photoelectrochemical Performance
PublicationThin layers of bismuth vanadate were deposited using the pulsed laser deposition technique on commercially available FTO (fluorine-doped tin oxide) substrates. Films were sputtered from a sintered, monoclinic BiVO4 pellet, acting as the target, under various oxygen pressures (from 0.1 to 2 mbar), while the laser beam was perpendicular to the target surface and parallel to the FTO substrate. The oxygen pressure strongly affects...
-
Insight into (Electro)magnetic Interactions within Facet-Engineered BaFe12O19/TiO2 Magnetic Photocatalysts
PublicationA series of facet-engineered TiO2/BaFe12O19 composites were synthesized through hydrothermal growth of both phases and subsequent deposition of the different, faceted TiO2 nanoparticles onto BaFe12O19 microplates. The well-defined geometry of the composite and uniaxial magnetic anisotropy of the ferrite allowed alternate interfaces between both phases and fixed the orientation between the TiO2 crystal structure and the remanent...
-
Tailoring electronic structure of polyazomethines thin films
PublicationPurpose: The aim of this work is to show how electronic properties of polyazomethine thin films deposited bychemical vapor deposition method (CVD) can be tailored by manipulating technological parameters of pristinefilms preparation as well as modifying them while the as-prepared films put into iodine atmosphere.Design/methodology/approach: The recent achievements in the field of designing and preparation methods tobe used while...
-
Study of Photovoltaic Devices with Hybrid Active Layer
PublicationThe aim of this work is to present the influences of composition of the material andmanufacturing technology conditions of the organic photovoltaics devices (OPv) with the organicand hybrid bulk heterojunction on the active layers properties and cells performance. The layers wereproduced by using small molecular compounds: the metal-phthalocyanine (MePc) and perylenederivatives (PTCDA) and the titanium dioxide (TiO2) nanoparticles....
-
Effects of beach wrack on the fate of mercury at the land-sea interface – A preliminary study
PublicationSince the 1970s, the amount of aquatic plants and algae debris, called beach wrack (BW), has increased along the shores of industrialised regions. The strong ability of primary producers to accumulate pollutants can potentially result in their deposition on the beach along with the BW. Despite that, the fate and impact of such pollutants on sandy beach ecosystems have not been investigated so far. This study examines the fate...
-
Microstructure and mechanical properties of laser surface-treated Ti13nb13zr alloy with MWCNTs coatings
PublicationLaser surface modification of titanium alloys is one of the main methods of improving the properties of titanium alloys used in implantology. This study investigates the microstructural morphology of a laser-modified surface layer on a Ti13Nb13Zr alloy with and without a carbon nanotube coating deposited by electrophoretic deposition. Laser modification was performed for samples with and without carbon nanotube coating for two...
-
A Multi Rig Screening Test for Thin Ceramic Coatings in Bio - Tribological Applications
PublicationA method is presented for the comparative testing of wear resistance of ceramic coatings made from materials potentially feasible in tribo - medical applications, mainly orthopaedic implants made from ceramics coated metals for low cost, long life and low wear particle emission into the body. The method was devised as the main tool for use in research and is comprised of flat on flat and ball on flat surface (sliding) tests. Seven...
-
Fabrication and characterization of boron-doped nanocrystalline diamond-coated MEMS probes
PublicationFabrication processes of thin boron-doped nanocrystalline diamond (B-NCD) films on silicon-based micro- and nano-electromechanical structures have been investigated. Nanocrystalline boron doped -diamond (B-NCD) films were deposited using Microwave Plasma Assisted Chemical Vapour Deposition (MW PA CVD) method. The variation of B-NCD morphology, structure and optical parameters were particularly investigated. The use of truncated...
-
Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films
PublicationBoron doped diamond (BDD) has great potential in electrical, and electrochemical sensing applications. The growth parameters, substrates, and synthesis method play a vital role in the preparation of semiconducting BDD to metallic BDD. Doping of other elements along with boron (B) into diamond demonstrated improved efficacy of B doping and exceptional properties. In the present study, B and nitrogen (N) co-doped diamond has been...
-
Evaluation of the use of reindeer droppings for monitoring essential and non-essential elements in the polar terrestrial environment
PublicationExcess or toxic metals, non-metals and metalloids can be eliminated from the organism by deposition in inert tissue (e.g. fur) or excretion with body secretions, urine and faeces. Droppings are one of the main routes for the elimination of multiple elements and they can be collected without direct contact with the animal. Contaminant concentration has been examined in non-lethally collected tissues of several species (especially...
-
Long-Term Impact of Wind Erosion on the Particle Size Distribution of Soils in the Eastern Part of the European Union
PublicationWind erosion is the leading cause of soil degradation and air pollution in many regionsof the world. As wind erosion is controlled by climatic factors, research on this phenomenon isurgently needed in soil and land management in order to better adapt to climate change. In thispaper, the impact of wind erosion on the soil surface in relation to particle size distribution wasinvestigated. Changes in percentage of sand, silt and...
-
The effect of boron concentration on the electrical, morphological and optical properties of boron-doped nanocrystalline diamond sheets: Tuning the diamond-on-graphene vertical junction
PublicationIn this paper, the effect of boron doping on the electrical, morphological and structural properties of free-standing nanocrystalline diamond sheets (thickness ~ 1 μm) was investigated. For this purpose, we used diamond films delaminated from a mirror-polished tantalum substrate following a microwave plasma-assisted chemical vapor deposition process, each grown with a different [B]/[C] ratio (up to 20,000 ppm) in the gas phase....
-
The effects of urban vehicle traffic on heavy metal contamination in road sweeping waste and bottom sediments of retention tanks
PublicationDiffuse pollution formed during a surface runoff on paved surfaces is a source of heavy metals (HMs) of various origin. This research study indicates the connection between bottom sediments of retention tanks located on urban streams and road sweeping wastes (RSW) that migrate during surface runoff to the stormwater drainage systems with discharge to the retention tanks. Moreover, we test the primary sources of HMs in RSW by analysing...
-
Review on robust laser light interaction with titania – Patterning, crystallisation and ablation processes
PublicationTitanium dioxide is regarded as a very promising semiconducting material that is widely applied in many everyday-use products, devices, and processes. In general, those applications can be divided into energy or environmental categories, where a high conversion rate, and energy and power density are of particular interest. Therefore, many efforts are being put towards the elaboration of novel production routes, and improving the...
-
SEDIMENT DEPOSITION IN RESERVOIRS IN URBAN BASIN
PublicationIn recent years Gdańsk had sustained economic and social losses due to severe flash floods coming down from moraine hills. The first flood occurred in July 2001 and the second in July 2016. Both events were caused by intense and long rainfall characterized by different from each other rain intensity in time. Among other Gdansk’s streams the Oliwski Stream has the most extended flood protection system consist of 15 small retention...
-
Self-organized multilayered graphene-boron doped diamond hybrid nanowalls for high performance electron emission devices
PublicationCarbon nanomaterials like nanotubes, nanoflakes/nanowalls and graphene have been used as electron sources due to their superior field electron emission (FEE) characteristics. Nevertheless, these materials show poor stability and a short lifetime, preventing them from being used in practical device applications. The intention of this study was to find an innovative nanomaterial, possessing both high robustness and reliable FEE behavior....
-
Water chemistry of tundra lakes in the periglacial zone of the Bellsund Fiord (Svalbard) in the summer of 2013
PublicationClimate changes observed in the Arctic (e.g. permafrost degradation, glacier retreat) may have significant influence on sensitive polar wetlands. The main objectives of this paper are defining chemical features of water within six small arctic lakes located in Bellsund (Svalbard) in the area of continuous permafrost occurrence. The unique environmental conditions of the study area offer an opportunity to observe phenomena influencing...
-
Highly crystalline colloidal nickel oxide hole transport layer for low-temperature processable perovskite solar cell
PublicationHighly crystalline NiOX usually requires high annealing temperature (>300 °C) which is incompatible with flexible substrate and might consume high amount of energy. Herein, we demonstrate a facile emulsion process to synthesize highly crystalline, low temperature deposition (<150 °C) and solution processable NiOx nanoparticles (NPs) as a hole transport layer for the perovskite solar cells (PVSCs)....
-
Distribution and bioavailability of mercury in the surface sediments of the Baltic Sea
PublicationThe study aimed to determine the level of mercury (Hg) and its labile and stable forms in the surface sediments of the Baltic Sea. The work considers the impact of current and historical sources of Hg on sediment pollution, together with the influence of different environmental parameters, including water inflows from the North Sea. Surface sediments (top 5 cm) were collected in 2016–2017 at 91 stations located in different...
-
Nanoparticles preparation using microemulsion systems
PublicationMetallic nanoparticles become of current interests because they exhibit unique properties compared with those of metal atoms or bulk metal due to the quantum size effect and their large surface area, which make them attractive for applications in optics, electronics, catalysis biology and medicine. TiO2 has been used for environmental remediation purposes such as in the purification of water and air and also solar-to chemical energy...